1
|
Oladokun S, Sharif S. Exploring the complexities of poultry respiratory microbiota: colonization, composition, and impact on health. Anim Microbiome 2024; 6:25. [PMID: 38711114 DOI: 10.1186/s42523-024-00308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
An accurate understanding of the ecology and complexity of the poultry respiratory microbiota is of utmost importance for elucidating the roles of commensal or pathogenic microorganisms in the respiratory tract, as well as their associations with health or disease outcomes in poultry. This comprehensive review delves into the intricate aspects of the poultry respiratory microbiota, focusing on its colonization patterns, composition, and impact on poultry health. Firstly, an updated overview of the current knowledge concerning the composition of the microbiota in the respiratory tract of poultry is provided, as well as the factors that influence the dynamics of community structure and diversity. Additionally, the significant role that the poultry respiratory microbiota plays in economically relevant respiratory pathobiologies that affect poultry is explored. In addition, the challenges encountered when studying the poultry respiratory microbiota are addressed, including the dynamic nature of microbial communities, site-specific variations, the need for standardized protocols, the appropriate sequencing technologies, and the limitations associated with sampling methodology. Furthermore, emerging evidence that suggests bidirectional communication between the gut and respiratory microbiota in poultry is described, where disturbances in one microbiota can impact the other. Understanding this intricate cross talk holds the potential to provide valuable insights for enhancing poultry health and disease control. It becomes evident that gaining a comprehensive understanding of the multifaceted roles of the poultry respiratory microbiota, as presented in this review, is crucial for optimizing poultry health management and improving overall outcomes in poultry production.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Shen D, Wang K, Fathi MA, Li Y, Win-Shwe TT, Li C. A succession of pulmonary microbiota in broilers during the growth cycle. Poult Sci 2023; 102:102884. [PMID: 37423015 PMCID: PMC10466298 DOI: 10.1016/j.psj.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory health problems in poultry production are frequent and knotty and thus attract the attention of farmers and researchers. The breakthrough of gene sequencing technology has revealed that healthy lungs harbor rich microbiota, whose succession and homeostasis are closely related to lung health status, suggesting a new idea to explore the mechanism of lung injury in broilers with pulmonary microbiota as the entry point. This study aimed to investigate the succession of pulmonary microbiota in healthy broilers during the growth cycle. Fixed and molecular samples were collected from the lungs of healthy broilers at 1, 3, 14, 21, 28, and 42 d of age. Lung tissue morphology was observed by hematoxylin and eosin staining, and the changes in the composition and diversity of pulmonary microbiota were analyzed using 16S rRNA gene sequencing. The results showed that lung index peaked at 3 d, then decreased with age. No significant change was observed in the α diversity of pulmonary microbiota, while the β diversity changed regularly with age during the broilers' growth cycle. The relative abundance of dominant bacteria of Firmicutes and their subordinate Lactobacillus increased with age, while the abundance of Proteobacteria decreased with age. The correlation analysis between the abundance of differential bacteria and predicted function showed that dominant bacteria of Firmicutes, Proteobacteria and Lactobacillus were significantly correlated with most functional abundance, indicating that they may involve in lung functional development and physiological activities of broilers. Collectively, these findings suggest that the lung has been colonized with abundant microbiota in broilers when they were just hatched, and their composition changed regularly with day age. The dominant bacteria, Firmicutes, Proteobacteria, and Lactobacillus, play crucial roles in lung function development and physiological activities. It paves the way for further research on the mechanism of pulmonary microbiota-mediated lung injury in broilers.
Collapse
Affiliation(s)
- Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed Ahmed Fathi
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza 12618, Egypt
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Rychlik I, Karasova D, Crhanova M. Microbiota of Chickens and Their Environment in Commercial Production. Avian Dis 2023; 67:1-9. [PMID: 37140107 DOI: 10.1637/aviandiseases-d-22-00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 01/24/2023]
Abstract
Chickens in commercial production are subjected to constant interaction with their environment, including the exchange of microbiota. In this review, we therefore focused on microbiota composition in different niches along the whole line of chicken production. We included a comparison of microbiota of intact eggshells, eggshell waste from hatcheries, bedding, drinking water, feed, litter, poultry house air and chicken skin, trachea, crop, small intestine, and cecum. Such a comparison showed the most frequent interactions and allowed for the identification of microbiota members that are the most characteristic for each type of sample as well as those that are the most widespread in chicken production. Not surprisingly, Escherichia coli was the most widely distributed species in chicken production, although its dominance was in the external aerobic environment and not in the intestinal tract. Other broadly distributed species included Ruminococcus torque, Clostridium disporicum, and different Lactobacillus species. The consequence and meaning of these and other observations are evaluated and discussed.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Brno 621 00, Czech Republic
| | | | | |
Collapse
|
4
|
Saint-Martin V, Quéré P, Trapp S, Guabiraba R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front Immunol 2022; 13:956670. [PMID: 36268022 PMCID: PMC9577073 DOI: 10.3389/fimmu.2022.956670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Research in mammals has evidenced that proper colonization of the gut by a complex commensal microbial community, the gut microbiota (GM), is critical for animal health and wellbeing. It greatly contributes to the control of infectious processes through competition in the microbial environment while supporting proper immune system development and modulating defence mechanisms at distant organ sites such as the lung: a concept named ‘gut-lung axis’. While recent studies point to a role of the GM in boosting immunity and pathogen resilience also in poultry, the mechanisms underlying this role are largely unknown. In spite of this knowledge gap, GM modulation approaches are today considered as one of the most promising strategies to improve animal health and welfare in commercial poultry production, while coping with the societal demand for responsible, sustainable and profitable farming systems. The majority of pathogens causing economically important infectious diseases in poultry are targeting the respiratory and/or gastrointestinal tract. Therefore, a better understanding of the role of the GM in the development and function of the mucosal immune system is crucial for implementing measures to promote animal robustness in commercial poultry production. The importance of early gut colonization in the chicken has been overlooked or neglected in industrial poultry production systems, where chicks are hampered from acquiring a complex GM from the hen. Here we discuss the concept of strengthening mucosal immunity in the chicken through GM modulation approaches favouring immune system development and functioning along the gut-lung axis, which could be put into practice through improved farming systems, early-life GM transfer, feeding strategies and pre-/probiotics. We also provide original data from experiments with germ-free and conventional chickens demonstrating that the gut-lung axis appears to be functional in chickens. These key principles of mucosal immunity are likely to be relevant for a variety of avian diseases and are thus of far-reaching importance for the poultry sector worldwide.
Collapse
|
5
|
Longitudinal Changes in Campylobacter and the Litter Microbiome throughout the Broiler Production Cycle. Appl Environ Microbiol 2022; 88:e0066722. [PMID: 35943254 PMCID: PMC9469715 DOI: 10.1128/aem.00667-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens are an important source of Campylobacter to humans and become colonized on the farm, but the role of the litter in the ecology of Campylobacter is still not clear. The aim of this study was to examine the relationship between Campylobacter and the changes in the litter microbiome throughout the broiler production cycle. Twenty-six commercial broiler flocks representing two production types (small and big broilers) were followed from 1 to 2 weeks after placement to the end of the production cycle. Composite litter samples from the broiler chicken house were collected weekly. Litter DNA was extracted and used for Campylobacter jejuni and Campylobacter coli qPCR as well as for 16S rRNA gene V4 region sequencing. Campylobacter jejuni concentration in litter significantly differed by production type and flock age. Campylobacter jejuni concentration in litter from big broilers was 2.4 log10 units higher, on average, than that of small broilers at 3 weeks of age. Sixteen amplicon sequence variants (ASVs) differentially abundant over time were detected in both production types. A negative correlation of Campylobacter with Bogoriella and Pseudogracilibacillus was observed in the litter microbiome network at 6 weeks of flock age. Dynamic Bayesian networks provided evidence of negative associations between Campylobacter and two bacterial genera, Ornithinibacillus and Oceanobacillus, at 2 and 4 weeks of flock age, respectively. In conclusion, dynamic associations between Campylobacter and the litter microbiome were observed during grow-out, suggesting a potential role of the litter microbiome in the ecology of Campylobacter colonization and persistence on farm. IMPORTANCE This study interrogated the longitudinal association between Campylobacter and broiler litter microbiome in commercial broiler flocks. The results of this investigation highlighted differences in Campylobacter dynamics in the litter throughout the broiler production cycle and between small and big broilers. Besides documenting the changing nature of the microbial networks in broiler litter during grow-out, we detected bacterial genera (Oceanobacillus and Ornithinibacillus) negatively associated with Campylobacter abundance and concentration in litter via the Bayesian network framework. These bacteria should be investigated as possible antagonists to Campylobacter colonization of the broiler environment.
Collapse
|
6
|
Bacterial communities of the oviduct of turkeys. Sci Rep 2022; 12:14884. [PMID: 36050430 PMCID: PMC9436977 DOI: 10.1038/s41598-022-19268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial communities in the reproductive tract of avian species play an important role in keeping birds healthy and encouraging growth. Infection can occur during egg formation with pathogens that can be transmitted to the embryo. In this study, we investigated the bacterial composition in the turkey reproductive tract using a taxa identification based on the amplicon sequence of the V3–V4 region of the 16S rRNA gene. The microbial composition and relative abundance of bacteria differed between individual birds. Among the 19 phyla detected in turkey oviduct were unique taxa like Planctomycetes or Petescibacteria. Differences in composition of bacterial diversity were found at the family and genus level. Oviducts contained also several genus with well-recognized avian pathogens like Escherichia-Shigella, Enterococcus, Staphylococcus, and Ornithobacterium. Some of the bacteria described in this study have not been so far identified in turkeys. The objective of this study was to identify bacterial communities in the turkey oviduct and compared the composition of the oviduct with that in chickens broadening the knowledge of the microbial composition in the reproductive tract of poultry.
Collapse
|
7
|
Kursa O, Tomczyk G, Adamska K, Chrzanowska J, Sawicka-Durkalec A. The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys. Microorganisms 2022; 10:987. [PMID: 35630431 PMCID: PMC9147466 DOI: 10.3390/microorganisms10050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory tract health critically affects the performance of commercial poultry. This report presents data on the microbial community in these organs from a comprehensive study of laying chickens and turkey breeders. The main objective was to characterize and compare the compositions of the respiratory system bacteria isolated from birds of different ages and geographical locations in Poland. Using samples from 28 turkey and 26 chicken flocks, the microbial community was determined by 16S ribosomal RNA sequencing. There was great variability between flocks. The diversity and abundance of upper respiratory tract (URT) bacteria was greater in chickens than in turkeys. At the phyla level, the URT of the chickens was heavily colonized by Proteobacteria, which represented 66.4% of the total microbiota, while in turkeys, this phylum constituted 42.6% of all bacteria. Firmicutes bacteria were more abundant in turkeys (43.2%) than in chickens (24.1%). The comparison of the respiratory tracts at the family and genus levels showed the diversity and abundance of amplicon sequence variants (ASV) differing markedly between the species. Potentially pathogenic bacteria ASV were identified in the respiratory tract, which are not always associated with clinical signs, but may affect bird productivity and performance. The data obtained, including characterization of the bacterial composition found in the respiratory system, may be useful for developing effective interventions strategies to improve production performance and prevent and control disease in commercial laying chickens and turkeys.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (G.T.); (K.A.); (A.S.-D.)
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (G.T.); (K.A.); (A.S.-D.)
| | - Karolina Adamska
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (G.T.); (K.A.); (A.S.-D.)
| | | | - Anna Sawicka-Durkalec
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (G.T.); (K.A.); (A.S.-D.)
| |
Collapse
|
8
|
Ivulic D, Rossello-Mora R, Viver T, Montero DA, Vidal S, Aspee F, Hidalgo H, Vidal R. Litter Management Strategies and Their Impact on the Environmental and Respiratory Microbiome Might Influence Health in Poultry. Microorganisms 2022; 10:microorganisms10050878. [PMID: 35630323 PMCID: PMC9144224 DOI: 10.3390/microorganisms10050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Aerial and respiratory tract-associated bacterial diversity has been scarcely studied in broiler production systems. This study examined the relationship between the environmental air and birds’ respiratory microbiome, considering a longitudinal sampling. Total viable bacteria and coliforms in the air were quantified, and the 16S rRNA gene was sequenced from tracheal and air samples obtained through a novelty protocol. Air results showed a decrease in coliforms over time. However, at week 3, we reported an increase in coliforms (from 143 to 474 CFUc/m3) associated with litter management. Additionally, 16S rRNA gene results indicated a distinctive air microbial community, associated primarily with Bacillota phylum particularly of the Bacilli class (>58%), under all conditions. Tracheal results indicated a predominance of Escherichia coli/Shigella at the beginning of the productive cycle, shifting toward the middle and end of the cycle to Gallibacterium. However, at week 3, the dominance of Escherichia coli/Shigella (>99.5%) associated with litter aeration by tumbling stood out. Tracheal and air samples displayed a statistically different community structure, but shared differentially abundant features through time: Enterococcus, Gallibacterium, and Romboutsia ilealis. These results indicate the impact of production management protocols on the birds’ respiratory system that should be considered a breakpoint in poultry farm health.
Collapse
Affiliation(s)
- Dinka Ivulic
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), 07190 Esporles, Illes Balears, Spain; (R.R.-M.); (T.V.)
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Diversity, IMEDEA (CSIC-UIB), 07190 Esporles, Illes Balears, Spain; (R.R.-M.); (T.V.)
| | - David A. Montero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Sonia Vidal
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago 8820808, Chile;
| | | | - Héctor Hidalgo
- Laboratory of Avian Pathology, Faculty of Veterinary and Animal Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (H.H.); (R.V.); Tel.: +56-998-477-740 (H.H.); +56-998-496-363 (R.V.)
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- ANID—Millennium Science Initiative Program—Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8320000, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (H.H.); (R.V.); Tel.: +56-998-477-740 (H.H.); +56-998-496-363 (R.V.)
| |
Collapse
|
9
|
Wang S, Huang A, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Wu C, Yuan Z, Hao H. Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics (Basel) 2022; 11:antibiotics11030403. [PMID: 35326865 PMCID: PMC8944443 DOI: 10.3390/antibiotics11030403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
The study was to explore the rational use of danofloxacin against Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and the effect on lung microbiota. The CBP was established according to epidemiological cutoff value (ECV/COWT), pharmacokinetic–pharmacodynamic (PK–PD) cutoff value (COPD) and clinical cutoff value (COCL). The ECV was determined by the micro-broth dilution method and analyzed by ECOFFinder software. The COPD was determined according to PK–PD modeling of danofloxacin in infected lung tissue with Monte Carlo analysis. The COCL was performed based on the relationship between the minimum inhibitory concentration (MIC) and the possibility of cure (POC) from clinical trials. The CBP in infected lung tissue was 1 μg/mL according to CLSI M37-A3 decision tree. The 16S ribosomal RNA (rRNA) sequencing results showed that the lung microbiota, especially the phyla Firmicutes and Proteobacteria had changed significantly along with the process of cure regimen (the 24 h dosing interval of 16.60 mg/kg b.w for three consecutive days). Our study suggested that the rational use of danofloxacin for the treatment of MG infections should consider the MIC and effect of antibiotics on the respiratory microbiota.
Collapse
Affiliation(s)
- Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287186; Fax: +86-27-87672232
| |
Collapse
|
10
|
Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int J Food Microbiol 2022; 364:109533. [DOI: 10.1016/j.ijfoodmicro.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
11
|
Mohsin Bukhari S, Ahmed Alghamdi H, Ur Rehman K, Andleeb S, Ahmad S, Khalid N. Metagenomics analysis of the fecal microbiota in Ring-necked pheasants ( Phasianus colchicus) and Green pheasants ( Phasianus versicolor) using next generation sequencing. Saudi J Biol Sci 2022; 29:1781-1788. [PMID: 35280539 PMCID: PMC8913415 DOI: 10.1016/j.sjbs.2021.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Pheasant reintroduction and conservation efforts have been in place in Pakistan since the 1980 s, yet there is still a scarcity of data on pheasant microbiome and zoonosis. Instead of growing vast numbers of bacteria in the laboratory, to investigate the fecal microbiome, pheasants (green and ring neck pheasant) were analyzed using 16S rRNA metagenomics and using IonS5TMXL sequencing from two flocks more than 10 birds. Operational taxonomic unit (OTU) cluster analysis and phylogenetic tree analysis was performed using Mothur software against the SSUrRNA database of SILVA and the MUSCLE (Version 3.8.31) software. Results of the analysis showed that firmicutes were the most abundant phylum among the top ten phyla, in both pheasant species, followed by other phyla such as actinobacteria and proteobacteria in ring necked pheasant and bacteroidetes in green necked pheasant. Bacillus was the most relatively abundant genus in both pheasants followed by Oceanobacillus and Teribacillus for ring necked pheasant and Lactobacillus for green necked pheasant. Because of their well-known beneficial characteristics, these genus warrants special attention. Bird droppings comprise germs from the urinary system, gut, and reproductive sites, making it difficult to research each anatomical site at the same time. We conclude that metagenomic analysis and classification provides baseline information of the pheasant fecal microbiome that plays a role in disease and health.
Collapse
Affiliation(s)
- Syed Mohsin Bukhari
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khalil Ur Rehman
- Department of Environmental Sciences, GCW University, Sailkot 51310, Pakistan
| | - Shahla Andleeb
- Department of Environmental Sciences, GCW University, Sailkot 51310, Pakistan
| | - Shahbaz Ahmad
- Department of Entomology, University of the Punjab, 54590 Lahore, Pakistan
| | - Nimra Khalid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Wang G, Liu Q, Zhou Y, Feng J, Zhang M. Effects of Different Ammonia Concentrations on Pulmonary Microbial Flora, Lung Tissue Mucosal Morphology, Inflammatory Cytokines, and Neurotransmitters of Broilers. Animals (Basel) 2022; 12:261. [PMID: 35158583 PMCID: PMC8833639 DOI: 10.3390/ani12030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Atmospheric ammonia is one of the main environmental stressors affecting the performance of broilers. Previous studies demonstrated that high levels of ammonia altered pulmonary microbiota and induced inflammation. Research into the lung-brain axis has been increasing in recent years. However, the molecular mechanisms in pulmonary microbiota altered by ambient ammonia exposure on broilers and the relationship between microflora, inflammation, and neurotransmitters are still unknown. In this study, a total of 264 Arbor Acres commercial meal broilers (21 days old) were divided into 4 treatment groups (0, 15, 25, and 35 ppm group) with 6 replicates of 11 chickens for 21 days. At 7 and 21 D during the trial period, the lung tissue microflora was evaluated by 16S rDNA sequencing, and the content of cytokines (IL-1β, IL-6, and IL-10) and norepinephrine (NE), 5-hydroxytryptamine (5-HT) in lung tissue were measured. Correlation analysis was established among lung tissue microflora diversity, inflammatory cytokines, and neurotransmitters. Results showed that the broilers were not influenced after exposure to 15 ppm ammonia, while underexposure of 25 and 35 ppm ammonia resulted in significant effects on pulmonary microflora, inflammatory cytokines, and neurotransmitters. After exposure to ammonia for 7 and 21 days, both increased the proportion of Proteobacteria phylum and the contents of IL-1β and decreased the content of 5-HT. After exposure to ammonia for 7 days, the increase in Proteobacteria in lung tissue was accompanied by a decrease in 5-HT and an increase in IL-1β. In conclusion, the microflora disturbance caused by the increase in Proteobacteria in lung tissue may be the main cause of the changes in inflammatory cytokines (IL-1β) and neurotransmitters (5-HT), and the damage caused by ammonia to broiler lungs may be mediated by the lung-brain axis.
Collapse
Affiliation(s)
| | | | | | | | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.W.); (Q.L.); (Y.Z.); (J.F.)
| |
Collapse
|
13
|
Huang A, Wang S, Guo J, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Yuan Z, Hao H. Prudent Use of Tylosin for Treatment of Mycoplasma gallisepticum Based on Its Clinical Breakpoint and Lung Microbiota Shift. Front Microbiol 2021; 12:712473. [PMID: 34566919 PMCID: PMC8458857 DOI: 10.3389/fmicb.2021.712473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore the prudent use of tylosin for the treatment of chronic respiratory infectious diseases in chickens caused by Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and its effect on lung microbiota. The CBP was established based on the wild-type/epidemiological cutoff value (COWT/ECV), pharmacokinetics-pharmacodynamics (PK-PD) cutoff value (COPD), and clinical cutoff value (COCL) of tylosin against MG. The minimum inhibitory concentration (MIC) of tylosin against 111 MG isolates was analyzed and the COWT was 2 μg/ml. M17 with MIC of 2 μg/ml was selected as a representative strain for the PK-PD study. The COPD of tylosin against MG was 1 μg/ml. The dosage regimen formulated by the PK-PD study was 3 days administration of tylosin at a dose of 45.88 mg/kg b.w. with a 24-h interval. Five different MIC MGs were selected for clinical trial, and the COCL of tylosin against MG was 0.5 μg/ml. According to the CLSI decision tree, the CBP of tylosin against MG was set up as 2 μg/ml. The effect of tylosin on lung microbiota of MG-infected chickens was analyzed by 16S rRNA gene sequencing. Significant change of the lung microbiota was observed in the infection group and treatment group based on the principal coordinate analysis and the Venn diagrams of the core and unique OTU. The phyla Firmicutes and Proteobacteria showed difference after MG infection and treatment. This study established the CBP of tylosin against MG. It also provided scientific data for the prudent use of tylosin based on the evaluation of MG infection and tylosin treatment on the lung microbiota.
Collapse
Affiliation(s)
- Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Shuge Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinli Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Sun B, Hou L, Yang Y. The Development of the Gut Microbiota and Short-Chain Fatty Acids of Layer Chickens in Different Growth Periods. Front Vet Sci 2021; 8:666535. [PMID: 34277754 PMCID: PMC8284478 DOI: 10.3389/fvets.2021.666535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
A long-term observation of changes of the gut microbiota and its metabolites would be beneficial to improving the production performance of chickens. Given this, 1-day-old chickens were chosen in this study, with the aim of observing the development of the gut microbiota and gut microbial function using 16S rRNA gene sequencing and metabolites short-chain fatty acids (SCFAs) from 8 to 50 weeks. The results showed that the relative abundances of Firmicutes and genus Alistipes were higher and fiber-degradation bacteria were less at 8 weeks compared with 20 and 50 weeks (P < 0.05). Consistently, gut microbial function was enriched in ATP-binding cassette transporters, the energy metabolism pathway, and amino acid metabolism pathway at 8 weeks. In contrast, the abundance of Bacteroidetes and some SCFA-producing bacteria and fiber-degradation bacteria significantly increased at 20 and 50 weeks compared with 8 weeks (P < 0.05), and the two-component system, glycoside hydrolase and carbohydrate metabolism pathway, was significantly increased with age. The concentration of SCFAs in the cecum at 20 weeks was higher than at 8 weeks (P < 0.01), because the level of fiber and the number of dominant fiber-degradation bacteria and SCFA-producing bacteria were more those at 20 weeks. Notably, although operational taxonomic units (OTUs) and the gut microbial α-diversity including Chao1 and abundance-based coverage estimator (ACE) were higher at 50 than 20 weeks (P < 0.01), the concentration of SCFAs at 50 weeks was lower than at 20 weeks (P < 0.01), suggesting that an overly high level of microbial diversity may not be beneficial to the production of SCFAs.
Collapse
Affiliation(s)
- Baosheng Sun
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jingzhong, China
| | - Linyue Hou
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jingzhong, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jingzhong, China
| |
Collapse
|
15
|
Abundo MEC, Ngunjiri JM, Taylor KJM, Ji H, Ghorbani A, Kc M, Elaish M, Jang H, Weber B, Johnson TJ, Lee CW. Evaluation of Sampling Methods for the Study of Avian Respiratory Microbiota. Avian Dis 2021; 64:277-285. [PMID: 33205170 DOI: 10.1637/aviandiseases-d-19-00200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 11/05/2022]
Abstract
Although poultry microbiome discoveries are increasing due to the potential impact on poultry performance, studies examining the poultry respiratory microbiome are challenging because of the low microbial biomass and uniqueness of the avian respiratory tract, making it difficult to sample enough material for microbial analysis. Invasive sampling techniques requiring euthanasia are currently used to increase microbial mass for the analysis, thus making it impossible to sample individual birds longitudinally. In this study, we compared invasive (nasal wash, upper tracheal wash, lower tracheal wash, and lower respiratory lavage) and noninvasive (tracheal and choanal swabs) respiratory sampling techniques in two independent experiments by using 4-wk-old chickens. We first established the experimental baseline of respiratory microbiota by using invasive techniques to enable reasonable comparisons between sampling methods and between experiments. Although noninvasive sampling (live-bird swabs) resulted in lower 16S ribosomal RNA gene copy numbers compared with invasive sampling, live swabs were able to detect the dominant microbes captured by invasive techniques. Nevertheless, swabs from euthanatized birds were more reflective of the microbiota captured through invasive methods than live swab. Furthermore, from two separate experiments, we also demonstrated that respiratory microbiota sampling is highly reproducible, especially in the trachea and lower respiratory tract. Our study provides new insights and perspectives on decision making when sampling and studying poultry respiratory microbiota.
Collapse
Affiliation(s)
- Michael Edward C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Kara J M Taylor
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Hana Ji
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Bonnie Weber
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108.,Mid-Central Research and Outreach Center, University of Minnesota, Willmar, MN 56201
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
16
|
Mach N, Baranowski E, Nouvel LX, Citti C. The Airway Pathobiome in Complex Respiratory Diseases: A Perspective in Domestic Animals. Front Cell Infect Microbiol 2021; 11:583600. [PMID: 34055660 PMCID: PMC8160460 DOI: 10.3389/fcimb.2021.583600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory infections in domestic animals are a major issue for veterinary and livestock industry. Pathogens in the respiratory tract share their habitat with a myriad of commensal microorganisms. Increasing evidence points towards a respiratory pathobiome concept, integrating the dysbiotic bacterial communities, the host and the environment in a new understanding of respiratory disease etiology. During the infection, the airway microbiota likely regulates and is regulated by pathogens through diverse mechanisms, thereby acting either as a gatekeeper that provides resistance to pathogen colonization or enhancing their prevalence and bacterial co-infectivity, which often results in disease exacerbation. Insight into the complex interplay taking place in the respiratory tract between the pathogens, microbiota, the host and its environment during infection in domestic animals is a research field in its infancy in which most studies are focused on infections from enteric pathogens and gut microbiota. However, its understanding may improve pathogen control and reduce the severity of microbial-related diseases, including those with zoonotic potential.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Baranowski
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Laurent Xavier Nouvel
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
17
|
Metagenomic Analysis of the Respiratory Microbiome of a Broiler Flock from Hatching to Processing. Microorganisms 2021; 9:microorganisms9040721. [PMID: 33807233 PMCID: PMC8065701 DOI: 10.3390/microorganisms9040721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Elucidating the complex microbial interactions in biological environments requires the identification and characterization of not only the bacterial component but also the eukaryotic viruses, bacteriophage, and fungi. In a proof of concept experiment, next generation sequencing approaches, accompanied by the development of novel computational and bioinformatics tools, were utilized to examine the evolution of the microbial ecology of the avian trachea during the growth of a healthy commercial broiler flock. The flock was sampled weekly, beginning at placement and concluding at 49 days, the day before processing. Metagenomic sequencing of DNA and RNA was utilized to examine the bacteria, virus, bacteriophage, and fungal components during flock growth. The utility of using a metagenomic approach to study the avian respiratory virome was confirmed by detecting the dysbiosis in the avian respiratory virome of broiler chickens diagnosed with infection with infectious laryngotracheitis virus. This study provides the first comprehensive analysis of the ecology of the avian respiratory microbiome and demonstrates the feasibility for the use of this approach in future investigations of avian respiratory diseases.
Collapse
|
18
|
Kursa O, Tomczyk G, Sawicka-Durkalec A, Giza A, Słomiany-Szwarc M. Bacterial communities of the upper respiratory tract of turkeys. Sci Rep 2021; 11:2544. [PMID: 33510238 PMCID: PMC7843632 DOI: 10.1038/s41598-021-81984-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/13/2021] [Indexed: 02/02/2023] Open
Abstract
The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplification of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identified in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Differences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identified, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey flocks.
Collapse
Affiliation(s)
- Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Pulawy, Poland.
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Pulawy, Poland
| | - Anna Sawicka-Durkalec
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Pulawy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Pulawy, Poland
| | - Magdalena Słomiany-Szwarc
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Pulawy, Poland
| |
Collapse
|
19
|
Abundo MEC, Ngunjiri JM, Taylor KJM, Ji H, Ghorbani A, K. C. M, Weber BP, Johnson TJ, Lee CW. Assessment of two DNA extraction kits for profiling poultry respiratory microbiota from multiple sample types. PLoS One 2021; 16:e0241732. [PMID: 33406075 PMCID: PMC7787465 DOI: 10.1371/journal.pone.0241732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Characterization of poultry microbiota is becoming increasingly important due to the growing need for microbiome-based interventions to improve poultry health and production performance. However, the lack of standardized protocols for sampling, sample processing, DNA extraction, sequencing, and bioinformatic analysis can hinder data comparison between studies. Here, we investigated how the DNA extraction process affects microbial community compositions and diversity metrics in different chicken respiratory sample types including choanal and tracheal swabs, nasal cavity and tracheal washes, and lower respiratory lavage. We did a side-by-side comparison of the performances of Qiagen DNeasy blood and tissue (BT) and ZymoBIOMICS DNA Miniprep (ZB) kits. In general, samples extracted with the BT kit yielded higher concentrations of total DNA while those extracted with the ZB kit contained higher numbers of bacterial 16S rRNA gene copies per unit volume. Therefore, the samples were normalized to equal amounts of 16S rRNA gene copies prior to sequencing. For each sample type, all predominant bacterial taxa detected in samples extracted with one kit were present in replicate samples extracted with the other kit and did not show significant differences at the class level. However, a few differentially abundant shared taxa were observed at family and genus levels. Furthermore, between-kit differences in alpha and beta diversity metrics at the amplicon sequence variant level were statistically indistinguishable. Therefore, both kits perform similarly in terms of 16S rRNA gene-based poultry microbiome analysis for the sample types analyzed in this study.
Collapse
MESH Headings
- Animals
- Chickens/microbiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Microbiota
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Reagent Kits, Diagnostic
- Respiratory System/microbiology
Collapse
Affiliation(s)
- Michael E. C. Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - John M. Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Kara J. M. Taylor
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Hana Ji
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mahesh K. C.
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Bonnie P. Weber
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, Minnesota, United States of America
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
20
|
A respiratory commensal bacterium acts as a risk factor for Mycoplasma gallisepticum infection in chickens. Vet Immunol Immunopathol 2020; 230:110127. [PMID: 33080531 DOI: 10.1016/j.vetimm.2020.110127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Commensal microbiota has been shown to play an important role in local infections. However, the correlation between host respiratory microbiota and Mycoplasma gallisepticum (MG) infection is not well characterized. Here, the results of 16S rRNA sequencing showed that MG infection correlated with alteration in respiratory microbiota of chickens characterized by decreased richness and diversity. To explore whether respiratory microbiota contributed to MG infection, an antibiotics cocktail was used to deplete respiratory microbiota. It has been found that depletion of respiratory Gram-positive and Gram-negative bacteria promoted MG infection, as reflected in the form of increased MG colonization, pro-inflammatory cytokines and proteins expression, and severe lung damage compared to the control group. Importantly, depletion of Gram-negative bacteria in respiratory tract mitigated MG infection, which indicated that certain Gram-negative bacteria may promote MG infection. By reconstitution of individual cultivable respiratory tract bacteria in antibiotic-treated chickens, a respiratory commensal microbe Serratia marcescens was identified to facilitate MG infection. We further found that Serratia marcescens may promote MG infection by downregulating Mucin 2 (MUC2) and tight junction related gene mRNA expression levels in trachea and lung tissues. Together, our data demonstrated that MG infection induced disturbed respiratory microbiota and the specific respiratory commensal bacterium Serratia marcescens could promote MG infection, and thus expand our understanding of the pathogenesis of MG infection.
Collapse
|
21
|
Shah DH, Board MM, Crespo R, Guard J, Paul NC, Faux C. The occurrence of Salmonella, extended-spectrum β-lactamase producing Escherichia coli and carbapenem resistant non-fermenting Gram-negative bacteria in a backyard poultry flock environment. Zoonoses Public Health 2020; 67:742-753. [PMID: 32710700 DOI: 10.1111/zph.12756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Increase in the number of small-scale backyard poultry flocks in the USA has substantially increased human-to-live poultry contact, leading to increased public health risks of the transmission of multi-drug resistant (MDR) zoonotic and food-borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram-negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer-feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non-fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI-TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:- was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR ) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended-spectrum β-lactamase (ESBL) positive. Carbapenem resistance was detected in non-fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non-fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.
Collapse
Affiliation(s)
- Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Melissa M Board
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Rocio Crespo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jean Guard
- US National Poultry Research Center, United States Department of Agriculture, Athens, GA, USA
| | - Narayan C Paul
- Texas A & M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Cynthia Faux
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
22
|
Taylor KJM, Ngunjiri JM, Abundo MC, Jang H, Elaish M, Ghorbani A, Kc M, Weber BP, Johnson TJ, Lee CW. Respiratory and Gut Microbiota in Commercial Turkey Flocks with Disparate Weight Gain Trajectories Display Differential Compositional Dynamics. Appl Environ Microbiol 2020; 86:e00431-20. [PMID: 32276973 PMCID: PMC7267191 DOI: 10.1128/aem.00431-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Communities of gut bacteria (microbiota) are known to play roles in resistance to pathogen infection and optimal weight gain in turkey flocks. However, knowledge of turkey respiratory microbiota and its link to gut microbiota is lacking. This study presents a 16S rRNA gene-based census of the turkey respiratory microbiota (nasal cavity and trachea) alongside gut microbiota (cecum and ileum) in two identical commercial Hybrid Converter turkey flocks raised in parallel under typical field commercial conditions. The flocks were housed in adjacent barns during the brood stage and in geographically separated farms during the grow-out stage. Several bacterial taxa, primarily Staphylococcus, that were acquired in the respiratory tract at the beginning of the brood stage persisted throughout the flock cycle. Late-emerging predominant taxa in the respiratory tract included Deinococcus and Corynebacterium Tracheal and nasal microbiota of turkeys were identifiably distinct from one another and from gut microbiota. Nevertheless, gut and respiratory microbiota changed in parallel over time and appeared to share many taxa. During the brood stage, the two flocks generally acquired similar gut and respiratory microbiota, and their average body weights were comparable. However, there were qualitative and quantitative differences in microbial profiles and body weight gain trajectories after the flocks were transferred to geographically separated grow-out farms. Lower weight gain corresponded to the emergence of Deinococcus and Ornithobacterium in the respiratory tract and Fusobacterium and Parasutterella in gut. This study provides an overview of turkey microbiota under field conditions and suggests several hypotheses concerning the respiratory microbiome.IMPORTANCE Turkey meat is an important source of animal protein, and the industry around its production contributes significantly to the agricultural economy. The microorganisms present in the gut of turkeys are known to impact bird health and flock performance. However, the respiratory microbiota in turkeys is entirely unexplored. This study has elucidated the microbiota of respiratory tracts of turkeys from two commercial flocks raised in parallel throughout a normal flock cycle. Further, the study suggests that bacteria originating in the gut or in poultry house environments influence respiratory communities; consequently, they induce poor performance, either directly or indirectly. Future attempts to develop microbiome-based interventions for turkey health should delimit the contributions of respiratory microbiota and aim to limit disturbances to those communities.
Collapse
Affiliation(s)
- Kara J M Taylor
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bonnie P Weber
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Mid-Central Research and Outreach Center, University of Minnesota, Willmar, Minnesota, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Volokhov DV, Grózner D, Gyuranecz M, Ferguson-Noel N, Gao Y, Bradbury JM, Whittaker P, Chizhikov VE, Szathmary S, Stipkovits L. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese ( Anser anser domesticus) with reproductive pathology. Int J Syst Evol Microbiol 2020; 70:2369-2381. [PMID: 32068526 DOI: 10.1099/ijsem.0.004052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In 1983, Mycoplasma sp. strain 1220 was isolated in Hungary from the phallus lymph of a gander with phallus inflammation. Between 1983 and 2017, Mycoplasma sp. 1220 was also identified and isolated from the respiratory tract, liver, ovary, testis, peritoneum and cloaca of diseased geese in several countries. Seventeen studied strains produced acid from glucose and fructose but did not hydrolyse arginine or urea, and all grew under aerobic, microaerophilic and anaerobic conditions at 35 to 37 ˚C in either SP4 or pleuropneumonia-like organism medium supplemented with glucose and serum. Colonies on agar showed a typical fried-egg appearance and transmission electron microscopy revealed a typical mycoplasma cellular morphology. Molecular characterization included analysis of the following genetic loci: 16S rRNA, 23S rRNA, 16S-23S rRNA ITS, rpoB, rpoC, rpoD, uvrA, parC, topA, dnaE, fusA and pyk. The genome was sequenced for type strain 1220T. The 16S rRNA gene sequences of studied strains of Mycoplasma sp. 1220 shared 99.02-99.19 % nucleotide similarity with M. anatis strains but demonstrated ≤95.00-96.70 % nucleotide similarity to the 16S rRNA genes of other species of the genus Mycoplasma. Phylogenetic, average nucleotide and amino acid identity analyses revealed that the novel species was most closely related to Mycoplasma anatis. Based on the genetic data, we propose a novel species of the genus Mycoplasma, for which the name Mycoplasma anserisalpingitidis sp. nov. is proposed with the type strain 1220T (=ATCC BAA-2147T=NCTC 13513T=DSM 23982T). The G+C content is 26.70 mol%, genome size is 959110 bp.
Collapse
Affiliation(s)
- Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Dénes Grózner
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest, 1143, Hungary.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, Budapest, 1143, Hungary
| | - Miklós Gyuranecz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária krt. 23-25, Budapest, 1143, Hungary.,Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest, 1143, Hungary
| | - Naola Ferguson-Noel
- Poultry Diagnostic & Research Center, University of Georgia, 953 College Station Rd., Athens, GA 30602, USA
| | - Yamei Gao
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Janet M Bradbury
- University of Liverpool, School of Veterinary Science, Leahurst Campus, Neston, CH64 7TE, UK
| | - Paul Whittaker
- Present address: Currently retired from the US FDA, Maryland, USA.,Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Dr., College Park, MD 20740, USA
| | - Vladimir E Chizhikov
- Present address: Currently retired from the US FDA, Maryland, USA.,Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Susan Szathmary
- RT-Europe Research Center, 9200 Var 2, Mosonmagyaróvár, Hungary.,Galen Bio, Inc. Carlsbad, 5922 Farnsworth Ct Carlsbad, CA 92008, USA
| | | |
Collapse
|
24
|
Tawakol MM, Nabil NM, Samy A. Evaluation of bacteriophage efficacy in reducing the impact of single and mixed infections with Escherichia coli and infectious bronchitis in chickens. Infect Ecol Epidemiol 2019; 9:1686822. [PMID: 31839902 PMCID: PMC6896464 DOI: 10.1080/20008686.2019.1686822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Infectious bronchitis virus (IBV) represents a major threat to poultry production worldwide particularly when complicated with bacterial infection. In the present study samples were collected from forty broiler farms with respiratory manifestations to characterize IBV and E. coli. Bacteriophages were isolated and enriched from sampled farms to study its efficacy to control single and mixed infections with E. coli and IBV in vivo. Twelve out of forty farms were positive for IBV. Phylogenetic analysis of partial spike protein revealed that all positive cases clustered within the GI-23 genotype. Eight out of forty farms were positive for E. coli serogroups O26, O78, O86, O114, O119, with O125 found on three farms. Bacteriophage treatment delayed the onset and reduced the severity of clinical signs, and prevented the mortality associated with single and mixed infection with IBV and E. coli. Furthermore, in mixed infections, bacteriophage treatment significantly reduced E. coli as well as IBV shedding. Groups treated with bacteriophages showed a significant reduction of E. coli shedding that gradually decreased over time, in contrast to higher and gradually increasing shedding without bacteriophage treatment. In conclusion, bacteriophage treatment significantly reduced the pathogenicity and shedding of IBVand E. coli in mixed infections.
Collapse
Affiliation(s)
- Maram M. Tawakol
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Nehal M. Nabil
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| |
Collapse
|
25
|
Farm Stage, Bird Age, and Body Site Dominantly Affect the Quantity, Taxonomic Composition, and Dynamics of Respiratory and Gut Microbiota of Commercial Layer Chickens. Appl Environ Microbiol 2019; 85:AEM.03137-18. [PMID: 30824436 DOI: 10.1128/aem.03137-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
The digestive and respiratory tracts of chickens are colonized by bacteria that are believed to play important roles in the overall health and performance of the birds. Most of the current research on the commensal bacteria (microbiota) of chickens has focused on broilers and gut microbiota, and less attention has been given to layers and respiratory microbiota. This research bias has left significant gaps in our knowledge of the layer microbiome. This study was conducted to define the core microbiota colonizing the upper respiratory tract (URT) and lower intestinal tract (LIT) in commercial layers under field conditions. One hundred eighty-one chickens were sampled from a flock of >80,000 birds at nine times to collect samples for 16S rRNA gene-based bacterial metabarcoding. Generally, the body site and age/farm stage had very dominant effects on the quantity, taxonomic composition, and dynamics of core bacteria. Remarkably, ileal and URT microbiota were compositionally more related to each other than to that from the cecum. Unique taxa dominated in each body site yet some taxa overlapped between URT and LIT sites, demonstrating a common core. The overlapping bacteria also contained various levels of several genera with well-recognized avian pathogens. Our findings suggest that significant interaction exists between gut and respiratory microbiota, including potential pathogens, in all stages of the farm sequence. The baseline data generated in this study can be useful for the development of effective microbiome-based interventions to enhance production performance and to prevent and control disease in commercial chicken layers.IMPORTANCE The poultry industry is faced with numerous challenges associated with infectious diseases and suboptimal performance of flocks. As microbiome research continues to grow, it is becoming clear that poultry health and production performance are partly influenced by nonpathogenic symbionts that occupy different habitats within the bird. This study has defined the baseline composition and overlaps between respiratory and gut bacteria in healthy, optimally performing chicken layers across all stages of the commercial farm sequence. Consequently, the study has set the groundwork for the development of interventions that seek to enhance production performance and to prevent and control infectious diseases through the modulation of gut and respiratory bacteria.
Collapse
|
26
|
Dhar PK, Dutta A, Das A, Jalal MS, Barua H, Biswas PK. Validation of real-time reverse transcription polymerase chain reaction to detect virus titer and thermostability of Newcastle disease live virus vaccine. Vet World 2018; 11:1597-1603. [PMID: 30587895 PMCID: PMC6303490 DOI: 10.14202/vetworld.2018.1597-1603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Newcastle disease is one of the most common diseases affecting poultry in Bangladesh. The disease can cause up to 100% mortality but is preventable if birds are timely and properly vaccinated with a vaccine of standard virus titer. Different live vaccines are commercially available in the country - most, if not all, are produced using lentogenic strains of the virus with variable virulence. One of the disadvantages of these vaccines is that they are not stable at high environmental temperature, and therefore, a proper cold chain must be maintained during transportation and storage. Information on how long these vaccine viruses can withstand environmental temperature, which is near the vicinity of 37°C in the summer season in Bangladesh, is scanty. The aim of this research was to measure the effect of temperature on virus titer of live ND virus vaccines and to develop a real-time reverse transcription polymerase chain reaction (rRT-PCR) standard curve to indirectly determine hemagglutination (HA) titer of virus by this highly sensitive method. Materials and Methods In this study, thermostability of five commercial live vaccines containing LaSota, F, Clone 30, and B1 type LaSota strains was observed for up to 35 days keeping them at 37°C. From the most thermostability yielding sample, two rRT-PCR standard curves were developed: (1) By plotting the cycle threshold (CT) values as obtained from 10-fold serial dilutions up to 10-3 against their corresponding log (to the base 10) dilutions and (2) by plotting the CT values obtained from serial HA dilutions up to 2-4 against their corresponding HA titer dilutions. The PCR efficiencies based on which the graphs were fitted were also evaluated. Results The vaccine from the LaSota strain withstood 37°C for 35 days with a gradual declination of HA titer over time, and this vaccine also had the highest initial HA titer, which was 211. The vaccine made from F strain was inactivated quickly, and it had the lowest HA titer at the beginning of the study. The first standard curve developed can be used to assess the level of virus titer in a diluted sample compared with the titer in the original undiluted vaccine preparation by plotting the CT value obtained from the dilution by rRT-PCR. The second standard curve can be used to calculate the HA titer of a vaccine dilution by plotting the CT value as obtained from the dilution by rRT-PCR. Conclusion The regression equations for the first and second graphs were y=-3.535x+14.365 and y=-1.081x+13.703, respectively, suggesting that, for every 3.53 cycles, the PCR product would have increased 10 times and 2 times for every 1.08 cycles, respectively, indicating nearly (but not exactly) 100% PCR efficiency.
Collapse
Affiliation(s)
- Pangkaj Kumar Dhar
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - Avijit Dutta
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - Avijit Das
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - Mohammad Shah Jalal
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4225, Bangladesh
| |
Collapse
|
27
|
A Consistent and Predictable Commercial Broiler Chicken Bacterial Microbiota in Antibiotic-Free Production Displays Strong Correlations with Performance. Appl Environ Microbiol 2018; 84:AEM.00362-18. [PMID: 29625981 DOI: 10.1128/aem.00362-18] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
Defining the baseline bacterial microbiome is critical to understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define, due to high variability between birds and flocks. Presented here are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxon in the trachea. Numerous bacterial taxa were identified, which were strongly correlated with broiler chicken performance across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating that subclinical dynamics occur that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production.IMPORTANCE Multidrug-resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21st century and beyond. Antibiotics are necessary in animal production to treat disease. As such, animal production is a contributor to the problem of antibiotic resistance. Efforts are underway to reduce antibiotic use in animal production. However, we are also challenged to feed the world's increasing population, and sustainable meat production is paramount to providing a safe and quality protein source for human consumption. In the absence of antibiotics, alternative approaches are needed to maintain health and prevent disease, and probiotics have great promise as one such approach. This work paves the way for the development of alternative approaches to raising poultry by increasing our understandings of what defines the poultry microbiome and of how it can potentially be modulated to improve animal health and performance.
Collapse
|
28
|
Age-related differences in the respiratory microbiota of chickens. PLoS One 2017; 12:e0188455. [PMID: 29166670 PMCID: PMC5699826 DOI: 10.1371/journal.pone.0188455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/07/2017] [Indexed: 01/28/2023] Open
Abstract
In this era of next generation sequencing technologies it is now possible to characterise the chicken respiratory microbiota without the biases inherent to traditional culturing techniques. However, little research has been performed in this area. In this study we characterise and compare buccal, nasal and lung microbiota samples from chickens in three different age groups using 16S rRNA gene analysis. Buccal and nasal swabs were taken from birds aged 2 days (n = 5), 3 weeks (n = 5) and 30 months (n = 6). Bronchoalveolar lavage (BAL) samples were also collected alongside reagent only controls. DNA was extracted from these samples and the V2-V3 region of the 16S rRNA gene was amplified and sequenced. Quality control and OTU clustering were performed in mothur. Bacterial DNA was quantified using qPCR, amplifying the V3 region of the 16S rRNA gene. We found significant differences between the quantity and types of bacteria sampled at the three different respiratory sites. We also found significant differences in the composition, richness and diversity of the bacterial communities in buccal, nasal and BAL fluid samples between age groups. We identified several bacteria which had previously been isolated from the chicken respiratory tract in culture based studies, including lactobacilli and staphylococci. However, we also identified bacteria which have not previously been cultured from the respiratory tract of the healthy chicken. We conclude that our study can be used as a baseline that future chicken respiratory microbiota studies can build upon.
Collapse
|
29
|
Wideman RF. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: a review. Poult Sci 2016; 95:325-44. [DOI: 10.3382/ps/pev320] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
|