1
|
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension 2024; 81:490-500. [PMID: 38084591 PMCID: PMC10863667 DOI: 10.1161/hypertensionaha.123.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
2
|
Afsar B, Afsar RE. The role of glycosaminoglycans in blood pressure regulation. Microcirculation 2023; 30:e12832. [PMID: 37794746 DOI: 10.1111/micc.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| | - Rengin Elsurer Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Thowsen IM, Karlsen TV, Nikpey E, Haslene‐Hox H, Skogstrand T, Randolph GJ, Zinselmeyer BH, Tenstad O, Wiig H. Na + is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats. J Physiol 2022; 600:2293-2309. [PMID: 35377950 PMCID: PMC9324226 DOI: 10.1113/jp282715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.
Collapse
Affiliation(s)
| | | | - Elham Nikpey
- Department of BiomedicineUniversity of BergenBergenNorway,Department of MedicineHaukeland University HospitalBergenNorway
| | - Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | | | - Gwendalyn J. Randolph
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Bernd H. Zinselmeyer
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Olav Tenstad
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Helge Wiig
- Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
5
|
Solid state structure of sodium β-1-thiophenyl glucuronate identifies 5-coordinate sodium with three independent glucoronates. Carbohydr Res 2021; 502:108281. [PMID: 33770633 DOI: 10.1016/j.carres.2021.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
Glucuronic acid is a key component of the glycosaminoglycans (GAGs) Chrondroitin Sulfate (CS), Heparin/Heparan sulfate (HS) and Hyaluronic Acid (HA), as well an important metabolite derivative. In biological systems the carboxylate of uronic acids in GAGs is involved in important H-binding interactions, and the role of metal coordination, such as sodiated systems, has indications associated with a number of biological effects, and physiological GAG-related processes. In synthetic approaches to GAG fragments, thioglycoside intermediates, or derivatives from these, are commonly employed. Of the reported examples of sodium coordination in carbohydrates, 6-coordinate systems are usually observed often with water ligands involved, Herein we report an unexpected 5-coordinate sodiated GlcA crystal structure of the parent GlcA, but as a thioglycoside derivative, whose crystal coordination differs from previous examples, with no involvement of water as a ligand and containing a distorted trigonal bypramidal sodium with each GlcA having five of 6 oxygens sodium-coordinated.
Collapse
|
6
|
Fu Y, Zhang HJ, Wu SG, Zhou JM, Qi GH, Wang J. Dietary supplementation with sodium bicarbonate or sodium sulfate affects eggshell quality by altering ultrastructure and components in laying hens. Animal 2021; 15:100163. [PMID: 33485831 DOI: 10.1016/j.animal.2020.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
Dietary sodium (Na) levels were related to the content of the eggshell matrix. We therefore speculated that dietary Na supplementation as sodium bicarbonate (NaHCO3) or sodium sulfate (Na2SO4) may improve eggshell quality. Additionally, dietary NaHCO3 or Na2SO4 supplementation may further affect eggshell quality in different ways due to differences in anions. This study investigated and compared the effects of dietary Na supplementation in either NaHCO3 or Na2SO4 form on laying performance, eggshell quality, ultrastructure and components in laying hens. A total of 576 29-week-old Hy-Line Brown laying hens were randomly allocated to 8 dietary treatments that were fed a Na-deficient basal diet (0.07% Na, 0.15% Cl) supplemented with Na2SO4 or NaHCO3 at 0.08, 0.18, 0.23 or 0.33% Na for 12 weeks. No differences were observed in laying production performance with dietary Na supplementation. Dietary Na supplementation resulted in quadratic increases of eggshell breaking strength in both Na2SO4 and NaHCO3 added groups (P < 0.05), and Na2SO4-fed groups had a quadratic increase in the eggshell ratio at week 12 (P < 0.05). Compared with supplementing 0.08% Na, dietary supplementation of 0.23% Na increased the effective thickness (P < 0.05) in both Na2SO4 and NaHCO3 added groups, but decreased the thickness and knob width of the mammillary layer (P < 0.05). A linear increase on the calcium content of the shell was only observed with Na supplementation from NaHCO3 (P < 0.05). No differences were observed in Na contents of the shell with dietary Na supplemented by both sources. Dietary Na addition had a quadratic increase on uronic acid contents of shell membrane in NaHCO3-fed groups (P < 0.05). Moreover, the sulfated glycosaminoglycan (GAG) contents of shell membranes increased linearly with dietary Na supplementation (P < 0.05). Dietary supplementation of 0.23% Na from Na2SO4 increased the sulfated GAG contents of calcified eggshell (P < 0.05). Additionally, compared with NaHCO3-fed groups, Na2SO4-fed groups had higher eggshell breaking strength, thickness, eggshell weight ratio, effective thickness and the sulfated GAG contents of calcified eggshell at week 12. Overall, dietary supplementation of NaHCO3 or Na2SO4 could increase eggshell breaking strength, which may be related to increased sulfated GAG contents in eggshell membranes and improved ultrastructure. Higher eggshell breaking strength, thickness and eggshell ratio could be obtained when the diet was supplemented with 0.23% Na from Na2SO4.
Collapse
Affiliation(s)
- Y Fu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H J Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - S G Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J M Zhou
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - G H Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Agócs R, Pap D, Sugár D, Tóth G, Turiák L, Veréb Z, Kemény L, Tulassay T, Vannay Á, Szabó AJ. Cyclooxygenase-2 Modulates Glycosaminoglycan Production in the Skin During Salt Overload. Front Physiol 2020; 11:561722. [PMID: 33192558 PMCID: PMC7645107 DOI: 10.3389/fphys.2020.561722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Sodium (Na+) can accumulate in the skin tissue, sequestered by negatively charged glycosaminoglycans (GAGs). During dietary salt overload, the amount and charge density of dermal GAG molecules - e.g., hyaluronic acid (HA) and chondroitin sulfate (CS) - increases; however, the regulation of the process is unknown. Previously, it has been demonstrated that the level of cyclooxygenase-2 (COX-2) activity and the content of prostaglandin E2 (PGE2) are elevated in the skin due to high-salt consumption. A link between the COX-2/PGE2 system and GAG synthesis was also suggested. We hypothesized that in dermal fibroblasts (DFs) high-sodium concentration activates the COX-2/PGE2 pathway and also that PGE2 increases the production of HA. Our further aim was to demonstrate that the elevation of the GAG content is ceased by COX-2 inhibition in a salt overloaded animal model. For this, we investigated the messenger RNA (mRNA) expression of COX-2 and HA synthase 2 enzymes as well as the PGE2 and HA production of DFs by real-time reverse transcription PCR (qRT-PCR) and ELISA, respectively. The results showed that both high-sodium concentration and PGE2 treatment increases HA content of the media. Sodium excess activates the COX-2/PGE2 pathway in DFs, and COX-2 inhibition decreases the synthesis of HA. In the animal experiment, the HA- and CS disaccharide content in the skin of male Wistar rats was measured using high performance liquid chromatography-mass spectrometry (HPLC-MS). In the skin of rats receiving high-salt diet, the content of both HA- and monosulfated-CS disaccharides increased, whereas COX-2 inhibition blocked this overproduction. In conclusion, high-salt environment could induce GAG production of DFs in a COX-2/PGE2-dependent manner. Moreover, the COX-2 inhibition resulted in a decreased skin GAG content of the salt overloaded rats. These data revealed a new DF-mediated regulation of GAG synthesis in the skin during salt overload.
Collapse
Affiliation(s)
- Róbert Agócs
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Domonkos Pap
- MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dániel Sugár
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Tóth
- MS (Mass Spectrometry) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Lilla Turiák
- MS (Mass Spectrometry) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Veréb
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE (Hungarian Academy of Sciences - University of Szeged) Dermatological Research Group, University of Szeged, Szeged, Hungary.,HCEMM-USZ (Hungarian Centre of Excellence for Molecular Medicine - University of Szeged) Skin Research Group, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE (Hungarian Academy of Sciences - University of Szeged) Dermatological Research Group, University of Szeged, Szeged, Hungary.,HCEMM-USZ (Hungarian Centre of Excellence for Molecular Medicine - University of Szeged) Skin Research Group, Szeged, Hungary
| | - Tivadar Tulassay
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ádám Vannay
- MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Allen M, Schwartz M, Herbst KL. Interstitial Fluid in Lipedema and Control Skin. ACTA ACUST UNITED AC 2020; 1:480-487. [PMID: 33786515 PMCID: PMC7784769 DOI: 10.1089/whr.2020.0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 01/08/2023]
Abstract
Background: Fluid in lymphedema tissue appears histologically as spaces around vessels and between dermal skin fibers. Lipedema is a painful disease of excess loose connective tissue (fat) in limbs, almost exclusively of women, that worsens by stage, increasing lymphedema risk. Many women with lipedema have hypermobile joints suggesting a connective tissue disorder that may affect vessel structure and compliance of tissue resulting in excess fluid entering the interstitial space. It is unclear if excess fluid is present in lipedema tissue. The purpose of this study is to determine if fluid accumulates around vessels and between skin fibers in the thigh tissue of women with lipedema. Methods: Skin biopsies from the thigh and abdomen from 30 controls and 80 women with lipedema were evaluated for dermal spaces and abnormal vessel phenotype (AVP): (1) rounded endothelial cells; (2) perivascular spaces; and (3) perivascular immune cell infiltrate. Women matched for body mass index (BMI) and age were considered controls if they did not have lipedema on clinical examination. Data were analyzed by analysis of variance (ANOVA) or unpaired t-tests using GraphPad Prism Software 7. p < 0.05 was considered significant. Results: Lipedema tissue mass increases beginning with Stage 1 up to Stage 3, with lipedema fat accumulating more on the limbs than the abdomen. AVP was higher in lipedema thigh (p = 0.003) but not abdomen skin compared with controls. AVP was higher in thigh skin of women with Stage 1 (p = 0.001) and Stage 2 (p = 0.03) but not Stage 3 lipedema versus controls. AVP also was greater in the thigh skin of women with lipedema without obesity versus lipedema with obesity (p < 0.0001). Dermal space was increased in lipedema thigh (p = 0.0003) but not abdomen versus controls. Dermal spaces were also increased in women with lipedema Stage 3 (p < 0.0001) and Stage 2 (p = 0.0007) compared with controls. Conclusion: Excess interstitial fluid in lipedema tissue may originate from dysfunctional blood vessels (microangiopathy). Increased compliance of connective tissue in higher stages of lipedema may allow fluid to disperse into the interstitial space, including between skin dermal fibers. Lipedema may be an early form of lymphedema. ClinicalTrials.gov: NCT02838277.
Collapse
Affiliation(s)
- Marisol Allen
- Department of Medicine, TREAT Program, University of Arizona, Tucson, Arizona, USA
| | | | - Karen L Herbst
- Department of Medicine, TREAT Program, University of Arizona, Tucson, Arizona, USA.,Herbst Clinic, Tucson, Arizona, USA.,Limitless Therapeutics and Karen L. Herbst MD, PC, Los Angeles, California, USA
| |
Collapse
|
9
|
Hijmans RS, van Londen M, Sarpong KA, Bakker SJL, Navis GJ, Storteboom TTR, de Jong WHA, Pol RA, van den Born J. Dermal tissue remodeling and non-osmotic sodium storage in kidney patients. J Transl Med 2019; 17:88. [PMID: 30885222 PMCID: PMC6421653 DOI: 10.1186/s12967-019-1815-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Excess dietary sodium is not only excreted by the kidneys, but can also be stored by non-osmotic binding with glycosaminoglycans in dermal connective tissue. Such storage has been associated with dermal inflammation and lymphangiogenesis. We aim to investigate if skin storage of sodium is increased in kidney patients and if this storage is associated with clinical parameters of sodium homeostasis and dermal tissue remodeling. Methods Abdominal skin tissue of 12 kidney patients (5 on hemodialysis) and 12 healthy kidney donors was obtained during surgery. Skin biopsies were processed for dermal sodium measurement by atomic absorption spectroscopy, and evaluated for CD68+ macrophages, CD3+ T-cells, collagen I, podoplanin + lymph vessels, and glycosaminoglycans by qRT-PCR and immunohistochemistry. Results Dermal sodium content of kidney patients did not differ from healthy individuals, but was inversely associated with plasma sodium values (p < 0.05). Compared to controls, kidney patients showed dermal tissue remodeling by increased CD68+ macrophages, CD3+ T-cells and Collagen I expression (all p < 0.05). Also, both N- and O-sulfation of heparan sulfate glycosaminoglycans were increased (all p < 0.05), most outspoken in hemodialysis patients. Plasma and urinary sodium associates with dermal lymph vessel number (both p < 0.05), whereas loss of eGFR, proteinuria and high systolic blood pressure associated with dermal macrophage density (all p < 0.05). Conclusion Kidney patients did not show increased skin sodium storage compared to healthy individuals. Results do indicate that kidney failure associates with dermal inflammation, whereas increased sodium excretion and plasma sodium associate with dermal lymph vessel formation and loss of dermal sodium storage capacity. Trial registration The cohort is registered at clinicaltrials.gov as NCT (September 6, 2017). NCT, NCT03272841. Registered 6 September 2017—Retrospectively registered, https://clinicaltrials.gov
Collapse
Affiliation(s)
- Ryanne S Hijmans
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Surgery, Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Surgical Department, Martini Hospital Groningen, Groningen, The Netherlands.
| | - Marco van Londen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kwaku A Sarpong
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan J Navis
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Twan T R Storteboom
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilhelmina H A de Jong
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert A Pol
- Department of Surgery, Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|