1
|
Folbergrová J, Ješina P, Otáhal J. Protective Effect of Sulforaphane on Oxidative Stress and Mitochondrial Dysfunction Associated with Status Epilepticus in Immature Rats. Mol Neurobiol 2023; 60:2024-2035. [PMID: 36598650 PMCID: PMC9984354 DOI: 10.1007/s12035-022-03201-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present study aimed to elucidate the effect of sulforaphane (a natural isothiocyanate) on oxidative stress and mitochondrial dysfunction during and at selected periods following status epilepticus (SE) induced in immature 12-day-old rats by Li-pilocarpine. Dihydroethidium was employed for the detection of superoxide anions, immunoblot analyses for 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) levels and respiratory chain complex I activity for evaluation of mitochondrial function. Sulforaphane was given i.p. in two doses (5 mg/kg each), at PD 10 and PD 11, respectively. The findings of the present study indicate that both the acute phase of SE and the early period of epileptogenesis (1 week and 3 weeks following SE induction) are associated with oxidative stress (documented by the enhanced superoxide anion production and the increased levels of 3-NT and 4-HNE) and the persisting deficiency of complex I activity. Pretreatment with sulforaphane either completely prevented or significantly reduced markers of both oxidative stress and mitochondrial dysfunction. Since sulforaphane had no direct anti-seizure effect, the findings suggest that the ability of sulforaphane to activate Nrf2 is most likely responsible for the observed protective effect. Nrf2-ARE signaling pathway can be considered a promising target for novel therapies of epilepsy, particularly when new compounds, possessing inhibitory activity against protein-protein interaction between Nrf2 and its repressor protein Keap1, with less "off-target" effects and, importantly, with an optimal permeability and bioavailability properties, become available commercially.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
2
|
Effects of Lacosamide Treatment on Epileptogenesis, Neuronal Damage and Behavioral Comorbidities in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22094667. [PMID: 33925082 PMCID: PMC8124899 DOI: 10.3390/ijms22094667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.
Collapse
|
3
|
Folbergrová J, Ješina P, Otáhal J. Treatment With Resveratrol Ameliorates Mitochondrial Dysfunction During the Acute Phase of Status Epilepticus in Immature Rats. Front Neurosci 2021; 15:634378. [PMID: 33746702 PMCID: PMC7973046 DOI: 10.3389/fnins.2021.634378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to elucidate the effect of resveratrol (natural polyphenol) on seizure activity, production of ROS, brain damage and mitochondrial function in the early phase of status epilepticus (SE), induced in immature 12 day-old rats by substances of a different mechanism of action (Li-pilocarpine, DL-homocysteic acid, 4-amino pyridine, and kainate). Seizure activity, production of superoxide anion, brain damage and mitochondrial function were assessed by EEG recordings, hydroethidium method, FluoroJadeB staining and Complex I activity measurement. A marked decrease of complex I activity associated with the acute phase of SE in immature brain was significantly attenuated by resveratrol, given i.p. in two or three doses (25 mg/kg each), 30 min before, 30 or 30 and 60 min after the induction of SE. Increased O2.– production was completely normalized, brain damage partially attenuated. Since resveratrol did not influence seizure activity itself (latency, intensity, frequency), the mechanism of protection is likely due to its antioxidative properties. The findings have a clinical relevance, suggesting that clinically available substances with antioxidant properties might provide a high benefit as an add-on therapy during the acute phase of SE, influencing also mechanisms involved in the development of epilepsy.
Collapse
Affiliation(s)
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Abstract
Epilepsy is considered a major serious chronic neurological disorder, characterized by recurrent seizures. It is usually associated with a history of a lesion in the nervous system. Irregular activation of inflammatory molecules in the injured tissue is an important factor in the development of epilepsy. It is unclear how the imbalanced regulation of inflammatory mediators contributes to epilepsy. A recent research goal is to identify interconnected inflammation pathways which may be involved in the development of epilepsy. The clinical use of available antiepileptic drugs is often restricted by their limitations, incidence of several side effects, and drug interactions. So development of new drugs, which modulate epilepsy through novel mechanisms, is necessary. Alternative therapies and diet have recently reported positive treatment outcomes in epilepsy. Vitamin D (Vit D) has shown prophylactic and therapeutic potential in different neurological disorders. So, the aim of current study was to review the associations between different brain inflammatory mediators and epileptogenesis, to strengthen the idea that targeting inflammatory pathway may be an effective therapeutic strategy to prevent or treat epilepsy. In addition, neuroprotective effects and mechanisms of Vit D in clinical and preclinical studies of epilepsy were reviewed.
Collapse
|
5
|
Namdar F, Bahrami F, Bahari Z, Ghanbari B, Elahi SA, Mohammadi MT. Evaluation of the Effects of Fullerene C60 Nanoparticles on Oxidative Stress Parameters at Liver and Brain of Normal Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.30699/jambs.27.124.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
7
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
8
|
Treatment with pentylenetetrazole (PTZ) and 4-aminopyridine (4-AP) differently affects survival, locomotor activity, and biochemical markers in Drosophila melanogaster. Mol Cell Biochem 2017; 442:129-142. [DOI: 10.1007/s11010-017-3198-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/06/2017] [Indexed: 01/02/2023]
|
9
|
Mahfoz AM, Abdel-Wahab AF, Afify MA, Shahzad N, Ibrahim IAA, ElSawy NA, Bamagous GA, Al Ghamdi SS. Neuroprotective effects of vitamin D alone or in combination with lamotrigine against lithium-pilocarpine model of status epilepticus in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:977-985. [PMID: 28687854 DOI: 10.1007/s00210-017-1400-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Status epilepticus (SE) is considered one of the major serious forms of epilepsy with high mortality rate. Since the currently available antiepileptic drugs have low efficacy and high adverse effects, new more efficient and safe therapies are critically needed. There is increasing evidence supporting dietary and alternative therapies for epilepsy, including the ketogenic diet, modified Atkins diet, and omega-3 fatty acids. Recent studies have shown significant prophylactic and therapeutic potential of vitamin D (vit-D) use in many neurological disorders. Therefore, in the present study, the neuroprotective effects and mechanisms of vit-D alone or in combination with lamotrigine have been evaluated in the lithium-pilocarpine model of SE in rats. Rats were divided into five groups: normal group, SE group, lamotrigine (25 mg/kg/day) pretreated group, vit-D (1.5 mcg/kg/day) pretreated group, and group pretreated with vit-D and lamotrigine for 2 weeks. At the end of treatment, SE was induced by single intraperitoneal injection of LiCl (127 mg/kg), followed 24 h later by pilocarpine (30 mg/kg). Seizures' latency, cognitive performance in Morris water maze, brain oxidative stress biomarkers (glutathione, lipid peroxides, and nitric oxide), brain neurochemistry (γ-aminobutyric acid and glutamate), and brain histopathology have been evaluated. Vit-D prevented pilocarpine-induced behavioral impairments and oxidative stress in the brain; these results were improved in combination with lamotrigine. Vit-D has a promising antiepileptic, neuroprotective, and antioxidant effects. It can be provided to patients as a supportive treatment besides antiepileptic drugs. However, clinical trials are needed to establish its efficacy and safety.
Collapse
Affiliation(s)
- Amal M Mahfoz
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ali F Abdel-Wahab
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Afify
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim A A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naser A ElSawy
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeed S Al Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Liu G, Wang J, Deng XH, Ma PS, Li FM, Peng XD, Niu Y, Sun T, Li YX, Yu JQ. The Anticonvulsant and Neuroprotective Effects of Oxysophocarpine on Pilocarpine-Induced Convulsions in Adult Male Mice. Cell Mol Neurobiol 2017; 37:339-349. [PMID: 27481234 DOI: 10.1007/s10571-016-0411-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Abstract
Epilepsy is one of the prevalent and major neurological disorders, and approximately one-third of the individuals with epilepsy experience seizures that do not respond well to available medications. We investigated whether oxysophocarpine (OSC) had anticonvulsant and neuroprotective property in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO injection, the mice were administrated with OSC (20, 40, and 80 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl and Fluoro-jade B (FJB) staining. The oxidative stress was measured at 24 h after convulsion. Western blot analysis was used to examine the expressions of the Bax, Bcl-2, and Caspase-3. In this study, we found that pretreatment with OSC (40, 80 mg/kg) significantly delayed the onset of the first convulsion and status epilepticus (SE) and reduced the incidence of SE and mortality. Analysis of EEG recordings revealed that OSC (40, 80 mg/kg) significantly reduced epileptiform discharges. Furthermore, Nissl and FJB staining showed that OSC (40, 80 mg/kg) attenuated the neuronal cell loss and degeneration in hippocampus. In addition, OSC (40, 80 mg/kg) attenuated the changes in the levels of Malondialdehyde (MDA) and strengthened glutathione peroxidase and catalase activity in the hippocampus. Western blot analysis showed that OSC (40, 80 mg/kg) significantly decreased the expressions of Bax, Caspase-3 and increased the expression of Bcl-2. Collectively, the findings of this study indicated that OSC exerted anticonvulsant and neuroprotective effects on PILO-treated mice. The beneficial effects should encourage further studies to investigate OSC as an adjuvant in epilepsy, both to prevent seizures and to protect neurons in brain.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xian-Hua Deng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Feng-Mei Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Dong Peng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9732854. [PMID: 28386293 PMCID: PMC5343263 DOI: 10.1155/2017/9732854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.
Collapse
|
12
|
Carmona-Aparicio L, Zavala-Tecuapetla C, González-Trujano ME, Sampieri AI, Montesinos-Correa H, Granados-Rojas L, Floriano-Sánchez E, Coballase-Urrutía E, Cárdenas-Rodríguez N. Status epilepticus: Using antioxidant agents as alternative therapies. Exp Ther Med 2016; 12:1957-1962. [PMID: 27698680 DOI: 10.3892/etm.2016.3609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
The epileptic state, or status epilepticus (SE), is the most serious situation manifested by individuals with epilepsy, and SE events can lead to neuronal damage. An understanding of the molecular, biochemical and physiopathological mechanisms involved in this type of neurological disease will enable the identification of specific central targets, through which novel agents may act and be useful as SE therapies. Currently, studies have focused on the association between oxidative stress and SE, the most severe epileptic condition. A number of these studies have suggested the use of antioxidant compounds as alternative therapies or adjuvant treatments for the epileptic state.
Collapse
Affiliation(s)
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of The Reticular Formation Reticular, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - María Eva González-Trujano
- Laboratory of Neuropharmacology of Natural Products, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Aristides Iii Sampieri
- Department of Comparative Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City 04150, Mexico
| | | | - Leticia Granados-Rojas
- Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City 04530, Mexico
| | - Esaú Floriano-Sánchez
- Military School of Graduate of Health, Multidisciplinary Research Laboratory, Secretariat of National Defense, Mexico City 11270, Mexico
| | | | | |
Collapse
|
13
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
14
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|
15
|
Rettenbeck ML, von Rüden EL, Bienas S, Carlson R, Stein VM, Tipold A, Potschka H. Microglial ROS production in an electrical rat post-status epilepticus model of epileptogenesis. Neurosci Lett 2015; 599:146-51. [PMID: 26007700 DOI: 10.1016/j.neulet.2015.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species and inflammatory signaling have been identified as pivotal pathophysiological factors contributing to epileptogenesis. Considering the development of combined anti-inflammatory and antioxidant treatment strategies with antiepileptogenic potential, a characterization of the time course of microglial reactive oxygen species generation during epileptogenesis is of major interest. Thus, we isolated microglia cells and analyzed the generation of reactive oxygen species by flow cytometric analysis in an electrical rat post-status epilepticus model. Two days post status epilepticus, a large-sized cell cluster exhibited a pronounced response with excessive production of reactive oxygen species upon stimulation with phorbol-myristate-acetate. Neither in the latency phase nor in the chronic phase with spontaneous seizures a comparable cell population with induction of reactive oxygen species was identified. We were able to demonstrate in the electrical rat post-status-epilepticus model, that microglial ROS generation reaches a peak after the initial insult, is only marginally increased in the latency phase, and returns to control levels during the chronic epileptic phase. The data suggest that a combination of anti-inflammatory and radical scavenging approaches might only be beneficial during a short time window after an epileptogenic brain insult.
Collapse
Affiliation(s)
- Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Silvia Bienas
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
16
|
Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q. Puerarin protects hippocampal neurons against cell death in pilocarpine-induced seizures through antioxidant and anti-apoptotic mechanisms. Cell Mol Neurobiol 2014; 34:1175-82. [PMID: 25151533 DOI: 10.1007/s10571-014-0093-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
Puerarin extracted from Radix puerariae has been shown to exert neuroprotective effects. However, it is still not known whether puerarin protects hippocampal neurons against cell death in pilocarpine-induced seizures. In this study, we found that pretreatment with puerarin significantly attenuated the neuronal death in the hippocampus of rats with pilocarpine-induced epilepsy. In addition, puerarin decreased the level of seizure-induced reactive oxygen species in mitochondria isolated from the rat hippocampi. Terminal deoxyuridine triphosphate nick-end labeling staining showed that puerarin exerted an anti-apoptotic effect on the neurons in the epileptic hippocampus. Western blot analysis showed that puerarin treatment significantly decreased the expression of Bax and increased the expression of Bcl-2. Moreover, puerarin treatment restored the altered mitochondrial membrane potential and cytochrome c release from the mitochondria in the epileptic hippocampi. Altogether, the findings of this study suggest that puerarin exerts a therapeutic effect on epilepsy-induced brain injury through antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,
| | | | | | | | | | | |
Collapse
|
17
|
Auricular electroacupuncture reduced inflammation-related epilepsy accompanied by altered TRPA1, pPKCα, pPKCε, and pERk1/2 signaling pathways in kainic acid-treated rats. Mediators Inflamm 2014; 2014:493480. [PMID: 25147437 PMCID: PMC4131505 DOI: 10.1155/2014/493480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022] Open
Abstract
Background. Inflammation is often considered to play a crucial role in epilepsy by affecting iron status and metabolism. In this study, we investigated the curative effect of auricular acupuncture and somatic acupuncture on kainic acid- (KA-) induced epilepsy in rats. Methods. We established an epileptic seizure model in rats by KA (12 mg, ip). The 2 Hz electroacupuncture (EA) was applied at auricular and applied at Zusanli and Shangjuxu (ST36-ST37) acupoints for 20 min for 3 days/week for 6 weeks beginning on the day following the KA injection. Results. The electrophysiological results indicated that neuron overexcitation occurred in the KA-treated rats. This phenomenon could be reversed among either the auricular EA or ST36-ST37 EA treatment, but not in the sham-control rats. The Western blot results revealed that TRPA1, but not TRPV4, was upregulated by injecting KA and could be attenuated by administering auricular or ST36-ST37 EA, but not in the sham group. In addition, potentiation of TRPA1 was accompanied by increased PKCα and reduced PKCε. Furthermore, pERK1/2, which is indicated in inflammation, was also increased by KA. Furthermore, the aforementioned mechanisms could be reversed by administering auricular EA and could be partially reversed by ST36-ST37 EA. Conclusions. These results indicate a novel mechanism for treating inflammation-associated epilepsy and can be translated into clinical therapy.
Collapse
|