1
|
Li X, Ding Z. Cognitive dysfunction induced by cranial radiotherapy: mechanisms and therapeutic methods. Brain Res Bull 2024; 218:111106. [PMID: 39447765 DOI: 10.1016/j.brainresbull.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Cranial radiotherapy can damage normal brain tissues, inducing cognitive dysfunction in patients. Radiotherapy-induced cognitive dysfunction is associated with hippocampal injury, white matter damage and microvascular injury. In this study, the mechanisms of cognitive dysfunction induced by cranial radiotherapy and combined chemoradiotherapy are reviewed, and the advances in therapeutic methods for radiotherapy-induced brain injury are summarized. The mechanisms of radiotherapy-induced brain injury include a decline of neurogenesis, impairment of neurons and glial cells, vascular injury, oxidative stress and DNA damage, cell death, and inflammatory response. Disruption of the bloodbrain barrier (BBB) increases the exposure of the brain to chemotherapeutic agents, thus exacerbating radiotherapy-induced brain damage. The current methods used to prevent radiotherapy-induced brain injury mainly include precision radiotherapy, stem cell transplantation, and treatment with neuroprotective drugs. The combined application of precision radiotherapy and neuroprotective drugs, including antioxidants, anti-inflammatory agents and other drugs, might exert better neuroprotective effects. To resolve the issues of neuroprotective drugs, such as difficulty in crossing the BBB, nanoenzymes and drug delivery nano-systems could be applied in the future.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Hohmann A, Zhang K, Mooshage CM, Jende JME, Rotkopf LT, Schlemmer HP, Bendszus M, Wick W, Kurz FT. Whole-Brain Vascular Architecture Mapping Identifies Region-Specific Microvascular Profiles In Vivo. AJNR Am J Neuroradiol 2024; 45:1346-1354. [PMID: 39054290 PMCID: PMC11392379 DOI: 10.3174/ajnr.a8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND PURPOSE The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles. MATERIALS AND METHODS This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging. Voxelwise plotting of resulting values for gradient-echo (R2*) versus spin-echo (R2) relaxation rates during contrast agent bolus administration generates vessel vortex curves that allow the extraction of vascular architecture mapping parameters representative of, eg, vessel type, vessel radius, or CBV in the underlying voxel. Averaged whole-brain parametric maps were calculated for 9 parameters, and VOI analysis was conducted on the basis of a standardized brain atlas and individual cortical GM and WM segmentation. RESULTS Prevalence of vascular risk factors among subjects (n = 106; mean age, 39.2 [SD, 12.5] years; 56 women) was similar to those in the German population. Compared with WM, we found cortical GM to have larger mean vascular calibers (5.80 [SD, 0.59] versus 4.25 [SD, 0.62] P < .001), increased blood volume fraction (20.40 [SD, 4.49] s-1 versus 11.05 [SD, 2.44] s-1; P < .001), and a dominance of venous vessels. Distinct microvascular profiles emerged for cortical GM, where vascular architecture mapping vessel type indicator differed, eg, between the thalamus and cortical GM (mean, -2.47 [SD, 4.02] s-2 versus -5.41 [SD, 2.84] s-2; P < .001). Intraclass correlation coefficient values indicated overall high test-retest reliability for vascular architecture mapping parameter mean values when comparing multiple scans per subject. CONCLUSIONS Whole-brain vascular architecture mapping in the adult brain reveals region-specific microvascular profiles. The obtained parameter reference ranges for distinct anatomic and functional brain areas may be used for future vascular architecture mapping studies on cerebrovascular pathologies and might facilitate early discovery of microvascular changes, in, eg, neurodegeneration and neuro-oncology.
Collapse
Affiliation(s)
- Anja Hohmann
- From the Department of Neurology (A.H., W.W.), Heidelberg University Hospital, Heidelberg, Germany
| | - Ke Zhang
- Department of Diagnostic and Interventional Radiology (K.Z.), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph M Mooshage
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas T Rotkopf
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Department of Neurology (A.H., W.W.), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology (W.W.), German Cancer Research Center, Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology (C.M.M., J.M.E.J., M.B., F.T.K.), Heidelberg University Hospital, Heidelberg, Germany
- Division of Radiology (L.T.R., H.-P.S., F.T.K.) German Cancer Research Center, Heidelberg, Germany
- Division of Neuroradiology (F.T.K.), University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Song C, Yin Y, Qin Y, Li T, Zeng D, Ju T, Duan F, Zhang Y, Lu W. Acanthopanax senticosus extract alleviates radiation-induced learning and memory impairment based on neurotransmitter-gut microbiota communication. CNS Neurosci Ther 2023; 29 Suppl 1:129-145. [PMID: 36971202 PMCID: PMC10314102 DOI: 10.1111/cns.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Acanthopanax senticosus (AS) is a medicinal and food plant with many physiological functions, especially nerve protection. Its extract has many functional components, including polysaccharides, flavonoids, saponins, and amino acids. Our previous study indicated that AS extract protected against nerve damage caused by radiation. However, little is known about the gut-brain axis mechanism of AS and its impact on radiation-induced learning and memory impairment. METHOD In 60 Co-γ ray-irradiated mice, we investigated the changes in behavior, neurotransmitters and gut microbiota after different days of administration of AS extract as a dietary supplement. RESULTS The AS extract improved learning and memory ability in mice, and the neurotransmitter levels in the hippocampus and colon started to change from the 7th day, which accompanied changes of the gut microbiota, a decreased abundance of Helicobacter on the 7th day and an increased abundance of Lactobacillus on the 28th day. Among the marker bacteria, Ruminococcus and Clostridiales were associated with 5-HT synthesis, and Streptococcus were associated with 5-HT and ACH synthesis. In addition, the AS extract increased the tight junction protein, inhibited inflammation levels in colon, and even increased the relative protein expression of BDNF and NF-κB and decreased the relative protein expression of IκBα in the hippocampus of irradiated mice. CONCLUSION These results will lay the foundation for further study on the mechanism of the gut-brain axis of AS in preventing radiation-induced learning and memory impairment.
Collapse
Affiliation(s)
- Chen Song
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Yishu Yin
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Yue Qin
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Tianzhu Li
- ZhenBaoDao Pharmaceutical Co., Ltd150040HarbinChina
| | - Deyong Zeng
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Ting Ju
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Fangyuan Duan
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Yingchun Zhang
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| | - Weihong Lu
- School of Medicine and HealthHarbin Institute of Technology150001HarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbin Institute of Technology150001HarbinChina
| |
Collapse
|
5
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|