1
|
Orzeł-Gajowik K, Milewski K, Zielińska M. miRNA-ome plasma analysis unveils changes in blood-brain barrier integrity associated with acute liver failure in rats. Fluids Barriers CNS 2023; 20:92. [PMID: 38066639 PMCID: PMC10709860 DOI: 10.1186/s12987-023-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin β1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin β1 expression. CONCLUSION This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.
Collapse
Affiliation(s)
- Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura St. 3, 02-093, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Shurubor YI, Rogozhin AE, Isakova EP, Deryabina YI, Krasnikov BF. Residual Amino Acid Imbalance in Rats during Recovery from Acute Thioacetamide-Induced Hepatic Encephalopathy Indicates Incomplete Healing. Int J Mol Sci 2023; 24:ijms24043647. [PMID: 36835059 PMCID: PMC9967446 DOI: 10.3390/ijms24043647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The delayed consequences of the influence of hepatic encephalopathy (HE) on the metabolism of animals have not been studied enough. We have previously shown that the development of acute HE under the influence of the thioacetamide (TAA) toxin is accompanied by pathological changes in the liver, an imbalance in CoA and acetyl CoA, as well as a number of metabolites of the TCA cycle. This paper discusses the change in the balance of amino acids (AAs) and related metabolites, as well as the activity of glutamine transaminase (GTK) and ω-amidase enzymes in the vital organs of animals 6 days after a single exposure to TAA. The balance of the main AAs in blood plasma, liver, kidney, and brain samples of control (n = 3) and TAA-induced groups (n = 13) of rats that received the toxin at doses of 200, 400, and 600 mg/kg was considered. Despite the apparent physiological recovery of the rats at the time of sampling, a residual imbalance in AA and associated enzymes persisted. The data obtained give an idea of the metabolic trends in the body of rats after their physiological recovery from TAA exposure and may be useful for prognostic purposes when choosing the necessary therapeutic agents.
Collapse
Affiliation(s)
| | - Alexander E. Rogozhin
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Moscow 117218, Russia
| | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of Russia, Moscow 119121, Russia
- Correspondence: ; Tel.: +7-(985)-095-5445
| |
Collapse
|
3
|
Shurubor YI, Rogozhin AE, Isakova EP, Deryabina YI, Krasnikov BF. Tricarboxylic Acid Metabolite Imbalance in Rats with Acute Thioacetamide-Induced Hepatic Encephalopathy Indicates Incomplete Recovery. Int J Mol Sci 2023; 24:ijms24021384. [PMID: 36674898 PMCID: PMC9861856 DOI: 10.3390/ijms24021384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Exposure to the toxin thioacetamide (TAA) causes acute hepatic encephalopathy (HE), changes in the functioning of systemic organs, and an imbalance in a number of energy metabolites. The deferred effects after acute HE development are poorly understood. The study considers the balance of the tricarboxylic acid (TCA) cycle metabolites in the blood plasma, liver, kidneys, and brain tissues of rats in the post-rehabilitation period. The samples of the control (n = 3) and TAA-induced groups of rats (n = 13) were collected six days after the administration of a single intraperitoneal TAA injection at doses of 200, 400, and 600 mg/kg. Despite the complete physiological recovery of rats by this date, a residual imbalance of metabolites in all the vital organs was noted. The results obtained showed a trend of stabilizing processes in the main organs of the animals and permit the use of these data both for prognostic purposes and the choice of potential therapeutic agents.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical Biological Agency of The Russian Federation, Moscow 119121, Russia
| | - Alexander E. Rogozhin
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Moscow 117218, Russia
| | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning and Management of Medical and Biological Health Risks, Federal Medical Biological Agency of The Russian Federation, Moscow 119121, Russia
- Correspondence: ; Tel.: +7-(985)-095-5445
| |
Collapse
|
4
|
Cheng L, Li Y, Yao Y, Jin X, Ying H, Xu B, Xu J. Toxic Effects of Thioacetamide-Induced Femoral Damage in New Zealand White Rabbits by Activating the p38/ERK Signaling Pathway. Physiol Res 2022; 71:285-295. [DOI: 10.33549/physiolres.934803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thioacetamide (TAA) is widely used in the production of drugs, pesticides and dyeing auxiliaries. Moreover, it is a chemical that can cause liver damage and cancer. TAA has recently been identified to cause bone damage in animal models. However, the type of bone damage that TAA causes and its potential pathogenic mechanisms remain unclear. The toxic effects of TAA on the femurs of New Zealand white rabbits and the underlying toxicity mechanism were investigated in this study. Serum samples, the heart, liver, kidney and femurs were collected from rabbits after intraperitoneal injection of TAA for 5 months (100 and 200 mg/kg). The New Zealand white rabbits treated with TAA showed significant weight loss and femoral shortening. The activities of total bilirubin, total bile acid and gamma-glutamyl transpeptidase in the serum were increased following treatment with TAA. In addition, the cortical bone became thinner, and the trabecular thickness decreased significantly in TAA-treated rabbits, which was accompanied by significantly decreased mineral density of the cortical and trabecular bone. Moreover, there was a significant decrease in modulus of elasticity and maximum load on bone stress in TAA-treated rabbits. The western blotting results showed that the expression of phosphorylated (p)-p38 and p-ERK in femur tissues of rabbits were increased after TAA administration. Collectively, these results suggested that TAA may lead to femoral damage in rabbits by activating the p38/ERK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Xu
- School of Medical Technology and Information Engineering, Zhejiang, Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China, e-mail:
| |
Collapse
|
5
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Schyman P, Printz RL, Pannala VR, AbdulHameed MDM, Estes SK, Shiota C, Boyd KL, Shiota M, Wallqvist A. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat. Toxicol Appl Pharmacol 2021; 430:115713. [PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.
Collapse
Affiliation(s)
- Patric Schyman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli Lynn Boyd
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
7
|
Khalil HMA, Eliwa HA, El-Shiekh RA, Al-Mokaddem AK, Hassan M, Tawfek AM, El-Maadawy WH. Ashwagandha (Withania somnifera) root extract attenuates hepatic and cognitive deficits in thioacetamide-induced rat model of hepatic encephalopathy via induction of Nrf2/HO-1 and mitigation of NF-κB/MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114141. [PMID: 33905819 DOI: 10.1016/j.jep.2021.114141] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha (ASH) is one of the medicinal plants used in traditional Indian, Ayurvedic, and Unani medicines for their broad range of pharmacological activities including, tonic, aphrodisiac, energy stimulant, and counteracting chronic fatigue. Besides, it is used in the treatment of nervous exhaustion, memory-related conditions, insomnia, as well as improving learning ability and memory capacity. ASH is preclinically proven to be efficient in hepatoprotection and improving cognitive impairment, however, its beneficial effects against hepatic encephalopathy (HE) is still unclear. Therefore, this study aimed at investigating the protective effects of ASH root extract against thioacetamide (TAA)-induced HE and delineate the underlying behavioral and pharmacological mechanisms. MATERIALS AND METHODS ASH metabolites were identified using UPLC-HRMS. Rats were pretreated with ASH (200 and 400 mg/kg) for 29 days and administrated TAA (i.p, 350 mg/kg) in a single dose. Then, behavioral (open field test, Y-maze, modified elevated plus maze and novel object recognition test), and biochemical (ammonia and hepatic toxicity indices) assessments, as well as oxidative stress markers (MDA and GSH) were evaluated. The hepatic and brain levels of glutamine synthetase (GS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme-oxygenase (HO)-1, inducible nitric oxide synthase (iNOS) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of p38/ERK½ were determined using real-time polymerase chain reaction (PCR). Moreover, histopathological investigations and immunohistochemical (NF-κB and TNF-α immunohistochemical expressions) examinations were performed. RESULTS Metabolite profiling of ASH revealed more than 45 identified metabolites including phenolic acids, flavonoids and steroidal lactone triterpenoids. Compared to the TAA-intoxicated group, ASH improved the locomotor and cognitive deficits, serum hepatotoxicity indices and ammonia levels, as well as brain and hepatic histopathological alterations. ASH reduced hepatic and brain levels of MDA, GS, and iNOS, and increased their GSH, Nrf2, and HO-1 levels. Also, ASH downregulated p38 and ERK½ mRNA expressions, and NF-κB and TNF-α immunohistochemical expressions in brain and hepatic tissues. CONCLUSIONS Our results provided insights into the promising hepato- and neuroprotective effects of ASH, with superiority to 400 mg/kg ASH, to ameliorate HE with its sequential hyperammonemia and liver/brain injuries. This could be attributed to the recorded increase in the spontaneous alternation % and recognition index, antioxidant and anti-inflammatory activities, as well as upregulation of Nrf2 and downregualtion of MAPK signaling pathways.
Collapse
Affiliation(s)
- Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th October, Giza, 12566, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Marwa Hassan
- Department of Immunology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| | - Azza M Tawfek
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| |
Collapse
|
8
|
Reichert D, Adolph L, Köhler JP, Buschmann T, Luedde T, Häussinger D, Kordes C. Improved Recovery from Liver Fibrosis by Crenolanib. Cells 2021; 10:804. [PMID: 33916518 PMCID: PMC8067177 DOI: 10.3390/cells10040804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver diseases are associated with excessive deposition of extracellular matrix proteins. This so-called fibrosis can progress to cirrhosis and impair vital functions of the liver. We examined whether the receptor tyrosine kinase (RTK) class III inhibitor Crenolanib affects the behavior of hepatic stellate cells (HSC) involved in fibrogenesis. Rats were treated with thioacetamide (TAA) for 18 weeks to trigger fibrosis. After TAA treatment, the animals received Crenolanib for two weeks, which significantly improved recovery from liver fibrosis. Because Crenolanib predominantly inhibits the RTK platelet-derived growth factor receptor-β, impaired HSC proliferation might be responsible for this beneficial effect. Interestingly, blocking of RTK signaling by Crenolanib not only hindered HSC proliferation but also triggered their specification into hepatic endoderm. Endodermal specification was mediated by p38 mitogen-activated kinase (p38 MAPK) and c-Jun-activated kinase (JNK) signaling; however, this process remained incomplete, and the HSC accumulated lipids. JNK activation was induced by stress response-associated inositol-requiring enzyme-1α (IRE1α) in response to Crenolanib treatment, whereas β-catenin-dependent WNT signaling was able to counteract this process. In conclusion, the Crenolanib-mediated inhibition of RTK impeded HSC proliferation and triggered stress responses, initiating developmental processes in HSC that might have contributed to improved recovery from liver fibrosis in TAA-treated rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; (D.R.); (L.A.); (J.P.K.); (T.B.); (T.L.); (D.H.)
| |
Collapse
|
9
|
Sharawy MH, El-Awady MS, Makled MN. Protective effects of paclitaxel on thioacetamide-induced liver fibrosis in a rat model. J Biochem Mol Toxicol 2021; 35:e22745. [PMID: 33749060 DOI: 10.1002/jbt.22745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is a public health burden that is highly associated with morbidity and mortality. Therefore, this study aims to explore the anti-fibrotic effects of low dose of paclitaxel (PTX) against thioacetamide (TAA)-induced liver fibrosis in rats and the possible mechanisms involved. TAA was administered at a dose of 200 mg/kg twice weekly for 6 weeks in rats to induce liver fibrosis similar to that in humans. Liver dysfunction was shown by increased alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transferase, along with histopathological changes. Liver fibrosis was confirmed by Masson's Trichome staining, increased collagen content, and elevated α-smooth muscle actin (α-SMA) protein expression. In addition, TAA induced liver apoptosis as indicated by the increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in liver tissues. This study demonstrated that the administration of PTX (0.3 mg/kg/i.p.) three times a week for 6 weeks significantly alleviated functional and biochemical changes induced by TAA in addition to improving the liver architecture. PTX attenuated liver fibrosis as reflected by the decreased collagen content and α-SMA protein expression. Additionally, PTX attenuated liver apoptosis as indicated by the decreased TUNEL-positive cells. Moreover, PTX prevented TAA-induced elevation of transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and tissue inhibitor of metalloproteinase 1 (TIMP-1) levels in liver tissues. These findings suggest that the low dose of PTX prevented TAA-induced liver fibrosis in rats, possibly by inhibiting the expression of TGF-β1 and PDGF-BB and subsequently suppressing the apoptosis and the expression of TIMP-1.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Mettwally WSA, Ragab TIM, Hamdy AHA, Helmy WA, Hassan SA. Preliminary study on the possible impact of Thalassodendron ciliatum (Forss.) den Hartog acidic polysaccharide fractions against TAA induced liver failure. Biomed Pharmacother 2021; 138:111502. [PMID: 33756156 DOI: 10.1016/j.biopha.2021.111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/01/2022] Open
Abstract
The water-soluble acidic polysaccharide from Thalassodendron ciliatum (Forss.) den Hartog was successfully extracted, fractionated and purified. The phytochemical profile of the two water-soluble fractions (F1 and F2), were detected using different analytic techniques. GC-MS analysis revealed the presence of 22 saccharide. Acidic polysaccharide, galacturonic and glucuronic acid were the most abundant. Moreover, paper chromatography and electrophoresis also performed as a preliminary chemical characterization of the polymer. The hepatoprotective activity of the fractions against thioacetamide (TAA) induced liver failure; antioxidant potential and preliminary immunomodulatory activity were assigned in-vivo. The results revealed a potent competence to improve the liver function profile (ALT, AST, total bilirubin, total glyceride, etc.) and a remarkable improvement in liver architecture in comparison to the challenged intoxicated groups. Moreover, they showed high anti-oxidative properties and a promising immunomodulatory influence via Il6. These findings provide new insight into the possible role of polysaccharide purified two fractions in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Walaa S A Mettwally
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Abdel-Hamid A Hamdy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Sohair Aly Hassan
- Therapeutic Chemistry Department, Pharmaceutical Industry Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
Brassica juncea L. (Mustard) Extract Silver NanoParticles and Knocking off Oxidative Stress, ProInflammatory Cytokine and Reverse DNA Genotoxicity. Biomolecules 2020; 10:biom10121650. [PMID: 33317112 PMCID: PMC7763120 DOI: 10.3390/biom10121650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Detoxification is one of the main vital tasks performed by the liver. The purpose of this study was to investigate whether mustard in its normal or nanoparticles could confer a protective/therapeutic effect against TAA-induced acute liver failure in experimental animal models. Mustard ethanolic extract was analyzed by HPLC/MS. To induce liver failure, male rats were injected with 350 mg/kg bw TAA IP, then treated orally with a dose of 100 mg/kg for 15 d of mustard extract and its nanoform before and following induction. The levels of serum liver functions, total cholesterol (TCHo), total glyceride (TG), total bilirubin (TBIL), hepatic malonaldhyde (MDA) and nitric oxide (NO),glutathione (GSH), sodium oxide dismutase (SOD), as well as tumor necrosis factor (TNF-α,) and interleukin 6 (IL-6), were estimated. DNA genotoxicity and hepatic pathology, and immunohistologic (IHC) changes were assayed. The antioxidant content of Phenolic acids, flavonoids in mustard ethanolic extract substantially decreased the levels of ALT, AST, ALP and rehabilitated the histopathological alterations. In addition, nanoforms of mustard ethanol extract have notably increased the levels of GSH, SOD and significantly reduced the levels of MDA. The expression levels of TNF-α and IL-6 in serum and tissue were markedly downregulated. DNA genotoxicity was significantly reversed. Mustard introduced a protective and medicinal effect against TAA in both its forms.
Collapse
|
12
|
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Ryska M, Froněk J. Sex-linked differences in the course of thioacetamide-induced acute liver failure in Lewis rats. Physiol Res 2020; 69:835-845. [PMID: 32901492 DOI: 10.33549/physiolres.934499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acute liver failure (ALF) is a clinical syndrome with high mortality rate, resulting from widespread hepatocyte damage. Its pathophysiological background is still poorly understood and preclinical studies evaluating pathophysiology and new potential therapeutic measures are needed. The model of ALF induced by administration of thioacetamide (TAA) in Lewis rats is recommended as optimal; however, the limitation of previous studies was that they were performed predominantly in male rats. In view of the growing recognition that sex as a biological variable should be taken into consideration in preclinical research, we examined its role in the development of TAA-induced ALF in Lewis rats. We found that, first, intact male Lewis rats showed lower survival rate than their female counterparts, due to augmented liver injury documented by higher plasma ammonia, and bilirubin levels and alanine aminotransferase activity. Second, in female rats castration did not alter the course of TAA-induced ALF whereas in the male gonadectomy improved the survival rate and attenuated liver injury, reducing it to levels observed in their female counterparts. In conclusion, we found that Lewis rats show a remarkable sexual dimorphism with respect to TAA-induced ALF, and male rats display dramatically poorer prognosis as compared with the females. We showed that testosterone is responsible for the deterioration of the course of TAA-induced ALF in male rats. In most general terms, our findings indicate that in the preclinical studies of the pathophysiology and treatment of ALF (at least of the TAA-induced form) the sex-linked differences should be seriously considered.
Collapse
Affiliation(s)
- E Koblihová
- Department of Surgery, Second Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Ahmed E, Saleh T, Yu L, Song SH, Park KM, Kwak HH, Woo HM. Decellularized extracellular matrix-rich hydrogel-silver nanoparticle mixture as a potential treatment for acute liver failure model. J Biomed Mater Res A 2020; 108:2351-2367. [PMID: 32415903 DOI: 10.1002/jbm.a.36988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) occurs due to severe liver damage that triggers rapid loss of normal liver function. Here, we investigate the usefulness of an injectable liver extracellular matrix (LECM)-rich hydrogel generated from an optimized decellularization protocol incorporated with silver nanoparticles (AgNPs) as a promising therapy for ALF. First, we optimized a non-destructive protocol for rat liver decellularization to obtain ECM-rich well-preserved scaffold. Then, LECM hydrogel generated from two commonly used decellularization protocols were compared by LECM hydrogel obtained from our optimized protocol. The ALF model was induced by an intraperitoneal (IP) thioacetamide (TAA) injection followed by the IP injection of LECM hydrogel, collagen-AgNP mixture, or LECM hydrogel-AgNP mixture. LECM-rich scaffold and hydrogel were successfully obtained using our optimized decellularization protocol. Use of the LECM hydrogel-AgNP mixture to treat TAA-induced ALF greatly improved liver injury and histological liver regeneration. Interleukin-6 and transforming growth factor-beta expressions were significantly reduced, while albumin, hepatocyte growth factor, and Ki67-positive cells were highly expressed. Moreover, aspartate transaminase and alanine transaminase plasma levels and liver homogenate nitric oxide level were significantly lowered. In conclusion, the LECM hydrogel-AgNP mixture has potential efficient therapeutic and regenerative effects on TAA-induced liver injury.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| | - Tarek Saleh
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| | - Lina Yu
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| | - Su-Hyeon Song
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of South Korea
| | - Ho-Hyun Kwak
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| | - Heung-Myong Woo
- Department of Veterinary Science, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of South Korea
| |
Collapse
|
14
|
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Kikerlová S, Husková Z, Ryska M, Froněk J, Vernerová Z. Pharmacological stimulation of Wnt/beta-catenin signaling pathway attenuates the course of thioacetamide-induced acute liver failure. Physiol Res 2019; 69:113-126. [PMID: 31852203 DOI: 10.33549/physiolres.934071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure (ALF) is known for extremely high mortality rate, the result of widespread damage of hepatocytes. Orthotopic liver transplantation is the only effective therapy but its application is limited by the scarcity of donor organs. Given the importance in the liver biology of Wnt/beta-catenin signaling pathway, we hypothesized that its stimulation could enhance hepatocyte regeneration and attenuate the course of thioacetamide (TAA)-induced ALF in Lewis rats. Chronic treatment with Wnt agonist was started either immediately after hepatotoxic insult ("early treatment") or when signs of ALF had developed ("late treatment"). Only 23 % of untreated Lewis rats survived till the end of experiment. They showed marked increases in plasma alanine aminotransferase (ALT) activity and bilirubin and ammonia (NH3) levels; plasma albumin decreased significantly. "Early" and "late" Wnt agonist treatment raised the final survival rate to 69 % and 63 %, respectively, and normalized ALT, NH3, bilirubin and albumin levels. In conclusion, the results show that treatment with Wnt agonist attenuates the course of TAA-induced ALF in Lewis rats, both with treatment initiated immediately after hepatotoxic insult and in the phase when ALF has already developed. Thus, the pharmacological stimulation of Wnt/beta-catenin signaling pathway can present a new approach to ALF treatment.
Collapse
Affiliation(s)
- E Koblihová
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang HY, Kim KS, Lee YH, Park JH, Kim JH, Lee SY, Kim YM, Kim IS, Kacew S, Lee BM, Kwak JH, Yoon K, Kim HS. Dendropanax morbifera Ameliorates Thioacetamide-Induced Hepatic Fibrosis via TGF-β1/Smads Pathways. Int J Biol Sci 2019; 15:800-811. [PMID: 30906211 PMCID: PMC6429015 DOI: 10.7150/ijbs.30356] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatic fibrosis, characterized by persistent deposition of extracellular matrix (ECM) proteins, occurs in most types of chronic liver disease. The prevention of liver damage using extract of Dendropanax morbifera has been widely studied, but its molecular mechanism on the therapeutic efficacy of hepatic fibrosis is unclear. The aim of this study was to assess whether aquatic extract (DM) of D. morbifera ameliorates thioacetamide (TAA)-induced hepatic fibrosis. Hepatic fibrosis was induced by an intraperitoneal (i.p.) injection (150 mg/kg, twice per week) of TAA for 6 weeks. DM (50 mg/kg/day) or silymarin (50 mg/kg/day) was administered daily for 6 weeks. DM markedly reduced serum AST, ALT, ALP, and r-GTP in TAA-treated rats. DM significantly ameliorated the total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity in TAA-treated rats. In particular, DM significantly reduced expression of α-SMA, type I collagen, vimentin, TGF-β1 and p-Smad2/3 in hepatic fibrosis rats. The protective effects of DM on progression of hepatic fibrosis were clearly shown by detecting 4-hydroxyproline concentration and histopathological examination in the liver. Therefore, our data suggest that DM dramatically prevented hepatic fibrosis by inhibiting oxidative stress and the TGF-β1/Smads signaling pathways.
Collapse
Affiliation(s)
- Hun Yong Yang
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Yong Hee Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon, 16419, Republic of Korea
| |
Collapse
|
16
|
Bashandy SAE, El Awdan SA, Mohamed SM, Omara EAA. Allium porrum and Bauhinia Variegata Mitigate Acute Liver Failure and Nephrotoxicity Induced by Thioacetamide in Male Rats. Indian J Clin Biochem 2019; 35:147-157. [PMID: 32226246 DOI: 10.1007/s12291-018-0803-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The present work has been designed to investigate the hepatoprotective and renoprotective efficiency of alcoholic extract of Allium porrum and Bauhinia variegata leaves in thioacetamide-induced toxicity in adult Wistar rats. Allium porrum leaf extract, Bauhinia variegata leaf extract and their combinations were orally administered for 14 days then TAA (300 mg/kg) i.p. was injected once and the rats were sacrificed 2 days later. Plasma AST, ALT, GGT, total bilirubin, creatinine, urea, uric acid, triglyceride, cholesterol, HDL and LDL were measured. Liver MDA, GSH, CAT, SOD and TNF-α were evaluated. Histological examination was performed. The rats treated with TAA showed a significant increase in AST, ALT, GGT, total bilirubin, creatinine, urea, uric acid, total, triglyceride, cholesterol and HDL while it led to a significant decrease in protein and HDL. The treatment of rats with TAA resulted in a significant decrease of the hepatic GSH, SOD and CAT and a significant elevation of MDA and TNF-α. Allium porrum and Bauhinia variegata extracts alleviated the toxic effects of TAA on the liver and the kidney. In conclusion, treatment with Allium porrum and Bauhinia variegata extracts and their combination reduced deleterious effects of TAA on liver through antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samir A E Bashandy
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| | - Sally A El Awdan
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| | - Samy M Mohamed
- 2Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Buhoothst, Dokki, Cairo Egypt
| | - Enayat Abdel Aziz Omara
- 1Department of Pharmacology, Medical Division, National Research Centre, 33 El Bohouth St, Dokki, Cairo Egypt
| |
Collapse
|
17
|
Schyman P, Printz RL, Estes SK, Boyd KL, Shiota M, Wallqvist A. Identification of the Toxicity Pathways Associated With Thioacetamide-Induced Injuries in Rat Liver and Kidney. Front Pharmacol 2018; 9:1272. [PMID: 30459623 PMCID: PMC6232954 DOI: 10.3389/fphar.2018.01272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
Ingestion or exposure to chemicals poses a serious health risk. Early detection of cellular changes induced by such events is vital to identify appropriate countermeasures to prevent organ damage. We hypothesize that chemically induced organ injuries are uniquely associated with a set (module) of genes exhibiting significant changes in expression. We have previously identified gene modules specifically associated with organ injuries by analyzing gene expression levels in liver and kidney tissue from rats exposed to diverse chemical insults. Here, we assess and validate our injury-associated gene modules by analyzing gene expression data in liver, kidney, and heart tissues obtained from Sprague-Dawley rats exposed to thioacetamide, a known liver toxicant that promotes fibrosis. The rats were injected intraperitoneally with a low (25 mg/kg) or high (100 mg/kg) dose of thioacetamide for 8 or 24 h, and definite organ injury was diagnosed by histopathology. Injury-associated gene modules indicated organ injury specificity, with the liver being most affected by thioacetamide. The most activated liver gene modules were those associated with inflammatory cell infiltration and fibrosis. Previous studies on thioacetamide toxicity and our histological analyses supported these results, signifying the potential of gene expression data to identify organ injuries.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kelli L Boyd
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| |
Collapse
|
18
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
19
|
Kynurenic Acid Protects against Thioacetamide-Induced Liver Injury in Rats. Anal Cell Pathol (Amst) 2018; 2018:1270483. [PMID: 30327755 PMCID: PMC6171262 DOI: 10.1155/2018/1270483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/04/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023] Open
Abstract
Acute liver failure (ALF) is a life-threatening disorder of liver function. Kynurenic acid (KYNA), a tryptophan metabolite formed along the kynurenine metabolic pathway, possesses anti-inflammatory and antioxidant properties. Its presence in food and its potential role in the digestive system was recently reported. The aim of this study was to define the effect of KYNA on liver failure. The Wistar rat model of thioacetamide-induced liver injury was used. Morphological and biochemical analyses as well as the measurement of KYNA content in liver and hepatoprotective herbal remedies were conducted. The significant attenuation of morphological disturbances and aspartate and alanine transaminase activities, decrease of myeloperoxidase and tumor necrosis factor-α, and elevation of interleukin-10 levels indicating the protective effect of KYNA in thioacetamide (TAA) - induced liver injury were discovered. In conclusion, the hepatoprotective role of KYNA in an animal model of liver failure was documented and the use of KYNA in the treatment of ALF was suggested.
Collapse
|
20
|
Dwivedi DK, Jena GB. Glibenclamide protects against thioacetamide-induced hepatic damage in Wistar rat: investigation on NLRP3, MMP-2, and stellate cell activation. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1257-1274. [PMID: 30066023 DOI: 10.1007/s00210-018-1540-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Glibenclamide (GLB), most widely used in the treatment of type II diabetes mellitus, inhibits K+ATP channel in pancreatic-β cells and releases insulin, while thioacetamide (TAA) is a well-known hepatotoxicant and most recommended for the induction of acute and chronic liver disease. The purpose of this study was to evaluate the hepatoprotective potential of GLB against TAA-induced hepatic damage in Wistar rats. TAA (200 mg/kg, ip, twice weekly) and GLB (1.25, 2.5, and 5 mg/kg/day, po) were administered for 6 consecutive weeks. Different biochemical, DNA damage, histopathological, TEM, immunohistochemical, and western blotting parameters were evaluated. GLB treatment has no effects on the TAA-induced significant decrease in body and liver weights. TAA treatment significantly increased liver index and treatment with GLB has no effect the same. TAA treatment altered the liver morphology, whereas treatment with GLB normalized the alteration in morphology. Further, significant increase in oxidative stress, apoptosis, and DNA damage was found in TAA-treated animals and GLB treatment significantly reduced these effects. TAA-induced plasma transaminases and serum ALP levels were significantly restored by GLB. Furthermore, histopathological findings showed the presence of lymphocyte infiltration, collagen deposition, bridging fibrosis, degeneration of portal triad, and necrosis in TAA-treated animals and GLB intervention significantly reduced the same. TEM images revealed that GLB significantly normalized the hepatic stellate cell morphology as well as restored the number of lipid droplets. GLB treatment significantly downregulated the expressions of TGF-β1, α-SMA, NLRP3, ASC, caspase-1, and IL-1β, and upregulated MMP-2 and catalase against TAA-induced liver damage. The outcomes of the present study confirmed that GLB ameliorated the liver damage induced by TAA.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
21
|
Al-Humadi H, Alhumadi A, Al-Saigh R, Strilakou A, Lazaris AC, Gazouli M, Liapi C. "Extracellular matrix remodelling in the liver of rats subjected to dietary choline deprivation and/or thioacetamide administration". Clin Exp Pharmacol Physiol 2018; 45:1245-1256. [PMID: 30019784 DOI: 10.1111/1440-1681.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 07/08/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023]
Abstract
Choline deprivation is a recognized experimental approach to nonalcoholic steatohepatitis, while thioacetamide (TAA)-induced liver fibrosis resembles alcoholic liver fibrogenesis. In order to elucidate the effect of TAA on liver extracellular matrix composition under choline deprivation due to choline-deficient diet (CDD) administration, we evaluated the transcriptional and immunohistochemical (IHC) pattern of major hepatic matrix metalloproteinases (namely, MMP-2, -9) and their tissue inhibitors (TIMP-1, -2) in adult male albino Wistar rats at 30, 60 and 90 days. In the CDD+TAA group, IHC showed an early progressive increase in MMP-2 expression, while MMP-9 initially exhibited a significant increase followed by a gradual decrease; TIMP-1 and TIMP-2 IHC expressions showed gradual increase throughout the experiment. The MMPs-TIMPs regulation at the transcriptional level was found to be increased in all groups throughout the experiment. The increased MMP-2/TIMP-2 and suppressed MMP-9/TIMP-1 ratios in IHC and in real-time polymerase chain reaction (RT-PCR) seemed to correlate with the degree of liver fibrosis. These results support the important role of MMPs and TIMPs in controlling the hepatic pathogenesis and shed more light on the recently described experimental approach to liver disease (steatohepatitis) under the impact of two insults (TAA and CDD).
Collapse
Affiliation(s)
- Hussam Al-Humadi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pharmacology & Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Ahmed Alhumadi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rafal Al-Saigh
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Clinical & Laboratory Sciences, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Athina Strilakou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas C Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science/Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Koblihová E, Lukšan O, Mrázová I, Ryska M, Červenka L. Hepatocyte transplantation attenuates the course of acute liver failure induced by thioacetamide in Lewis rats. Physiol Res 2015; 64:689-700. [PMID: 25804092 DOI: 10.33549/physiolres.932914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute liver failure (ALF) is a clinical syndrome resulting from widespread damage of hepatocytes, with extremely high mortality rate. Urgent orthotopic liver transplantation was shown to be the most effective therapy for ALF but this treatment option is limited by scarcity of donor organs. Therefore, hepatocyte transplantation (Tx) has emerged as a new therapeutical measure for ALF, however, the first clinical applications proved unsatisfactory. Apparently, extensive preclinical studies are needed. Our aim was to examine if hepatocytes isolated from transgenic "firefly luciferase" Lewis rats into the recipient liver would attenuate the course of thioacetamide (TAA)-induced ALF in Lewis rats. Untreated Lewis rats after TAA administration showed a profound decrease in survival rate; no animal survived 54 h. The rats showed marked increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, in plasma level of bilirubin and ammonia (NH(3)), and in a significant decrease in plasma albumin. Hepatocyte Tx attenuated the course of TAA-induced ALF Lewis rats which was reflected by improved survival rate and reduced degree of liver injury showing as lowering of elevated plasma ALT, AST, NH(3) and bilirubin levels and increasing plasma albumin. In addition, bioluminescence imaging analyses have shown that in the TAA-damaged livers the transplanted hepatocyte were fully viable throughout the experiment. In conclusion, the results show that hepatocyte Tx into the liver can attenuate the course of TAA-induced ALF in Lewis rats. This information should be considered in attempts to develop new therapeutic approaches to the treatment of ALF.
Collapse
Affiliation(s)
- E Koblihová
- Department of Surgery, Second Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic, Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|