1
|
Luo JQ, Ren H, Chen MY, Zhao Q, Yang N, Liu Q, Gao YC, Zhou HH, Huang WH, Zhang W. Hydrochlorothiazide-induced glucose metabolism disorder is mediated by the gut microbiota via LPS-TLR4-related macrophage polarization. iScience 2023; 26:107130. [PMID: 37456847 PMCID: PMC10338205 DOI: 10.1016/j.isci.2023.107130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Hydrochlorothiazide (HCTZ) is reported to impair glucose tolerance and may induce new onset of diabetes, but the pharmacomicrobiomics of the adverse effect for HCTZ remains unknown. Mice-fed HCTZ exhibited insulin resistance and impaired glucose tolerance. By using FMT and antibiotic cocktail models, we found that HCTZ-induced metabolic disorder was mediated by commensal microbiota. HCTZ consumption disturbed the structure of the intestinal microbiota, causing abnormal elevation of Gram-negative Enterobacteriaceae and lipopolysaccharide (LPS) then leading to intestinal barrier dysfunction. Additionally, HCTZ activated TLR4 signaling and induced macrophage polarization and inflammation in the liver. Furthermore, HCTZ-induced macrophage polarization and metabolic disorder were abrogated by blocking TLR4 signaling. HCTZ consumption caused a significant increase in Gram-negative Enterobacteriaceae, which elevated the levels of LPS, thereby activating LPS/TLR4 pathway, promoting inflammation and macrophage polarization, and resulting in metabolic disorders. These findings revealed that the gut microbiome is the key medium underlying HCTZ-induced metabolic disorder.
Collapse
Affiliation(s)
- Jian-Quan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, No.61 Western Jiefang Road, Changsha, Hunan, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Nian Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
2
|
Höhne A, Petow S, Bessei W, Schrader L. Contrafreeloading and foraging-related behavior in hens differing in laying performance and phylogenetic origin. Poult Sci 2023; 102:102489. [PMID: 36764137 PMCID: PMC9929851 DOI: 10.1016/j.psj.2023.102489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Different breeds of domestic and junglefowl differ in foraging strategies indicating that domestication resulted in modified energy saving behavioral strategies. In the present study we investigated foraging strategies and foraging-related behavior in 4 lines of laying hens differing in phylogenetic origin and laying performance to analyze a possible relationship between foraging and the level of egg production. High performing brown and white pure bred lines were compared with their low performing brown and white counterparts. To control possible effects on behavior other than genetic effects, all hens were reared and kept in an identical environment. A total of 72 hens from each line were kept in 6 compartments with 12 hens per compartment, respectively. Observations were done for 3 times during one laying period. Foraging strategy was tested by a contrafreeloading (CFL) paradigm. CFL describes a behavior in which animals prefer food that requires effort to obtain, although at the same time food is freely available. The hens were offered a commercial standard diet in one trough and a mixture of wood shavings and commercial standard diet in another trough. The behavior of hens was video recorded and the activity level of individual hens in the litter area was recorded by an antenna-transponder system. The high performing layers showed less CFL and foraging-related behavior compared with their low performing counterparts in both the white and brown layers. Despite differences in CFL, all hens showed a preference for the commercial standard diet compared to the mixture of wood-shavings. Our results show an association between foraging strategy and level of egg production. This suggests that a high level of egg production is accompanied by behaviors enabling the hens to satisfy their higher energy demand more efficiently. Saving energy by reduced activity probably allows them to reallocate energy into reproduction, that is, laying performance.
Collapse
Affiliation(s)
- A. Höhne
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany,Corresponding author:
| | - S. Petow
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - W. Bessei
- Institute of Animal Science, University of Hohenheim, Stuttgart-Hohenheim, Germany
| | - L. Schrader
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| |
Collapse
|
3
|
Abstract
The intestinal microbiome influences host health, and its responsiveness to diet and disease is increasingly well studied. However, our understanding of the factors driving microbiome variation remain limited. Temperature is a core factor that controls microbial growth, but its impact on the microbiome remains to be fully explored. Although commonly assumed to be a constant 37°C, normal body temperatures vary across the animal kingdom, while individual body temperature is affected by multiple factors, including circadian rhythm, age, environmental temperature stress, and immune activation. Changes in body temperature via hypo- and hyperthermia have been shown to influence the gut microbiota in a variety of animals, with consistent effects on community diversity and stability. It is known that temperature directly modulates the growth and virulence of gastrointestinal pathogens; however, the effect of temperature on gut commensals is not well studied. Further, body temperature can influence other host factors, such as appetite and immunity, with indirect effects on the microbiome. In this minireview, we discuss the evidence linking body temperature and the intestinal microbiome and their implications for microbiome function during hypothermia, heat stress, and fever.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Sreekantapuram S, Berens C, Barth SA, Methner U, Berndt A. Interaction of Salmonella Gallinarum and Salmonella Enteritidis with peripheral leucocytes of hens with different laying performance. Vet Res 2021; 52:123. [PMID: 34563266 PMCID: PMC8467188 DOI: 10.1186/s13567-021-00994-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica ssp. enterica serovars Enteritidis (SE) and Gallinarum (SG) cause different diseases in chickens. However, both are able to reach the blood stream where heterophils and monocytes are potentially able to phagocytose and kill the pathogens. Using an ex vivo chicken whole blood infection model, we compared the complex interactions of the differentially host-adapted SE and SG with immune cells in blood samples of two White Leghorn chicken lines showing different laying performance (WLA: high producer; R11: low producer). In order to examine the dynamic interaction between peripheral blood leucocytes and the Salmonella serovars, we performed flow cytometric analyses and survival assays measuring (i) leucocyte numbers, (ii) pathogen association with immune cells, (iii) Salmonella viability and (iv) immune gene transcription in infected whole blood over a four-hour co-culture period. Inoculation of blood from the two chicken lines with Salmonella led primarily to an interaction of the bacteria with monocytes, followed by heterophils and thrombocytes. We found higher proportions of monocytes associated with SE than with SG. In blood samples of high producing chickens, a decrease in the numbers of both heterophils and Salmonella was observed. The Salmonella challenge induced transcription of interleukin-8 (IL-8) which was more pronounced in SG- than SE-inoculated blood of R11. In conclusion, the stronger interaction of monocytes with SE than SG and the better survivability of Salmonella in blood of low-producer chickens shows that the host-pathogen interaction and the strength of the immune defence depend on both the Salmonella serovar and the chicken line.
Collapse
Affiliation(s)
- Sravya Sreekantapuram
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Stefanie A Barth
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany.
| |
Collapse
|
5
|
Sreekantapuram S, Lehnert T, Prauße MTE, Berndt A, Berens C, Figge MT, Jacobsen ID. Dynamic Interplay of Host and Pathogens in an Avian Whole-Blood Model. Front Immunol 2020; 11:500. [PMID: 32296424 PMCID: PMC7136455 DOI: 10.3389/fimmu.2020.00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial survival in blood is an essential step toward the development of disseminated diseases and blood stream infections. For poultry, however, little is known about the interactions of host cells and pathogens in blood. We established an ex vivo chicken whole-blood infection assay as a tool to analyze interactions between host cells and three model pathogens, Escherichia coli, Staphylococcus aureus, and Candida albicans. Following a systems biology approach, we complemented the experimental measurements with functional and quantitative immune characteristics by virtual infection modeling. All three pathogens were killed in whole blood, but each to a different extent and with different kinetics. Monocytes, and to a lesser extent heterophils, associated with pathogens. Both association with host cells and transcriptional activation of genes encoding immune-associated functions differed depending on both the pathogen and the genetic background of the chickens. Our results provide first insights into quantitative interactions of three model pathogens with different immune cell populations in avian blood, demonstrating a broad spectrum of different characteristics during the immune response that depends on the pathogen and the chicken line.
Collapse
Affiliation(s)
- Sravya Sreekantapuram
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany
| | - Teresa Lehnert
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany
| | - Maria T E Prauße
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institut, Jena, Germany.,Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
6
|
Burin AM, Fernandes NLM, Snak A, Fireman A, Horn D, Fernandes JIM. Arginine and manganese supplementation on the immune competence of broilers immune stimulated with vaccine against Salmonella Enteritidis. Poult Sci 2019; 98:2160-2168. [DOI: 10.3382/ps/pey570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023] Open
|
7
|
Liermann W, Frahm J, Halle I, Bühler S, Kluess J, Hüther L, Dänicke S. Kinetic studies on clinical and immunological modulations by intramuscular injection of Escherichia coli LPS in laying hens. Innate Immun 2019; 25:186-202. [PMID: 30894094 PMCID: PMC6830938 DOI: 10.1177/1753425919835296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study investigated clinical and immunological modulations due to
intramuscular injection of Escherichia coli LPS in 49-wk-old
laying hens over 48 h post injection (p.i.). LPS induced characteristic sickness
behavior but no significant body temperature alterations
(P > 0.05). During experimental period decreases in blood
albumin, calcium, phosphorus and tryptophan concentrations, hyperglycemia,
increased plasma nitrite concentrations, leucopenia, decreased thrombocyte
counts, lymphopenia, heterophilia and an increased heterophilic
granulocyte/lymphocyte (H/L) ratio were observed after LPS administration.
Time-dependent effects were shown on T and B cell subsets in caecal tonsils (CT)
and on splenic CD3+/CD4+/CD8+ proportions, on
IL-1β and -10 and inducible NO synthase mRNA expression in peripheral blood
lymphocytes (PBL), liver, spleen and CT, and on the mRNA expression of the TLR4
in PBL, liver and spleen p.i. (P < 0.05). The main
responding period of mentioned alterations due to LPS appears to include the
period from 2 until 8 h p.i. According to the H/L ratio, the most stressful
phase was 5 h p.i. T and B cell subsets in CT, the IL-1β and TLR4 mRNA
expression in liver and plasma nitrite concentrations seemed to be affected for
a longer period.
Collapse
Affiliation(s)
- Wendy Liermann
- 1 Institute of Nutritional Physiology, "Oskar Kellner", Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Jana Frahm
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Ingrid Halle
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Susanne Bühler
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jeannette Kluess
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Liane Hüther
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Sven Dänicke
- 2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| |
Collapse
|
8
|
More eggs but less social and more fearful? Differences in behavioral traits in relation to the phylogenetic background and productivity level in laying hens. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Dudde A, Krause ET, Matthews LR, Schrader L. More Than Eggs - Relationship Between Productivity and Learning in Laying Hens. Front Psychol 2018; 9:2000. [PMID: 30416464 PMCID: PMC6212530 DOI: 10.3389/fpsyg.2018.02000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
The intense selection of chickens for production traits, such as egg laying, is thought to cause undesirable side effects and changes in behavior. Trade-offs resulting from energy expenditure in productivity may influence other traits: in order to sustain energetic costs for high egg production, energy expenditure may be redirected away from specific behavioral traits. For example, such energetic trade-offs may change the hens' cognitive abilities. Therefore, we hypothesized highly productive laying hens to show reduced learning performance in comparison to moderate productive lines. We examined the learning ability of four chicken lines that differed in laying performance (200 versus 300 eggs/year) and phylogenetic origin (brown/white layer; respectively, within performance). In total 61 hens were tested in semi-automated Skinner boxes in a three-phase learning paradigm (initial learning, reversal learning, extinction). To measure the hens' learning performance within each phase, we compared the number of active decisions needed to fulfill a learning criteria (80% correct choices for learning, 70% no responses at extinction) using linear models. Differences between the proportions of hens per line that reached criterion on each phase of the learning tasks were analyzed by using a Kaplan-Meier (KM) survival analysis. A greater proportion of high productive hens achieved the learning criteria on each phase compared to less productive hens (Chi2 3 = 8.25, p = 0.041). Furthermore, high productive hens accomplished the learning criteria after fewer active decisions in the initial phase (p = 0.012) and in extinction (p = 0.004) compared to the less selected lines. Phylogenetic origin was associated with differences in learning in extinction. Our results contradict our hypothesis and indicate that the selection for productivity traits has led to changes in learning behavior and the high productive laying hens possessed a better learning strategy compared to moderate productive hens in a feeding-rewarding context. This better performance may be a response to constraints resulting from high selection as it may enable these hens to efficiently acquire additional energy resources. Underlying mechanisms for this may be directly related to differences in neuronal structure or indirectly to foraging strategies and changes in personality traits such as fearfulness and sociality.
Collapse
Affiliation(s)
- Anissa Dudde
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - E. Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Lindsay R. Matthews
- School of Psychology, The University of Auckland, Auckland, New Zealand
- Lindsay Matthews Research International, Hamilton, New Zealand
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
10
|
Polasky C, Weigend S, Schrader L, Berndt A. Non-specific activation of CD8α-characterised γδ T cells in PBL cultures of different chicken lines. Vet Immunol Immunopathol 2016; 179:1-7. [DOI: 10.1016/j.vetimm.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|