1
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|
2
|
Malyar RM, Wei Q, Hou L, Elsaid SH, Zhang Y, Banuree SAH, Saifullah, Zhou W, Shi F. Fermented bamboo powder activates gut odorant receptors, and promotes intestinal health and growth performance of dwarf yellow-feathered broiler chickens. Poult Sci 2024; 103:103570. [PMID: 38484565 PMCID: PMC10951526 DOI: 10.1016/j.psj.2024.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/24/2024] Open
Abstract
The present study investigated the effects of fermented bamboo powder (FPB) on gut odorant receptors (OR), intestinal health, and growth performance of dwarf yellow-feathered broiler chickens. Six hundred (600) healthy 1-day-old chicks were randomly assigned into 2 groups, with 10 replicates consisting of 30 chicks each. The control group was fed a basal diet. In contrast, the experimental group was fed the basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg FBP for 4 different phases, namely phase I (1-22 d), phase II (23-45 d), phase III (46-60 d), and phase IV (61-77 d), respectively. The first 2 phases were considered pretreatment (0-45 d), and the remaining were experimental (46-77 d) periods. The tissue samples were collected from phase IV. The chickens in the FBP supplementation group exhibited a significant increment in body weight gain, evisceration yield, breast, thigh, and liver weight, while also experiencing a decrease in the FCR (P < 0.05). Furthermore, the villus height, crypt depth, and villus area exhibited significant increases in the FBP group (P < 0.01). Additionally, the secretion levels of gut hormones such as glucagon-like peptide-1, peptide YY, cholecystokinin, and 5-hydroxytryptamine were significantly elevated in the serum, duodenum, jejunum, and ileum tissues in the FBP group (P < 0.05). The results of qRT-PCR indicated that ORs had responsive expression in the gizzard, proventriculus, and small intestine of chickens when fed with the FBP diet (P < 0.05). Notably, the expression of the COR1, COR2, COR4, COR6, COR8, COR9, OR52R1, OR51M1, OR1F2P, OR5AP2, and OR14J1L112 genes was stronger in the small intestines compared to the gizzard and proventriculus. In conclusion, these results suggest that the FPB plays a crucial role in growth performance, activation of ORs, and gut health and development.
Collapse
Affiliation(s)
- Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Veterinary Science Faculty, Nangarhar University, Jalalabad, 2601, Nangarhar, Afghanistan
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Linsong Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shoura Hytham Elsaid
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Saifullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weisheng Zhou
- Research Institute of Global 3E, Kyoto 602-8452, Japan; College of Policy Science, Ritsumeikan University, Osaka 567-8570, Japan
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Chudan S, Kurakawa T, Nishikawa M, Nagai Y, Tabuchi Y, Ikushiro S, Furusawa Y. Beneficial Effects of Dietary Fiber in Young Barley Leaf on Gut Microbiota and Immunity in Mice. Molecules 2024; 29:1897. [PMID: 38675716 PMCID: PMC11054971 DOI: 10.3390/molecules29081897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The health benefits of young barley leaves, rich in dietary fiber, have been studied for several decades; however, their beneficial effects on the intestinal microenvironment remain to be elucidated. To investigate the effects of young barley leaf-derived dietary fiber (YB) on the gut microbiota and immunity, mice were fed an AIN-93G diet containing cellulose or YB and subjected to subsequent analysis. The population of MHC-II-positive conventional dendritic cells (cDCs) and CD86 expression in the cDCs of Peyer's patches were elevated in the YB-fed mice. MHC-II and CD86 expression was also elevated in the bone marrow-derived DCs treated with YB. 16S-based metagenomic analysis revealed that the gut microbiota composition was markedly altered by YB feeding. Among the gut microbiota, Lachnospiraceae, mainly comprising butyrate-producing NK4A136 spp., were overrepresented in the YB-fed mice. In fact, fecal butyrate concentration was also augmented in the YB-fed mice, which coincided with increased retinaldehyde dehydrogenase (RALDH) activity in the CD103+ cDCs of the mesenteric lymph nodes. Consistent with elevated RALDH activity, the population of colonic IgA+ plasma cells was higher in the YB-fed mice than in the parental control mice. In conclusion, YB has beneficial effects on the gut microbiota and intestinal immune system.
Collapse
Affiliation(s)
- Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan (S.I.)
| | - Takuto Kurakawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan (S.I.)
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan (S.I.)
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan (S.I.)
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Effects of micronized bamboo powder on growth performance, serum biochemical indexes, cecal chyme microflora and metabolism of broilers aged 1-22 days. Trop Anim Health Prod 2022; 54:166. [PMID: 35437649 PMCID: PMC9015971 DOI: 10.1007/s11250-022-03172-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/07/2022] [Indexed: 10/29/2022]
Abstract
Adding insoluble fiber to diet of broilers has been reported to improve intestinal health and promote growth performance. Bamboo powder is a cheap raw material with rich insoluble fiber. This study aims to explore the effects of feeding micronized bamboo powder (MBP) on growth performance, serum biochemical indexes, intestinal microflora, and metabolism of broilers. A total of 1440 1-day-old slow-growing Ephedra chickens were randomly divided into three groups considering gender and body weight: (1) Group D: feeding with basal diet without antibiotics; (2) Group E: feeding with basal diet supplemented with 5% rice bran (RB); (3) Group F: feeding with basal diet supplemented with 1% MBP. Each group involved 8 replicates feeding for 22 days, with 60 chickens per replicate. Various indexes were detected. For the growth performance, the weight gain and feed consumption ratio (G: F) of Group F supplemented with MBP is 0.57 ± 0.04, which is significantly higher than that of E group supplemented with RB (0.52 ± 0.01, P < 0.05). For the serum biochemical indexes, the glutathione peroxidase activity in Group F is significantly higher than that of Group D, while the malondialdehyde content is significantly lower than that of Group D and Group E (P < 0.05 for all). The fresh cecal chyme is taken for determination. In Group F, the α diversity index Faith_pd is significantly lower in Group F than that of Group D. The microorganism species in cecal chyme of Group F and Group E are also different. The metabolic pathways of Group F, mainly in fatty acid metabolism, amino acid metabolism and intestinal immune IgA production, were different from those of Group D and Group E. Adding 1% MBP to broiler diet can enhance the anti-oxidant capacity, improve chyme microflora, regulate the metabolism pathways responsible for intestinal fatty acids, amino acids, and immunity.
Collapse
|
5
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
6
|
Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol 2021; 12:51. [PMID: 33866972 PMCID: PMC8054369 DOI: 10.1186/s40104-021-00576-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine's integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
7
|
Sozcu A, Ipek A. The effects of lignocellulose supplementation on laying performance, egg quality parameters, aerobic bacterial load of eggshell, serum biochemical parameters, and jejunal histomorphological traits of laying hens. Poult Sci 2020; 99:3179-3187. [PMID: 32475454 PMCID: PMC7597654 DOI: 10.1016/j.psj.2020.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 11/26/2022] Open
Abstract
This study was performed to investigate the effects of lignocellulose supplementation (LS) on performance parameters, egg quality, aerobic bacterial load of eggshell, serum biochemical parameters, and jejunal histomorphological traits of laying hens between 18 and 38 wk of age. A total of 640 pullets at 16 wk of age were allotted to 4 treatment groups as 0 kg (control, CONT), 0.5 kg, 1 kg, and 2 kg LS per ton of feed. Body weight (BW), daily feed intake, egg production (EP), egg weight (EW), and efficiency of feed utilization (EF) were determined as the mean of each 3-wk period between 18 and 38 wk of age. Laying hens in the 1 kg LS group had a higher BW mean (1632.1 g, P < 0.001). The highest mean value of EP and EW were observed in 1 kg LS group (81.8% and 57.3 g, respectively), whereas the lowest values were found in the 2 kg LS group (78.6% and 54.4 g, respectively, P < 0.001). The mean of EF was the lowest in the 1 kg LS group (2.72, P < 0.001). There was a decline in eggshell breaking strength and eggshell thickness in the 2 kg LS, when compared with the 0.5 and 1 kg LS groups (P < 0.001). The total aerobic bacterial load of the eggshell was the lowest in the 1 kg LS group (4.7 log10 cfu/mL). The level of aspartate amino transferase and alanine amino transferase showed an increment in both the CONT and 2 kg LS groups (P < 0.001). The high level of LS (2 kg per ton of feed) caused a decline in the levels of IgY, IgA and IgM, when compared to the 0.5 and 1 kg LS groups (P < 0.001). Laying hens in 0.5 and 1 kg LS groups had longer villus height (1335.9 μm) in the jejunum than the others (P < 0.001). These findings showed that the 1 kg LS per ton of feed improved EP and EW, eggshell quality, immunoglobulin levels and intestinal morphology, and decreased the total aerobic bacterial load.
Collapse
Affiliation(s)
- A Sozcu
- Odemis Vocational High School, Ege University, Izmir, Turkey.
| | - A Ipek
- Department of Animal Science, Faculty of Agriculture, Uludag University, Bursa, Turkey
| |
Collapse
|
8
|
Sozcu A. Growth performance, pH value of gizzard, hepatic enzyme activity, immunologic indicators, intestinal histomorphology, and cecal microflora of broilers fed diets supplemented with processed lignocellulose. Poult Sci 2020; 98:6880-6887. [PMID: 31392325 PMCID: PMC8914004 DOI: 10.3382/ps/pez449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
This study was performed to investigate the hypothesis that supplementation of processed lignocellulose (PL) in the diets of broilers has a positive effect on growing performance, pH value of gizzard, hepatic enzyme activity, immunologic indicators, histomorphological character of small intestine, and cecal microflora populations. A total of 720 one-day-old Ross 308 broiler chicks were allotted to 4 treatment groups and fed maize−soybean meal based diets. The basal diet was supplemented with PL with an amount of 0 kg (control), 0.5 kg, 1 kg, and 2 kg per ton feed. Growing performance parameters, were determined weekly until 35 D of age. Blood samples for enzyme activities and immunoglobulins, jejunum and cecum samples for histomorphological characters for villus growth, and microbial population were collected from 12 broilers from each group. At 35 D of age, body weight of broilers supplemented with 1 kg of PL was found to be the highest with a value of 2305.0 g, when compared to the broilers supplemented with control, 0,5 and 2 kg of PL groups (2154.0, 2201.0, and 2141.7 g, respectively, P = 0.001). An increased activity of aspartate amino transferase (AST) was observed in the control and 1 kg PL supplementation groups (633.6 and 597.4 IU/L, respectively), whereas alkaline phosphatase (ALP) activity was the highest in the control group (5404 IU/L, P < 0.05). Broilers in the control group had the lowest level of IgY and IgA (122.2 and 25.8 mg/dL, respectively, P < 0.05). Villus height increased by 22.0%, 40.7%, and 34.8% in 0.5, 1, and 2 kg PL supplementation groups, respectively, when compared to the control (P < 0.001). The processed lignocellulose supplemented as 1 kg of PL decreased the average count of Staphylococcaceae, E. coli, and Enterobacteriaceae, whereas it increased the population of Lactobacillus spp. in the cecum (P < 0.05). These data indicate that the supplementation of processed lignocellulose had positive effects for performance via changes in hepatic enzyme activities, immunoglobulin levels, villus growth in jejunum, and microflora in cecum.
Collapse
Affiliation(s)
- A Sozcu
- Ödemiş Vocational High School, Ege University, 35750 Ödemiş, İzmir, Turkey
| |
Collapse
|
9
|
|
10
|
Hussein SM, Frankel TL. Effect of Varying Proportions of Lignin and Cellulose Supplements on Immune Function and Lymphoid Organs of Layer Poultry ( Gallus gallus). J Poult Sci 2019; 56:71-77. [PMID: 32055199 PMCID: PMC6993883 DOI: 10.2141/jpsa.0180032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/06/2018] [Indexed: 12/01/2022] Open
Abstract
To determine the benefits of different types or proportions of insoluble fiber components on growth and immunity, 4-week-old commercial layer pullets were fed supplements containing different proportions of purified lignin and cellulose or a commercial lignocellulose supplement. The 64 Hy-Line Brown pullets were provided basal diets supplemented with 1 g fiber per 100 g diet. The supplements included a commercial lignocellulose, Arbocel® RC fine (group A) with cellulose to lignin ratio of approximately 3:1, cellulose (group Ce), a 3:1 mixture of cellulose: lignin (group Ce3Lig1), and a 2:1 mixture of cellulose: lignin (group Ce2Lig1). After 3 weeks, innate immune function was measured in terms of heterophil phagocytosis and oxidative burst (n=8). After 4 weeks, ex vivo stimulated lymphocyte proliferation was determined for assessment of cell-mediated immune function (n=7). All pullets were killed at 9 weeks of age and lymphoid organs were weighed (n=16) and small intestinal Peyer's patches (PP) were measured (n=8). Pullets in both A and Ce3Lig1 groups had heavier (P<0.05) body and bursa of Fabricius weights. The number of PP in group A was higher (P<0.05) than in group Ce. The percentage of heterophil phagocytosis in A and Ce3Lig1 groups were higher (P<0.05) than in group Ce, and oxidative burst of group A was higher (P<0.05) than that of group Ce. Addition of 1% Arbocel or 1% Ce3Lig1 to the diet of layer pullets from 4 to 9 weeks of age significantly improved their growth and innate immune function compared to group Ce. This suggests that lignin either modulates the effect of cellulose or has specific mechanisms of action in the gut that improves growth and immunity. The proportion of lignin to cellulose may also be important for growth and immune function.
Collapse
Affiliation(s)
- Sherzad M. Hussein
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, 3086, Australia
- University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Theresa L. Frankel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|