1
|
Froebel LE, Calik A, Emami NK, Blue CEC, Dalloul RA. Evaluating performance, intestinal lesions, and immunity related genes in heritage and modern broiler breeds during a necrotic enteritis challenge. Poult Sci 2024; 103:104339. [PMID: 39366291 PMCID: PMC11489053 DOI: 10.1016/j.psj.2024.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
In this comparative study, the differential responses of heritage (ACRB; Athens Canadian Random Bred) and modern (Cobb) broilers to a necrotic enteritis (NE) challenge were evaluated. The design was a 2×2 factorial with breed (ACRB and Cobb) and challenge (non-challenged and NE-challenged) as main factors. On day (d) of hatch, 96 male chicks (48 ACRB and 48 Cobb) were allocated to 4 experimental groups with 8 replicate cages and 3 birds/cage. On d 14, birds in the NE-challenged groups were orally gavaged with 3,000 Eimeria maxima sporulated oocysts followed by 2 doses of ∼1×108 CFU of Clostridium perfringens on d 19 and 20. On d 21, 2 birds/cage were necropsied to score NE lesions, and spleen and cecal tonsils (CT) samples were collected from 1 bird/cage for assessing mRNA abundance. Challenged ACRB birds exhibited reduced growth performance and relative growth performance compared to challenged Cobb birds. There was no significant interaction between breed and challenge during the challenge period (d 14-21) for mortality. However, there was a challenge main effect (P ≤ 0.05) on mortality as manifested by greater NE-associated mortality compared to non-challenged birds. No significant breed × challenge interaction or breed main effect on lesion scores were observed in the duodenum, jejunum, and ileum. NE-challenged Cobb birds exhibited greater mRNA abundance of IL-18, TNFα, TLR1.2, TLR2.1, CCR5, CCR6, CCL20, and AvBD1 in CT compared to NE challenged ACRB birds. There was a significant breed × challenge interaction effect on mRNA abundance of IL-10, AvBD13, NK-Lysin, and LEAP2 in the spleen. Moreover, a main effect of breed was observed in IL-1β, IL-18, TNFα, TLR2.1, CCR5, CCL20, and NK-Lysin where ACRB birds had higher mRNA abundance than Cobb birds (P ≤ 0.05). The observed differences in performance, pathology, and mRNA abundance between ACRB and Cobb broilers during the NE challenge highlight the distinct immune response profiles of heritage and modern breeds, emphasizing the need for breed-specific nutritional, managerial, and genetic selection programs for modulating immune responses during enteric disease challenges.
Collapse
Affiliation(s)
- Laney E Froebel
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Nima K Emami
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Candice E C Blue
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Assumpcao ALFV, Arsi K, Asnayanti A, Alharbi KS, Do ADT, Read QD, Perera R, Shwani A, Hasan A, Pillai SD, Anderson RC, Donoghue AM, Rhoads DD, Jesudhasan PRR, Alrubaye AAK. Electron-Beam-Killed Staphylococcus Vaccine Reduced Lameness in Broiler Chickens. Vaccines (Basel) 2024; 12:1203. [PMID: 39591106 PMCID: PMC11598142 DOI: 10.3390/vaccines12111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Broiler chicken lameness caused by bacterial chondronecrosis with osteomyelitis (BCO) is presently amongst the most important economic and animal welfare issues faced by the poultry industry, and the estimated economic loss is around USD 150 million. BCO lameness is associated with multiple opportunistic bacterial pathogens inhabiting the respiratory and gastrointestinal tracts. In cases of immune deficiency resulting from stress, injury, or inflammation of the tissue, opportunistic pathogens, mainly Staphylococcus spp., can infiltrate the respiratory or gastrointestinal mucosa and migrate through the bloodstream to eventually colonize the growth plates of long bones, causing necrosis that leads to lameness. This is the first report of developing a Staphylococcus vaccine against BCO lameness disease in broiler chickens. Electron beam (eBeam) technology causes irreparable DNA damage, preventing bacterial multiplication, while keeping the epitopes of the cell membrane intact, helping the immune system generate a more effective response. Our results show a 50% reduction of lameness incidence in the eBeam-vaccinated chicken group compared to the control. Additionally, the eBeam-vaccinated chickens present higher titer of anti-Staphylococcus IgA, signifying the development of an efficient and more specific humoral immune response. Our data establish the eBeam-killed Staphylococcus vaccine as an effective approach to reducing the incidence of lameness in broiler chickens.
Collapse
Affiliation(s)
- Anna L. F. V. Assumpcao
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
| | - Komala Arsi
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fayetteville, AR 72701, USA; (K.A.); (A.M.D.)
| | - Andi Asnayanti
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
| | - Khawla S. Alharbi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Anh D. T. Do
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Quentin D. Read
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Southeast Area, Raleigh, NC 27606, USA;
| | - Ruvindu Perera
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Abdulkarim Shwani
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Suresh D. Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX 77843, USA;
| | - Robin C. Anderson
- Food and Feed Safety Research, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX 77843, USA;
| | - Annie M. Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fayetteville, AR 72701, USA; (K.A.); (A.M.D.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Douglas D. Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Palmy R. R. Jesudhasan
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fayetteville, AR 72701, USA; (K.A.); (A.M.D.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| | - Adnan A. K. Alrubaye
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.L.F.V.A.); (A.A.); (K.S.A.); (A.D.T.D.); (R.P.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (D.D.R.)
| |
Collapse
|
3
|
Anthney A, Do ADT, Alrubaye AAK. Bacterial chondronecrosis with osteomyelitis lameness in broiler chickens and its implications for welfare, meat safety, and quality: a review. Front Physiol 2024; 15:1452318. [PMID: 39268189 PMCID: PMC11390708 DOI: 10.3389/fphys.2024.1452318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
The exponential increase in global population continues to present an ongoing challenge for livestock producers worldwide to consistently provide a safe, high-quality, and affordable source of protein for consumers. In the last 50 years, the poultry industry has spearheaded this effort thanks to focused genetic and genomic selection for feed-efficient, high-yielding broilers. However, such intense selection for productive traits, along with conventional industry farming practices, has also presented the industry with a myriad of serious issues that negatively impacted animal health, welfare, and productivity-such as woody breast and virulent diseases commonly associated with poultry farming. Bacterial chondronecrosis with osteomyelitis (BCO) lameness is one such issue, having rapidly become a key issue affecting the poultry industry with serious impacts on broiler welfare, meat quality, production, food safety, and economic losses since its discovery in 1972. This review focuses on hallmark clinical symptoms, diagnosis, etiology, and impact of BCO lameness on key issues facing the poultry industry.
Collapse
Affiliation(s)
- Amanda Anthney
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Anh Dang Trieu Do
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Adnan A K Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Perera R, Alharbi K, Hasan A, Asnayanti A, Do A, Shwani A, Murugesan R, Ramirez S, Kidd M, Alrubaye AAK. Evaluating the Impact of the PoultryStar ®Bro Probiotic on the Incidence of Bacterial Chondronecrosis with Osteomyelitis Using the Aerosol Transmission Challenge Model. Microorganisms 2024; 12:1630. [PMID: 39203472 PMCID: PMC11356867 DOI: 10.3390/microorganisms12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) lameness is a major welfare issue for broiler production worldwide affecting approximately 1.5% of broilers over 42 days old. Excessive body weight gain causes mechanical stress on long bones, leading to micro-fractures. This condition induces a bacterial infection of fractures, resulting in bone necrosis and eventual BCO lameness. Increasing gut integrity and supporting Calcium metabolism contribute to the optimal bone structure and subsequently reduce BCO lameness. Probiotics thus provide an excellent strategy for alleviating BCO due to the improvement of intestinal integrity and barrier function. Accordingly, the present study investigated the lameness reduction through the feed supplementation of a selected probiotic. Broiler chickens were assigned to three treatments, including a control litter group (FL), a PoultryStar®Bro probiotic fed group (BRO), and a control wire-flooring group (CW) designed to induce BCO lameness. The probiotic significantly decreased lameness by 46% compared to the control group (p < 0.05). The most predominant bacteria identified from the BCO lesions were Staphylococcus cohnii and Staphylococcus lentus. Moreover, significant increments of tight junction gene expression in jejunum and ileum, plus numerical improvements of body weight gain (BW; +360 g) and feed conversion ratio (FCR; -12 pts) were observed in BRO-supplemented birds.
Collapse
Affiliation(s)
- Ruvindu Perera
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (R.P.); (K.A.); (A.A.); (A.D.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (R.P.); (K.A.); (A.A.); (A.D.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Amer Hasan
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq;
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (R.P.); (K.A.); (A.A.); (A.D.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anh Do
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (R.P.); (K.A.); (A.A.); (A.D.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Abdulkarim Shwani
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA;
| | - Raj Murugesan
- BIOMIN America Inc., 10801 Mastin Blvd Suite 100, Overland Park, KS 66210, USA; (R.M.); (S.R.)
| | - Shelby Ramirez
- BIOMIN America Inc., 10801 Mastin Blvd Suite 100, Overland Park, KS 66210, USA; (R.M.); (S.R.)
| | - Michael Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (R.P.); (K.A.); (A.A.); (A.D.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
5
|
House LC, Hasan A, Asnayanti A, Alrubaye AAK, Pummill J, Rhoads D. Phylogenomic Analyses of Three Distinct Lineages Uniting Staphylococcus cohnii and Staphylococcus urealyticus from Diverse Hosts. Microorganisms 2024; 12:1549. [PMID: 39203392 PMCID: PMC11356006 DOI: 10.3390/microorganisms12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
We sequenced and assembled genomes for 17 isolates of Staphylococcus cohnii isolated from osteomyelitis lesions in young broilers from two separate experiments where we induced lameness using a hybrid wire-litter flooring system. Whole genome comparisons using three different methods support a close relationship of genomes from both S. cohnii and Staphylococcus urealyticus. The data support three different lineages, which we designated as Lineage 1, Lineage 2, and Lineage 3, uniting these two species within an evolving complex. We present evidence for horizontal transfer between lineages of genomic regions from 50-440 kbp. The transfer of a 186 kbp region from Lineage 1 to Lineage 2 appears to have generated Lineage 3. Human-associated isolates appear to be limited to Lineages 2 and 3 but Lineage 2 appears to contain a higher number of human pathogenic isolates. The chicken isolates from our lameness trials included genomically diverse isolates from both Lineage 1 and 2, and isolates from both lineages were obtained from osteomyelitis lesions of individual birds. Our results expand the diversity of Staphylococci associated with osteomyelitis in poultry and suggest a high diversity in the microbiome of day-old chicks. Our data also support a reevaluation and unification of the taxonomic classifications of S. cohnii and S. urealyticus.
Collapse
Affiliation(s)
- L. Caroline House
- John Brown University, Siloam Springs, AR 72761, USA;
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Amer Hasan
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - Jeff Pummill
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72703, USA
| | - Douglas Rhoads
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| |
Collapse
|
6
|
Alharbi K, Asnayanti A, Do ADT, Perera R, Al-Mitib L, Shwani A, Rebollo MA, Kidd MT, Alrubaye AAK. Identifying Dietary Timing of Organic Trace Minerals to Reduce the Incidence of Osteomyelitis Lameness in Broiler Chickens Using the Aerosol Transmission Model. Animals (Basel) 2024; 14:1526. [PMID: 38891572 PMCID: PMC11171233 DOI: 10.3390/ani14111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Our prior research demonstrated a 20% to 25% reduction in bacterial chondronecrosis with osteomyelitis (BCO) lameness in broilers with organic Zn, Mn, and Cu (Availa® ZMC) supplementation. Expanding on this, we investigated the optimal timing for Availa® ZMC feeding to mitigate BCO lameness and reduce feed additive costs in the poultry industry. In this study, we compared the application of 0.15% Availa® ZMC for 56 days, the first 28 days, and the last 28 days. The experimental design was a randomized block design involving 1560 one-day-old chicks distributed across two wire-floor pens as BCO source infection and four treatment groups with six replicates. The source of BCO infection exhibited a cumulative lameness incidence of 83%, whereas the negative control group showed a 77% cumulative incidence of lameness (p = 0.125). Administering 0.15% of Availa® ZMC during the initial 28 d resulted in a 41.3% reduction in BCO incidence, significantly different from the supplementation during the last 28 d (p < 0.05). However, this reduction did not differ substantially (p > 0.05) from the 56d application period. Hence, administering 0.15% Availa® ZMC during the first four weeks emerges as the optimal timing protocol, providing a defense against lameness comparable to the continuous supplementation throughout the complete production duration. Implementing this feeding approach reduces the cost of feed additive, promotes the health of skeletal bones, and effectively protects against BCO lameness in broilers, offering a valuable consideration for producers seeking optimal outcomes in the poultry industry.
Collapse
Affiliation(s)
- Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- National Agency of Drug and Food Control, Jakarta 10520, Indonesia
| | - Anh Dang Trieu Do
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Ruvindu Perera
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Layla Al-Mitib
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
| | - Abdulkarim Shwani
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, GA 30605, USA;
| | | | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Adnan Ali Khalaf Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (K.A.); (A.A.); (A.D.T.D.); (R.P.); (L.A.-M.)
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
7
|
Ramser A, Greene ES, Wideman R, Dridi S. Potential non-invasive detection of lesions in broiler femur heads: application of the DXA imaging system. Front Physiol 2024; 15:1363992. [PMID: 38827990 PMCID: PMC11140573 DOI: 10.3389/fphys.2024.1363992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Leg health is a significant economic and welfare concern for the poultry industry. Current methods of detection rely on visual assessment of the legs and gait scores and bone scoring during necropsy for full characterization. Additionally, the current scoring of femurs only examines the external surface of the femoral head. Through the use of the dual-energy X-ray absorptiometry (DXA) imaging system, we show the presence of a necrotic region in the femurs that would otherwise be considered healthy based on the current evaluation procedures. Importantly, these lesions were present in almost 60% (22 of 37) of femurs that scored normal for femoral head necrosis (FHN). Additionally, these femurs showed greater bone mineral content (BMC) relative to weight compared to their counterparts with no lucent lesions (6.95% ± 0.20% vs. 6.26% ± 0.25; p = 0.038). Identification of these lesions presents both a challenge and an opportunity. These subclinical lesions are likely to be missed in routine scoring procedures for FHN and can inadvertently impact the characterization of the disease and genetic selection programs. Furthermore, this imaging system can be used for in vivo, ex vivo, and embryonic (egg) studies and, therefore, constitutes a potential non-invasive method for early detection of bone lesions in chickens and other avian species.
Collapse
Affiliation(s)
| | | | | | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR, United States
| |
Collapse
|
8
|
Kinstler SR, Cloft SE, Siegel PB, Honaker CF, Maurer JJ, Wong EA. Early intestinal development of chickens divergently selected for high or low 8-wk body weight and a commercial broiler. Poult Sci 2024; 103:103538. [PMID: 38387293 PMCID: PMC10900922 DOI: 10.1016/j.psj.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.
Collapse
Affiliation(s)
| | - Sara E Cloft
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - John J Maurer
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
9
|
Asnayanti A, Do ADT, Alharbi K, Alrubaye A. Inducing experimental bacterial chondronecrosis with osteomyelitis lameness in broiler chickens using aerosol transmission model. Poult Sci 2024; 103:103460. [PMID: 38301493 PMCID: PMC10846381 DOI: 10.1016/j.psj.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Lameness disease attributed to bacterial chondronecrosis with osteomyelitis in broilers affects production, animal welfare, and food safety in the poultry industry. The disease is characterized by necrotic degeneration of the rapidly growing femora and tibiae due to bacterial translocation from the respiratory or gastrointestinal tracts into the blood circulation, eventually colonizing the growth plate of the long bones. To investigate the etiology, pathogenesis, and intervention measures for BCO, developing an experimental model that reliably induces BCO lameness is of the utmost importance. In the past, we have employed a wire-flooring model and a litter-flooring model administered with a bacterial challenge to investigate strategies for mitigating BCO. However, multiple issues on labor-intensive barn setup and cleanout efforts for the wire-flooring system and concern of direct pathogenic exposure to the broilers for the litter-flooring models rendered these research models less effective. Thus, we investigated a new approach to induce experimental BCO lameness using an aerosol transmission model employing a group of birds reared on wire-flooring pens as a BCO infection source, and the disease is further disseminated through the airborne transmission to other birds reared on litter flooring in the same housing environment. The effectiveness of the aerosol transmission model in inducing BCO lameness was concluded from 4 independent experiments. The cumulative lameness generated from the BCO source group on the wire floors versus negative control treatments on the litter floors from Experiments 1, 2, 3, and 4 were 84% vs. 69.33%, P = 0.09; 54.55% vs. 60%, P = 0.56; 78% vs. 73.50%, P = 0.64; 81% vs. 74.50%, P = 0.11. Overall, the cumulative lameness generated from the wire floors was successfully transmitted to the birds on litter floors without significant statistical differences (P > 0.05). The effectiveness of the aerosol transmission model for experimentally triggering BCO lameness provides a reliable system for evaluating practical intervention strategies for BCO lameness in broilers.
Collapse
Affiliation(s)
- Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA; National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Anh D T Do
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Adnan Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
10
|
Rhoads DD, Pummil J, Ekesi NS, Alrubaye AAK. Horizontal transfer of probable chicken-pathogenicity chromosomal islands between Staphylococcus aureus and Staphylococcus agnetis. PLoS One 2023; 18:e0283914. [PMID: 37406030 DOI: 10.1371/journal.pone.0283914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Staphylococcus agnetis is an emerging pathogen in chickens but has been most commonly isolated from sub-clinical mastitis in bovines. Previous whole-genome analyses for known virulence genes failed to identify determinants for the switch from mild ductal infections in cattle to severe infections in poultry. We now report identification of a family of 15 kbp, 17-19 gene mobile genetic elements (MGEs) specific to chicken osteomyelitis and dermatitis isolates of S. agnetis. These MGEs can be present in multiple copies per genome. The MGE has been vectored on a Staphylococcus phage that separately lysogenized two S. agnetis osteomyelitis strains. The S. agnetis genome from a broiler breeder case of ulcerative dermatitis contains 2 orthologs of this MGE, not associated with a prophage. BLASTn and phylogenetic analyses show that there are closely related intact MGEs found in genomes of S. aureus. The genome from a 1980s isolate from chickens in Ireland contains 3 copies of this MGE. More recent chicken isolates descended from that genome (Poland 2009, Oklahoma 2010, and Arkansas 2018) contain 2 to 4 related copies. Many of the genes of this MGE can be identified in disparate regions of the genomes of other chicken isolates of S. aureus. BLAST searches of the NCBI databases detect no similar MGEs outside of S. aureus and S. agnetis. These MGEs encode no proteins related to those produced by Staphylococcus aureus Pathogenicity Islands, which have been associated with the transition of S. aureus from human to chicken hosts. Other than mobilization functions, most of the genes in these new MGEs annotate as hypothetical proteins. The MGEs we describe appear to represent a new family of Chromosomal Islands (CIs) shared amongst S. agnetis and S. aureus. Further work is needed to understand the role of these CIs/MGEs in pathogenesis. Analysis of horizontal transfer of genetic elements between isolates and species of Staphylococci provides clues to evolution of host-pathogen interactions as well as revealing critical determinants for animal welfare and human diseases.
Collapse
Affiliation(s)
- Douglas D Rhoads
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
| | - Jeff Pummil
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR, United States of America
| | - Nnamdi S Ekesi
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, United States of America
| | - Adnan A K Alrubaye
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
11
|
Siegel PB. Broiler genetics and the future outlook. Front Physiol 2023; 14:1150620. [PMID: 36969607 PMCID: PMC10031763 DOI: 10.3389/fphys.2023.1150620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
|
12
|
Alrubaye AAK, Ekesi NS, Hasan A, Elkins E, Ojha S, Zaki S, Dridi S, Wideman RF, Rebollo MA, Rhoads DD. Chondronecrosis with osteomyelitis in broilers: further defining lameness-inducing models with wire or litter flooring to evaluate protection with organic trace minerals. Poult Sci 2020; 99:5422-5429. [PMID: 33142459 PMCID: PMC7647863 DOI: 10.1016/j.psj.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The feed additive Availa-ZMC was investigated for the ability to reduce lameness in broilers using 2 alternative models for inducing lameness. The mixture of organic trace minerals was effective in reducing lameness by 20% in the wire flooring model and 25% in the litter flooring model with the bacterial challenge. Lameness in both models is overwhelmingly attributable to bacterial chondronecrosis with osteomyelitis. The reduction in lameness was associated, at least in part, with enhanced intestinal barrier integrity mediated by elevated expression of tight junction proteins and stimulation of bactericidal killing of adherent peripheral blood monocytes obtained from the birds treated with Availa-ZMC. Lameness is a major animal welfare concern in broiler production. The wire flooring model and litter flooring model with the bacterial challenge are effective models for evaluation of management strategies for mitigating infectious causes of lameness.
Collapse
Affiliation(s)
- Adnan A K Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Nnamdi S Ekesi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Ethan Elkins
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sohita Ojha
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sura Zaki
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sami Dridi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Robert F Wideman
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | | | - Douglas D Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA.
| |
Collapse
|
13
|
Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front Genet 2020; 11:793. [PMID: 32849798 PMCID: PMC7411239 DOI: 10.3389/fgene.2020.00793] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Genomic breeding programs have been paramount in improving the rates of genetic progress of productive efficiency traits in livestock. Such improvement has been accompanied by the intensification of production systems, use of a wider range of precision technologies in routine management practices, and high-throughput phenotyping. Simultaneously, a greater public awareness of animal welfare has influenced livestock producers to place more emphasis on welfare relative to production traits. Therefore, management practices and breeding technologies in livestock have been developed in recent years to enhance animal welfare. In particular, genomic selection can be used to improve livestock social behavior, resilience to disease and other stress factors, and ease habituation to production system changes. The main requirements for including novel behavioral and welfare traits in genomic breeding schemes are: (1) to identify traits that represent the biological mechanisms of the industry breeding goals; (2) the availability of individual phenotypic records measured on a large number of animals (ideally with genomic information); (3) the derived traits are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with other traits already included in the selection indexes; and (4) genomic information is available for a large number of individuals (or genetically close individuals) with phenotypic records. In this review, we (1) describe a potential route for development of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic selection schemes; (2) summarize key indicator variables of livestock behavior and welfare, including a detailed assessment of thermal stress in livestock; (3) describe the primary statistical and bioinformatic methods available for large-scale data analyses of animal welfare; and (4) identify major advancements, challenges, and opportunities to generate high-throughput and large-scale datasets to enable genetic and genomic selection for improved welfare in livestock. A wide variety of novel welfare indicator traits can be derived from information captured by modern technology such as sensors, automatic feeding systems, milking robots, activity monitors, video cameras, and indirect biomarkers at the cellular and physiological levels. The development of novel traits coupled with genomic selection schemes for improved welfare in livestock can be feasible and optimized based on recently developed (or developing) technologies. Efficient implementation of genetic and genomic selection for improved animal welfare also requires the integration of a multitude of scientific fields such as cell and molecular biology, neuroscience, immunology, stress physiology, computer science, engineering, quantitative genomics, and bioinformatics.
Collapse
Affiliation(s)
- Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Betty R. McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Aitor Arrazola
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | | | - Jay S. Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, United States
| |
Collapse
|
14
|
Affiliation(s)
- Hilal Çapar Akyüz
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Esin Ebru Onbaşılar
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|