1
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Ameer A, Cheng Y, Saleem F, Uzma, McKenna A, Richmond A, Gundogdu O, Sloan WT, Javed S, Ijaz UZ. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front Microbiol 2023; 14:1197838. [PMID: 37779716 PMCID: PMC10534011 DOI: 10.3389/fmicb.2023.1197838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Youqi Cheng
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Uzma
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William T. Sloan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Erinle TJ, Boulianne M, Miar Y, Scales R, Adewole D. Red osier dogwood and its use in animal nutrition: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:64-77. [PMID: 37009073 PMCID: PMC10060110 DOI: 10.1016/j.aninu.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.
Collapse
Affiliation(s)
- Taiwo Joseph Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe QC, J2S 2M2, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Robert Scales
- Red Dog Enterprises Ltd., Swan River MB, R0L 1Z0, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| |
Collapse
|
4
|
Dai D, Qi GH, Wang J, Zhang HJ, Qiu K, Wu SG. Intestinal microbiota of layer hens and its association with egg quality and safety. Poult Sci 2022; 101:102008. [PMID: 35841638 PMCID: PMC9289868 DOI: 10.1016/j.psj.2022.102008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
The intestinal microbiota has attracted tremendous attention in the field of the poultry industry due to its critical role in the modulation of nutrient utilization, immune system, and consequently the improvement of the host health and production performance. Accumulating evidence implies intestinal microbiota of laying hens is a potential mediator to improve the prevalent issues in terms of egg quality decline in the late phase of laying production. However, the regulatory effect of intestinal microbiota on egg quality in laying hens remains elusive, which requires consideration of microbial baseline composition and succession during their long lifespans. Notable, although Firmicutes, Bacteroidetes, and Proteobacteria form the vast majority of intestinal microbiota in layer hens, dynamic intestinal microbiota succession occurs throughout all laying periods. In addition to the direct effects on egg safety, intestinal microbiota and its metabolites such as short-chain fatty acids, bile acids, and tryptophan derivatives, are suggested to indirectly modulate egg quality through the microbiota-gut-liver/brain-reproductive tract axis. These findings can extend our understanding of the crosstalk between intestinal microbiota and the host to improve egg quality and safety. This paper reviews the compositions of intestinal microbiota in different physiological stages of laying hens and their effects on egg quality and proposes that intestinal microbiota may become a potential target for modulating egg quality and safety by nutritional strategies in the future.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Ricke SC, Dittoe DK, Tarcin AA, Rothrock MJ. Communicating the Utility of the Microbiome and Bioinformatics to Small Flock Poultry Producers. Poult Sci 2022; 101:101788. [PMID: 35346497 PMCID: PMC9079341 DOI: 10.1016/j.psj.2022.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022] Open
Abstract
The use of “omics” has become widespread across poultry production, from breeding to management to bird health to food safety and everywhere in between. While the conventional poultry industry has become more exposed to the power and utility of “omic” technologies, smaller poultry flock producers typically do not have this same level of experience. Because smaller, nonconventional poultry production is a growing portion of the overall poultry market, it is important that they also have educational access to these research tools and the resultant data. While small flock producers are dedicated and knowledgeable farmers, their knowledge of these newer technologies may be limited at best, and it is the task of academic researchers to communicate the importance of these “omic” tools and how the omic data can improve a variety of different aspects of their operations. This review discusses ways to effectively communicate complex microbiota and microbial genome sequence data to small flock producers and transforming this data into meaningful and applicable information that they can utilize to inform beneficial management decisions.
Collapse
|
6
|
Abstract
Alternative poultry production systems continue to expand as markets for organic and naturally produced poultry meat and egg products increase. However, these production systems represent challenges associated with variable environmental conditions and exposure to foodborne pathogens. Consequently, there is a need to introduce feed additives that can support bird health and performance. There are several candidate feed additives with potential applications in alternative poultry production systems. Prebiotic compounds selectively stimulate the growth of beneficial gastrointestinal microorganisms leading to improved health of the host and limiting the establishment of foodborne pathogens. The shift in the gastrointestinal microbiota and modulation of fermentation can inhibit the establishment of foodborne pathogens such as Campylobacter and Salmonella. Both current and potential applications of prebiotics in alternative poultry production systems will be discussed in this review. Different sources and types of prebiotics that could be developed for alternative poultry production will also be explored.
Collapse
Affiliation(s)
- Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI.
| |
Collapse
|
7
|
Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol 2021; 12:51. [PMID: 33866972 PMCID: PMC8054369 DOI: 10.1186/s40104-021-00576-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine's integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
8
|
Zheng M, Mao P, Tian X, Meng L. Effects of grazing mixed-grass pastures on growth performance, immune responses, and intestinal microbiota in free-range Beijing-you chickens. Poult Sci 2020; 100:1049-1058. [PMID: 33518063 PMCID: PMC7858154 DOI: 10.1016/j.psj.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest in free-range poultry with the increasing focus on food safety and animal welfare. This study was conducted to evaluate the effects of grazing mixed-grass pastures on growth performance, immune responses, and intestinal microbiota in free-range laying chickens. Ten-week-old female Beijing-you chickens were blocked by the BW and randomly assigned to 3 free-range systems in poplar plantations for 120 d: forage-removed paddocks with a high stocking density of 5 m2/hen (control [CK]); mixed-grass pastures with a low stocking density of 6 m2/hen ;or mixed-grass pastures with a high stocking density of 5 m2/hen. Intestinal microbial community analysis was performed by 16S rRNA gene sequencing using Illumina MiSeq. The results revealed that no differences (P > 0.05) were found between the 3 raising systems for the BW and ADG. Chickens grazing mixed-grass pastures exhibited decreased (P > 0.05) mortality and improved immune responses as evidenced by increased T-lymphocyte proliferation (P > 0.05) and immunoglobulin A (P > 0.05) and immunoglobulin M concentrations (P < 0.05) compared with those raised in forage-removed paddocks. Metagenomic analysis indicated that grazing mixed-grass pastures regulated the intestinal microbiota by increasing the prevalence of beneficial bacteria, such as Lactobacillus, Bacteroides, and Faecalibacterium, and reducing potentially pathogenic bacteria population, such as the Rikenellaceae_RC9_gut_group compared with the CK. Therefore, this study indicated that grazing mixed-grass pastures could positively influence intestinal microbiota that may contribute to the overall growth and immunity of free-range chickens and that a low stocking density of 6 m2/hen was optimal to Beijing-you chickens grazing mixed-grass pastures.
Collapse
Affiliation(s)
- Mingli Zheng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoxia Tian
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Zhang J, Cai K, Mishra R, Jha R. In ovo supplementation of chitooligosaccharide and chlorella polysaccharide affects cecal microbial community, metabolic pathways, and fermentation metabolites in broiler chickens. Poult Sci 2020; 99:4776-4785. [PMID: 32988512 PMCID: PMC7598314 DOI: 10.1016/j.psj.2020.06.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
The chitooligosaccharide (COS) and chlorella polysaccharide (CPS) have been used as feed supplements in the poultry industry for improving growth performance and immunity. However, the benefits of these prebiotics on the gut health of chickens when used in early nutrition are unknown. This study evaluated the effects of in ovo feeding of COS and CPS on the cecal microbiome, metabolic pathways, and fermentation metabolites of chickens. A total of 240 fertile eggs were divided into 6 groups (n = 4; 10 eggs/replicate): 1) no-injection control, 2) normal saline control, 3) COS 5 mg, 4) COS 20 mg, 5) CPS 5 mg, and 6) CPS 20 mg injection. On day 12.5 of egg incubation, test substrate was injected into the amniotic sac of eggs in respective treatments. The hatched chicks were raised for 21 D under standard husbandry practices. On day 3 and 21, cecal digesta were collected to determine microbiota by shotgun metagenomic sequencing and short-chain fatty acids by gas chromatography. The cecal microbial composition was not different (P > 0.05) among the treatment groups on day 3 but was different (P < 0.05) on day 21. At the species level, the polysaccharide-utilizing bacteria including Lactobacillus johnsonii, Bacteroides coprocola, and Bacteroides salanitronis were higher in the COS group, whereas the relative abundance of some opportunistic pathogenic bacteria were lower than those in the CPS and control groups. At the functional level, the pathways of gluconeogenesis, L-isoleucine degradation, L-histidine biosynthesis, and fatty acid biosynthesis were enriched in the COS group. In addition, propionic acid content was higher (P < 0.05) in the COS group. A network based on the correlation between the COS and other factors was constructed to illuminate the potential action mechanism of the COS in chicken early nutrition. In conclusion, in ovo inoculation of COS 5 mg showed positive effects on the cecal microbiota, metabolic pathways, and propionic acid, thus can be used as in ovo feeding to modulate the gut health of chickens.
Collapse
Affiliation(s)
- Jiachao Zhang
- College of Food Science and Technology, Hainan University, Haikou, Hainan Province 570228, China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Kun Cai
- College of Food Science and Technology, Hainan University, Haikou, Hainan Province 570228, China
| | - Rajeev Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult Sci 2020; 99:670-677. [PMID: 32029153 PMCID: PMC7587714 DOI: 10.1016/j.psj.2019.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.
Collapse
Affiliation(s)
- Steven C Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701.
| | - Sang In Lee
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701
| | - Sun Ae Kim
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Si Hong Park
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Zhaohao Shi
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| |
Collapse
|
11
|
Moote PE, Zaytsoff SJM, Ortega Polo R, Abbott DW, Uwiera RRE, Inglis GD. Application of culturomics to characterize diverse anaerobic bacteria from the gastrointestinal tract of broiler chickens in relation to environmental reservoirs. Can J Microbiol 2020; 66:288-302. [PMID: 31986063 DOI: 10.1139/cjm-2019-0469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Characterization of the microbiota of chickens is of current interest. The goals of the current study were to apply anaerobic isolation methods to comprehensively isolate and identify bacteria from the gastrointestinal tract of chickens and their environment. Bacterial communities within the drinking water were dominated by Escherichia, whereas communities in litter were more representative of the cecum. The crop and small intestine (jejunum and ileum) were dominated by Lactobacillus and Enterococcus spp., and the cecum was dominated by Proteus spp. The collection of bacteria isolated was dominated by Enterococcus spp., Escherichia/Shigella spp., Lactobacillus spp., and Proteus spp.; however, many rare taxa were observed. These included members of the Clostridiales and Clostridium spp., which were commonly isolated from the ileum and cecum. Bacteria isolated by enrichment and direct plating differed. The selective de Man-Rogosa-Sharpe agar was commonly associated with the isolation of Lactobacillus spp. and yielded the lowest diversity of all methods utilized. Increased diversity and frequency of Clostridium spp. was observed in enrichments of blood and mucus or by plating on Columbia agar supplemented with 10% blood and gentamicin. The bacteria isolated from this study provide source material for genomic and functional studies in chicken hosts.
Collapse
Affiliation(s)
- Paul E Moote
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada.,Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Sarah J M Zaytsoff
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada.,Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Rodrigo Ortega Polo
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - G Douglas Inglis
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
12
|
Ricke SC, Rothrock MJ. Gastrointestinal microbiomes of broilers and layer hens in alternative production systems. Poult Sci 2020; 99:660-669. [PMID: 32029152 PMCID: PMC7587794 DOI: 10.1016/j.psj.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
Alternative poultry production systems consisting of free-range or pasture flock raised poultry continues to increase in popularity. Based on the perceived benefits of poultry products generated from these alternative poultry production systems, they have commercial appeal to consumers. Several factors impact the health and well being of birds raised and maintained in these types of production systems. Exposure to foodborne pathogens and potential for colonization in the gastrointestinal tract has to be considered with these types of production systems. The gastrointestinal tract microbial composition and function of birds grown and maintained in alternative poultry operations may differ depending on diets, breed, and age of bird. Dietary variety and foraging behavior are potential influential factors on bird nutrition. The gastrointestinal tract microbiomes of birds raised under alternative poultry production systems are now being characterized with next-generation sequencing to identify individual microbial members and assess the impact of different factors on the diversity of microbial populations. In this review, the gastrointestinal tract microbiota contributions to free-range or pasture-raised broiler and egg layer production systems, subsequent applications, and potential future directions will be discussed.
Collapse
Affiliation(s)
- Steven C Ricke
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, AR 72704.
| | - Michael J Rothrock
- Egg Safety & Quality Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens 30605, GA
| |
Collapse
|
13
|
Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bielke LR. Evaluation of the impact of in ovo administered bacteria on microbiome of chicks through 10 days of age. Poult Sci 2020; 98:5949-5960. [PMID: 31298298 DOI: 10.3382/ps/pez388] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Initial inoculation and colonization of the chicken gastrointestinal tract (GIT) by microbiota have been suggested to have a major influence on the growth performance and health of birds. Commercial practices in chicken production may alter or delay microbial colonization by pioneer colonizing bacteria that can have an impact on the development and maturation of the GIT and intestinal microflora. The objective of this study was to compare the impact of apathogenic Gram-negative isolates or lactic acid bacteria (LAB) as pioneer colonizers on the microbiome at the day of hatch (DOH) and evaluate the influence through 10 D of age on ceca. At 18 embryonic days (E), the amnion of embryos was inoculated with either saline (S), approximately 102 CFU of LAB (L), Citrobacter freundii (C), or Citrobacter species (C2). Once DNA was isolated from mucosal and digesta contents, samples underwent 2 × 300 paired-end Illumina MiSeq library preparation for microbiome analysis. An increased abundance of Lactobacillaceae family and Lactobacillus genus was observed in the L group at DOH (P < 0.05), whereas the abundance of Enterococcaceae and Enterococcus was numerically decreased. While Lactobacillus salivarius was one of the pioneer colonizers in the L group at 18E, the population decreased by 10 D (39.59 to 0.09%) and replaced with a population of undefined Lactobacillus (10.36%) and Lactobacillus reuteri (3.63%). Results suggest that L treatment may have accelerated a mature microbiota. Enterobacteriaceae was the dominant family (57.44%) in C group at DOH (P < 0.05). The C2 group only showed some abundance of the C2 species (7.92%) at DOH but had the highest overall abundance of undefined Lactobacillus in the ceca by 10 D (25.28%). Taken together, different isolates provided in ovo can have an impact on the initial microbiome of the GIT, and some of these differences in ceca remain notable at 10 D.
Collapse
Affiliation(s)
- K M Wilson
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - D R Rodrigues
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - W N Briggs
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - A F Duff
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - K M Chasser
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| | - L R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH 44691
| |
Collapse
|
14
|
Zheng M, Mao P, Tian X, Meng L. Growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken on diets with inclusion of fresh chicory forage. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1643794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mingli Zheng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Peichun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoxia Tian
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
15
|
|
16
|
Shi Z, Rothrock MJ, Ricke SC. Applications of Microbiome Analyses in Alternative Poultry Broiler Production Systems. Front Vet Sci 2019; 6:157. [PMID: 31179291 PMCID: PMC6543280 DOI: 10.3389/fvets.2019.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
While most of the focus on poultry microbiome research has been directed toward conventional poultry production, there is increasing interest in characterizing microbial populations originating from alternative or non-conventional poultry production. This is in part due to the growing general popularity in locally produced foods and more specifically the attractiveness of free-range or pasture raised poultry. Most of the focus of microbiome characterization in pasture flock birds has been on live bird production, primarily on the gastrointestinal tract. Interest in environmental impacts on production responses and management strategies have been key factors for comparative microbiome studies. This has important ramifications since these birds are not only raised under different conditions, but the grower cycle can be longer and in some cases slower growing breeds used. The impact of different feed additives is also of interest with some microbiome-based studies having examined the effect of feeding these additives to birds grown under pasture flock conditions. In the future, microbiome research approaches offer unique opportunities to develop better live bird management strategies and design optimal feed additive approaches for pasture flock poultry production systems.
Collapse
Affiliation(s)
- Zhaohao Shi
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Steven C Ricke
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
17
|
Zheng M, Mao P, Tian X, Guo Q, Meng L. Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken. Poult Sci 2019; 98:2250-2259. [DOI: 10.3382/ps/pey550] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023] Open
|
18
|
Abstract
The domestic chicken is the cornerstone of animal agriculture worldwide, with a flock population exceeding 40 billion birds/year. It serves as an economically valuable source of protein globally. The microbiome of poultry has important effects on chicken growth, feed conversion, immune status, and pathogen resistance. The aim of our research was to develop a gnotobiotic chicken model appropriate for the study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse sets of gut bacteria. Therefore, besides the use of this model to study mechanisms of gut microbiota interactions in the chicken gut, it could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota. A gnotobiotic Gallus gallus (chicken) model was developed to study the dynamics of intestinal microflora from hatching to 18 days of age employing metagenomics. Intestinal samples were collected from a local population of feral chickens and administered orally to germfree 3-day-old chicks. Animals were euthanized on days 9 and 18 postinoculation, and intestinal samples were collected and subjected to metagenomic analysis. On day 18, the five most prevalent phyla were Bacteroidetes (43.03 ± 3.19%), Firmicutes (38.51 ± 2.67%), Actinobacteria (6.77 ± 0.7%), Proteobacteria (6.38 ± 0.7%), and Spirochaetes (2.71 ± 0.55%). Principal-coordinate analysis showed that the day 18 variables clustered more closely than the day 9 variables, suggesting that the microbial communities had changed temporally. The Morista-Horn index values ranged from 0.7 to 1, indicating that the communities in the inoculum and in the day 9 and day 18 samples were more similar than dissimilar. The predicted functional profiles of the microbiomes of the inoculum and the day 9 and day 18 samples were also similar (values of 0.98 to 1). These results indicate that the gnotobiotic chicks stably maintained the phylogenetic diversity and predicted metabolic functionality of the inoculum community. IMPORTANCE The domestic chicken is the cornerstone of animal agriculture worldwide, with a flock population exceeding 40 billion birds/year. It serves as an economically valuable source of protein globally. The microbiome of poultry has important effects on chicken growth, feed conversion, immune status, and pathogen resistance. The aim of our research was to develop a gnotobiotic chicken model appropriate for the study chicken gut microbiota function. Our experimental model shows that young germfree chicks are able to colonize diverse sets of gut bacteria. Therefore, besides the use of this model to study mechanisms of gut microbiota interactions in the chicken gut, it could be also used for applied aspects such as determining the safety and efficacy of new probiotic strains derived from chicken gut microbiota.
Collapse
|
19
|
Kim SA, Jang MJ, Kim SY, Yang Y, Pavlidis HO, Ricke SC. Potential for Prebiotics as Feed Additives to Limit Foodborne Campylobacter Establishment in the Poultry Gastrointestinal Tract. Front Microbiol 2019; 10:91. [PMID: 30804900 PMCID: PMC6371025 DOI: 10.3389/fmicb.2019.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Campylobacter as an inhabitant of the poultry gastrointestinal tract has proven to be difficult to reduce with most feed additives. In-feed antibiotics have been taken out of poultry diets due to the negative reactions of consumers along with concerns regarding the generation of antibiotic resistant bacteria. Consequently, interest in alternative feed supplements to antibiotics has grown. One of these alternatives, prebiotics, has been examined as a potential animal and poultry feed additive. Prebiotics are non-digestible ingredients by host enzymes that enhance growth of indigenous gastrointestinal bacteria that elicit metabolic characteristics considered beneficial to the host and depending on the type of metabolite, antagonistic to establishment of pathogens. There are several carbohydrate polymers that qualify as prebiotics and have been fed to poultry. These include mannan-oligosaccharides and fructooligosaccharides as the most common ones marketed commercially that have been used as feed supplements in poultry. More recently, several other non-digestible oligosaccharides have also been identified as possessing prebiotic properties when implemented as feed supplements. While there is evidence that prebiotics may be effective in poultry and limit establishment of foodborne pathogens such as Salmonella in the gastrointestinal tract, less is known about their impact on Campylobacter. This review will focus on the potential of prebiotics to limit establishment of Campylobacter in the poultry gastrointestinal tract and future research directions.
Collapse
Affiliation(s)
- Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Min Ji Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Seo Young Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Steven C Ricke
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
20
|
Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, Liang JB. Metagenomics analysis reveals significant modulation of cecal microbiota of broilers fed palm kernel expeller diets. Poult Sci 2019; 98:56-68. [DOI: 10.3382/ps/pey366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
|
21
|
Teng PY, Kim WK. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front Vet Sci 2018; 5:245. [PMID: 30425993 PMCID: PMC6218609 DOI: 10.3389/fvets.2018.00245] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, prebiotics have been considered as potential alternatives to antibiotics. Mechanisms by which prebiotics modulate the ecosystem of the gut include alternation of the intestinal microbiota, improvement of the epithelium, and stimulation of the immune system. It is suggested that the administration of prebiotics not only influences these aspects but also regulates the interaction between the host and the intestinal microbiota comprehensively. In this review, we will discuss how each prebiotic ameliorates the ecosystem by direct or indirect mechanisms. Emphasis will be placed on the effects of prebiotics, including mannan oligosaccharides, β-glucans, and fructans, on the interaction between the intestinal microbiota, gut integrity, and the immunity of broilers. We will highlight how the prebiotics modulate microbial community and regulate production of cytokines and antibodies, improving gut development and the overall broiler health. Understanding the cross talk between prebiotics and the intestinal ecosystem may provide us with novel insights and strategies for preventing pathogen invasion and improving health and productivity of broilers. However, further studies need to be conducted to identify the appropriate dosages and better resources of prebiotics for refinement of administration, as well as to elucidate the unknown mechanisms of action.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Micciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC. A Review of Prebiotics Against Salmonella in Poultry: Current and Future Potential for Microbiome Research Applications. Front Vet Sci 2018; 5:191. [PMID: 30159318 PMCID: PMC6104193 DOI: 10.3389/fvets.2018.00191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Prebiotics are typically fermentable feed additives that can directly or indirectly support a healthy intestinal microbiota. Prebiotics have gained increasing attention in the poultry industry as wariness toward antibiotic use has grown in the face of foodborne pathogen drug resistance. Their potential as feed additives to improve growth, promote beneficial gastrointestinal microbiota, and reduce human-associated pathogens, has been well documented. However, their mechanisms remain relatively unknown. Prebiotics increasing short chain fatty acid (SCFA) production in the cecum have long since been considered a potential source for pathogen reduction. It has been previously concluded that prebiotics can improve the safety of poultry products by promoting the overall health and well-being of the bird as well as provide for an intestinal environment that is unfavorable for foodborne pathogens such as Salmonella. To better understand the precise benefit conferred by several prebiotics, "omic" technologies have been suggested and utilized. The data acquired from emerging technologies of microbiomics and metabolomics may be able to generate a more comprehensive detailed understanding of the microbiota and metabolome in the poultry gastrointestinal tract. This understanding, in turn, may allow for improved administration and optimization of prebiotics to prevent foodborne illness as well as elucidate unknown mechanisms of prebiotic actions. This review explores the use of prebiotics in poultry, their impact on gut Salmonella populations, and how utilization of next-generation technologies can elucidate the underlying mechanisms of prebiotics as feed additives.
Collapse
Affiliation(s)
- Andrew C. Micciche
- Department of Food Science, Center for Food Safety, University of ArkansasFayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug AdministrationJefferson, AR, United States
| | | | | | - Steven C. Ricke
- Department of Food Science, Center for Food Safety, University of ArkansasFayetteville, AR, United States
| |
Collapse
|
23
|
Ye M, Sun L, Yang R, Wang Z, Qi K. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171012. [PMID: 29134097 PMCID: PMC5666280 DOI: 10.1098/rsos.171012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 05/21/2023]
Abstract
The proper culture conditions for producing cellulase of Bacillus amyloliquefaciens S1, isolated from the cecum of goose was optimized by single-factor experiment combined with orthogonal test. The properties of the cellulase were investigated by DNS method. The appropriate doses of B. amyloliquefaciens S1 were obtained by adding them to goose feed. It indicated that the suitable culture conditions of producing cellulase were the culture temperature of 37°C, the initial pH of 7.0, the incubation time of 72 h and the loaded liquid volume of 75 ml per 250 ml. The effects of each factor on producing cellulase by B. amyloliquefaciens S1 were as follows: initial pH > incubation time = culture temperature > loaded liquid volume. The optimum reaction temperature and pH were 50°C and 7.0, respectively. This enzyme is a kind of neutral cellulase that possesses resistance to heat and acidity. It showed high activity to absorbent cotton, soya bean meal and filter paper. By adding different doses of B. amyloliquefaciens S1 to the goose feed, it was found that the egg production, average egg weight, fertilization rate and the hatching rate were promoted both in experiment 1 (1.5 g kg-1) and experiment 2 (3 g kg-1). Also the difference of egg production, fertilization rate and hatching rate between experiment 1 and control group was obvious (p < 0.05), and the average egg weight was significantly increased in experiment 2 (p < 0.05).
Collapse
Affiliation(s)
- Miao Ye
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Linghong Sun
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Ru Yang
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Zaigui Wang
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - KeZong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|