1
|
Petcu CD, Mihai OD, Tăpăloagă D, Gheorghe-Irimia RA, Pogurschi EN, Militaru M, Borda C, Ghimpețeanu OM. Effects of Plant-Based Antioxidants in Animal Diets and Meat Products: A Review. Foods 2023; 12:foods12061334. [PMID: 36981260 PMCID: PMC10047951 DOI: 10.3390/foods12061334] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The perceived level of risk associated with a food product can influence purchase and consumption decisions. Thus, current trends in food safety address an issue of general interest-the identification of healthy and economical alternatives to synthetic antioxidants that may have harmful effects on human health. Still, the processors' target is to increase the shelf life of food products using preserving substances. Natural antioxidants can be extracted and used in the food industry from different plants, such as blueberry, broccoli, chokeberry, cinnamon, ginger, olives, oregano, etc. The identification of the main natural antioxidant types that have been used in the food industry is very important in order to provide a comprehensive analysis of the researched topic. In this regard, the aim of this paper was to illustrate the positive aspects of using natural antioxidants with preservative roles in meat products, while, at the same time, highlighting the potential risks induced by these compounds. All of those aspects are correlated with the impact of sensorial attributes and the improvement of the nutritional value of meat products.
Collapse
Affiliation(s)
- Carmen Daniela Petcu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| | - Oana Diana Mihai
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| | - Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| | - Elena Narcisa Pogurschi
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Blvd., Marasti, 011464 Bucharest, Romania
| | - Manuella Militaru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mânăștur St., 400372 Cluj-Napoca, Romania
| | - Oana-Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd., Splaiul Independentei, 050097 Bucharest, Romania
| |
Collapse
|
2
|
Effect of Different Fat and Moringa oleifera Leaf Meal (MOLM) Inclusion Levels on Proximate Composition, Fatty Acid Profile, and Lipid Oxidation of Chicken Droëwors. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:6736935. [PMID: 36111251 PMCID: PMC9470374 DOI: 10.1155/2022/6736935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
We present the first report on the effect of graded levels of Moringa oleifera leaf meal (MOLM) (0, 0.25, and 0.5%) and fat (0, 10, and 15%) on fatty acid profile, lipid oxidation, and proximate composition of chicken droëwors. On triplicate samples of all treatments, proximate analysis was done, the total lipid was quantitatively extracted using chloroform and methanol in a ratio of 2 : 1, fatty acid profiles were determined, and thiobarbituric acid reactive substances (TBARS) were measured. The present study showed that droëwors manufactured with 0% fat inclusion had less fat and more protein than those made with 10% and 15% fat. All treatments contained a greater percentage of C18:1c9 (oleic) (30.95 to 32.65%) acid than other fatty acids and a higher proportion of unsaturated fatty acids than saturated. T9 (15% fat, 0.5% MOLM) had significantly (
) higher PUFAs than T1 (0% fat, 0% MOLM) and T4 (10% fat, 0% MOLM). Treatments with 0.5% MOLM had significantly lower TBARS values after drying (0.01-0.07 mg MDA/kg) than treatments with 0% and 2.5% MOLM (0.05–0.15 mg MDA/kg). Therefore, MOLM inclusion at 0.25 and 0.5% effectively decreased TBARS of chicken droëwors with up to 15% fat inclusion after 72 h of drying and 168 h of storage and is a potentially good source of natural antioxidants for this traditional dried sausage product.
Collapse
|
3
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
4
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
5
|
Mazhangara IR, Jaja IF, Chivandi E. Effect of Teucrium trifidum powder on some meat quality attributes of chevon under refrigerated storage. Heliyon 2022; 8:e09376. [PMID: 35600446 PMCID: PMC9118117 DOI: 10.1016/j.heliyon.2022.e09376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
We investigated the effect of T. trifidum on the shelf-life and quality of chevon kept for eight days at 4 ± 1 °C in polyethylene pouches. Different powder levels of T. trifidum (0.5 %, 1.0 %, and 2.0 % w/w) and 0.02 % w/w butylated hydroxytoluene (BHT) were used to treat the chevon samples. The T. trifidum and BHT treated chevon was compared to untreated chevon (control). Colour, ferric reducing antioxidant power (FRAP), lactic acid bacteria (LAB) counts, oxidative stability, pH and total viable counts (TVC) were all measured while the samples were in storage. Treatment demonstrated a significant (P < 0.05) influence on pH with chevon preserved with T. trifidum powder (2 %), having a lower pH than the chevon preserved with BHT and the control. The colour of chevon (lightness, redness and yellowness) was shown to differ (P < 0.05) across treatments. The redness (a∗) and yellowness (b∗) reduced as the refrigeration period lengthened (P < 0.05). In contrast, the lightness (L∗) of chevon intensified as the storage period lengthened (P < 0.05). The TBARS considerably reduced (P < 0.05) in samples subjected to T. trifidum powder and BHT, with respect to the untreated sample. There was an increase in the FRAP activity as the amount of T. trifidum powder (P < 0.05) was increased. The FRAP values were shown to be inversely related to the TBARS values, implying that the addition of T. trifidum powder could slow lipid oxidation. In comparison with the control, T. trifidum powder inhibited bacterial growth during storage as measured by a significant reduction in TVC and LAB counts (P < 0.05). It is concluded that, T. trifidum powder has potent antioxidant and antimicrobial activity in refrigerated ground chevon thus can be potentially used to preserve the quality of refrigerator stored ground chevon.
Collapse
|
6
|
Preparation and Characterization of Yellow Peach Peel/Sodium Alginate/Glycerol Antioxidant Film Applicable for Oil Package. Polymers (Basel) 2022; 14:polym14091693. [PMID: 35566863 PMCID: PMC9105129 DOI: 10.3390/polym14091693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
This work was dedicated to improving the utilization rate of yellow peach peel (YPP), with the addition of sodium alginate (SA) and glycerol (G) to prepare a biodegradable antioxidant film. First, the formulation of the film was optimized via response surface methodology (RSM) combined with the multi-index comprehensive evaluation method, considering physical properties including tensile strength (TS), elongation at break (E%), water solution (WS) and light transmittance (T). The RSM results displayed the best process condition was 2.50% of YPP, 0.60% SA and 0.80% of G (based on water) and compared with pure YPP film and YPP-SA film, the optimized (YPP-SA-G) film presented excellent properties with TS of 21.52 MPa, E of 24.8%, T of 21.56% on 600 nm, and WS of 41.61%, the comprehensive evaluation score of the film was 0.700. Furthermore, the films were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR analysis showed the main interaction of hydrogen between YPP, SA and G make the film has excellent compatibility, and the SEM images displayed that the film was dense and compacted with a little roughness. In addition, the optimized film had excellent thermal stability, suggested by TGA and XRD showed that the film’s crystal structure has been changed significantly when the SA and G were mixed in. The TPC and the ability of DPPH radical scavenging of the YPP-SA-G film was 17.68 mg·g−1 of GAE and 18.65%, then potential packaging applications were evaluated using soybean oil and the YPP-SA-G antioxidant film significantly decreased peroxide value (POV) to delay oil oxidation during storage. Therefore, the YPP-SA-G film is expected to provide a new theoretical basis for the use of food processing by-products and the packaging industry.
Collapse
|
7
|
Manessis G, Kalogianni AI, Lazou T, Moschovas M, Bossis I, Gelasakis AI. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants (Basel) 2020; 9:E1215. [PMID: 33276503 PMCID: PMC7761563 DOI: 10.3390/antiox9121215] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/19/2023] Open
Abstract
The global meat industry is constantly evolving due to changes in consumer preferences, concerns and lifestyles, as well as monetary, geographical, political, cultural and religious factors. Part of this evolution is the introduction of synthetic antioxidants to increase meat and meat products' shelf-life, and reduce meat spoilage due to lipid and protein oxidation. The public perception that natural compounds are safer and healthier per se has motivated the meat industry to replace synthetic antioxidants with plant-derived ones in meat systems. Despite several promising results from in vitro and in situ studies, the effectiveness of plant-derived antioxidants against lipid and protein oxidation has not been fully documented. Moreover, the utility, usability, marketability and potential health benefits of natural antioxidants are not yet fully proven. The present review aims to (i) describe the major chemical groups of plant-derived antioxidants and their courses of action; (ii) present the application of spices, herbs and fruits as antioxidants in meat systems; and (iii) discuss the legislative framework, future trends, challenges and limitations that are expected to shape their acceptance and mass exploitation by the meat industry.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Thomai Lazou
- Laboratory of Hygiene of Foods of Animal Origin-Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marios Moschovas
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.K.); (M.M.)
| |
Collapse
|
8
|
Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties. Food Res Int 2018; 106:1086-1094. [DOI: 10.1016/j.foodres.2017.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 11/19/2022]
|