1
|
Downing K, Prisby R, Varanasi V, Zhou J, Pan Z, Brotto M. Old and new biomarkers for volumetric muscle loss. Curr Opin Pharmacol 2021; 59:61-69. [PMID: 34146835 DOI: 10.1016/j.coph.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Volumetric muscle loss (VML) impacts skeletal muscles and causes damage to associated tissues such as blood vessels and other structural tissues. Despite progress in the VML field, current preclinical approaches are often ineffective at restoring muscle volume. Additional research is paramount to develop strategies that improve muscle mass and function, while restoring supporting tissues. We highlight mechanisms that govern normal muscle function that are also key players for VML, including intracellular calcium signaling/homeostasis, mitochondria signaling (calcium, reactiove oxidative species (ROS)/oxidative stress), and angiogenesis. We propose an integration of these processes within the context of emerging biomaterials that provide structural support for muscle regeneration. We posit that new biomarkers (i.e. myokines and lipid signaling mediators) may serve as sentinels of early muscle injury and regeneration. We conclude that as new ideas, approaches, and models come together, new treatments will emerge to allow the full rebuilding of skeletal muscles and functional recovery of skeletal muscles after VML.
Collapse
Affiliation(s)
- Kerrie Downing
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Rhonda Prisby
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Venu Varanasi
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jingsong Zhou
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Zui Pan
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| | - Marco Brotto
- Bone-Muscle Collaborative Sciences, College of Nursing & Health Innovation, The University of Texas at Arlington, Arlington, TX 76010, USA.
| |
Collapse
|
2
|
Wang L, He T, Zhang X, Wang Y, Qiu K, Jiao N, He L, Yin J. Global transcriptomic analysis reveals Lnc-ADAMTS9 exerting an essential role in myogenesis through modulating the ERK signaling pathway. J Anim Sci Biotechnol 2021; 12:4. [PMID: 33526083 PMCID: PMC7852153 DOI: 10.1186/s40104-020-00524-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are emerging key regulators involved in a variety of biological processes such as cell differentiation and development. The balance between myogenesis and adipogenesis is crucial for skeletal muscle homeostasis in humans and meat quality in farm animals. The present study aimed to reveal the global transcriptomic profiles of adipogenic (Adi-) and myogenic (Myo-) precursors derived from porcine skeletal muscle and identify lncRNAs involved in the modulation of myogenesis homeostasis in porcine skeletal muscle. Results In this study, a total of 655 novel individual lncRNAs including differentially expressed 24 lncRNAs, and 755 differentially expressed mRNAs were identified (fold change ≥2 or ≤ 0.5 and adjusted P < 0.05). Integrated results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis accompanied by the variation of intracellular Ca2+ concentration highlighted Lnc-ADAMTS9 involved in the modulation of myogenesis homeostasis in porcine skeletal muscle. Although Lnc-ADAMTS9 knock-down did not alter the mRNA expression of ADAMTS9, we demonstrated that Lnc-ADAMTS9 can promote myogenic proliferation and myogenic differentiation of myogenic precursors through inhibiting the ERK/MAPK signaling pathway. Conclusion We deciphered a comprehensive catalog of mRNAs and lncRNAs that might be involved in the regulation of myogenesis and adipogenesis homeostasis in the skeletal muscle of pigs. The Lnc-ADAMTS9 exerts an essential role in myogenesis through the ERK signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00524-4.
Collapse
Affiliation(s)
- Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
3
|
Zagorchev P, Petkov GV, Gagov HS. Bitter Taste Receptors as Regulators of Abdominal Muscles Contraction. Physiol Res 2019; 68:991-995. [PMID: 31647294 DOI: 10.33549/physiolres.934156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bitter taste receptors (TAS2R) are expressed in many non-sensor tissues including skeletal muscles but their function remains unexplored. The aim of this study is to investigate the role of TAS2R in rat abdominal skeletal muscles contractions using denatonium, a TAS2R agonist. Low concentration of denatonium (0.01 mmol/l) caused a significant decrease of amplitudes of the electrical field stimulation (EFS)-induced contractions in abdominal skeletal muscles preparations in vitro. This inhibitory effect was significantly reduced when the preparations were pre-incubated with gentamicin (0.02 mmol/l) used as a non-specific inhibitor of IP3 formation or with BaCl(2) (0.03 mmol/l) applied to block the inward-rectifier potassium current. All experiments were performed in the presence of pipecuronium in order to block the nerve stimulation of the contractions. The data obtained suggest that denatonium decreases the force of rat abdominal muscles contractions mainly via activation of TAS2R, phosphatidylinositol 4,5-biphosphate and its downstream signal metabolites.
Collapse
Affiliation(s)
- P Zagorchev
- Faculty of Biology, Sofia University, Sofia, Bulgaria.
| | | | | |
Collapse
|