1
|
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, Melenovský V, Bačová BS, Sykora M, Táborský M, Červenka L. The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3757-3773. [PMID: 37338578 PMCID: PMC10643302 DOI: 10.1007/s00210-023-02561-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Heart failure (HF) has been declared as global pandemic and current therapies are still ineffective, especially in patients that develop concurrent cardio-renal syndrome. Considerable attention has been focused on the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway. In the current study, we aimed to investigate the effectiveness of sGC stimulator (BAY41-8543) with the same mode of action as vericiguat, for the treatment of heart failure (HF) with cardio-renal syndrome. As a model, we chose heterozygous Ren-2 transgenic rats (TGR), with high-output heart failure, induced by aorto-caval fistula (ACF). The rats were subjected into three experimental protocols to evaluate short-term effects of the treatment, impact on blood pressure, and finally the long-term survival lasting 210 days. As control groups, we used hypertensive sham TGR and normotensive sham HanSD rats. We have shown that the sGC stimulator effectively increased the survival of rats with HF in comparison to untreated animals. After 60 days of sGC stimulator treatment, the survival was still 50% compared to 8% in the untreated rats. One-week treatment with sGC stimulator increased the excretion of cGMP in ACF TGR (109 ± 28 nnmol/12 h), but the ACE inhibitor decreased it (-63 ± 21 nnmol/12 h). Moreover, sGC stimulator caused a decrease in SBP, but this effect was only temporary (day 0: 117 ± 3; day 2: 108 ± 1; day 14: 124 ± 2 mmHg). These results support the concept that sGC stimulators might represent a valuable class of drugs to battle heart failure especially with cardio-renal syndrome, but further studies are necessary.
Collapse
Affiliation(s)
- Olga Gawrys
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Zuzana Husková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Škaroupková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Honetschlägerová
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Barbara Szeiffová Bačová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Matúš Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Luděk Červenka
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J Hypertens 2020; 38:1802-1810. [DOI: 10.1097/hjh.0000000000002462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Zheng J, Wang J, Pan H, Wu H, Ren D, Lu J. Effects of IQP, VEP and Spirulina platensis hydrolysates on the local kidney renin angiotensin system in spontaneously hypertensive rats. Mol Med Rep 2017; 16:8485-8492. [PMID: 28944898 DOI: 10.3892/mmr.2017.7602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/14/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the antihypertensive effects of the bioactive Spirulina platensis peptides Ile‑Gln‑Pro (IQP), Val‑Glu‑Pro (VEP), as well as Spirulina platensis hydrolysates (SH), and assessed whether the synthesis of components of the myocardial and renal local renin angiotensin system (RAS) are regulated differentially in spontaneously hypertensive rats (SHR). The SHR were administrated with IQP, VEP and SH respectively (10 mg/kg/day) for 6 weeks and received continuous monitoring of blood pressure (BP) for two more weeks. During the trial, the rats' kidney tissues were removed from these rats and collected at weeks 3, 6 and 8. The expression of the main components of local kidney RAS was measured at the mRNA levels by reverse transcription‑quantitative polymerase chain reaction, and at the protein levels by ELISA or western blotting. Oral administration of IQP, VEP and SH into SHR resulted in marked antihypertensive effects. IQP, VEP and SH decreased rats' BP by affecting the expression of local kidney RAS components via downregulating the angiotensin‑converting enzyme (ACE), Ang II and angiotensin II (Ang II) and angiotensin type‑1 receptor (AT 1), while upregulating ACE2, Ang (1‑7), Mas and AT 2. The comparisons of SH effects on local tissue RAS demonstrated that local kidney RAS regulated BP via the ACE‑Ang II‑AT 1/AT 2 axis and the ACE2‑Ang (1‑7)‑Mas axis primarily at the mRNA level, while the local myocardium RAS mainly at the protein level. This preliminary study suggests that the main components of local RAS presented different expression levels in myocardium and kidney, which is important to the development of bioactive peptides targeting for lowering BP by changing the levels of some components in local RAS in specific tissues.
Collapse
Affiliation(s)
- Jiahui Zheng
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jingyue Wang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanglei Pan
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hongli Wu
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, P.R. China
| |
Collapse
|
4
|
Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J Hypertens 2017; 34:2008-25. [PMID: 27428043 DOI: 10.1097/hjh.0000000000001029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension. METHODS Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined. RESULTS In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected. CONCLUSION The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
Collapse
|
5
|
Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, Červenková L, Kikerlová S, Vaněčková I, Sadowski J, Kompanowska-Jezierska E, Kujal P, Kramer HJ, Červenka L. Renin–angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens 2017; 39:183-195. [DOI: 10.1080/10641963.2016.1235184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lenka Sedláková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šárka Doleželová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Červenková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert J. Kramer
- Section of Nephrology, Medical Policlinic, Department of Medicine, University of Bonn, Bonn, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, Xu L. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. ACTA ACUST UNITED AC 2017; 50:e5594. [PMID: 28076452 PMCID: PMC5264539 DOI: 10.1590/1414-431x20165594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
We aimed to study the renal injury and hypertension induced by chronic intermittent
hypoxia (CIH) and the protective effects mediated by angiotensin 1-7 [Ang(1-7)]. We
randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g) to normoxia
control, CIH, Ang(1-7)-treated normoxia, and Ang(1-7)-treated CIH groups. Systolic
blood pressure (SBP) was monitored at the start and end of each week. Renal
sympathetic nerve activity (RSNA) was recorded. CTGF and TGF-β were detected by
immunohistochemistry and western blotting. Tissue parameters of oxidative stress were
also determined. In addition, renal levels of interleukin-6, tumor necrosis factor-α,
nitrotyrosine, and hypoxia-inducible factor-1α were determined by
immunohistochemistry, immunoblotting, and ELISA. TUNEL assay results and cleaved
caspase 3 and 12 were also determined. Ang(1-7) induced a reduction in SBP together
with a restoration of RSNA in the rat model of CIH. Ang(1-7) treatment also
suppressed the production of reactive oxygen species, reduced renal tissue
inflammation, ameliorated mesangial expansion, and decreased renal fibrosis. Thus,
Ang(1-7) treatment exerted renoprotective effects on CIH-induced renal injury and was
associated with a reduction of oxidative stress, inflammation and fibrosis. Ang(1-7)
might therefore represent a promising therapy for obstructive sleep apnea-related
hypertension and renal injury.
Collapse
Affiliation(s)
- W Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - J Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - K Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - S Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - X Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - S Yu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - L Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Jíchová Š, Doleželová Š, Kopkan L, Kompanowska-Jezierska E, Sadowski J, Červenka L. Fenofibrate Attenuates Malignant Hypertension by Suppression of the Renin-angiotensin System: A Study in Cyp1a1-Ren-2 Transgenic Rats. Am J Med Sci 2016; 352:618-630. [DOI: 10.1016/j.amjms.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
|
8
|
Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, Nishiyama A, Kompanowska-Jezierska E, Sadowski J, Kramer HJ, Červenka L. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol 2016; 43:438-49. [DOI: 10.1111/1440-1681.12553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Zuzana Husková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Libor Kopkan
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Lenka Červenková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Šárka Doleželová
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Zdeňka Vaňourková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | | | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology; Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology; Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw Poland
| | - Herbert J. Kramer
- Section of Nephrology; Department of Medicine; University of Bonn; Bonn Germany
| | - Luděk Červenka
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
- Department of Pathophysiology; 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| |
Collapse
|
9
|
Kurlak LO, Mistry HD, Cindrova-Davies T, Burton GJ, Broughton Pipkin F. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J Physiol 2016; 594:1327-40. [PMID: 26574162 DOI: 10.1113/jp271045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022] Open
Abstract
A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function.
Collapse
Affiliation(s)
- Lesia O Kurlak
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| | - Hiten D Mistry
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK.,Division of Hypertension, Department of Nephrology, Hypertension and Clinical Pharmacology and Clinical Research, University of Bern, CH-3010, Berne, Switzerland
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Fiona Broughton Pipkin
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| |
Collapse
|
10
|
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol 2015; 42:795-807. [DOI: 10.1111/1440-1681.12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Luděk Červenka
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
- Department of Pathophysiology; 2nd Faculty of Medicine; Charles University; Prague Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Zuzana Husková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | - Petra Škaroupková
- Centre for Experimental Medicine; Institute for Clinical and Experimental Medicine; Prague Czech Republic
| | | | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology; M. Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw Poland
| |
Collapse
|
11
|
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res 2015; 64:857-73. [PMID: 26047375 DOI: 10.33549/physiolres.932977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|