1
|
Wang H, Xiao C, Li J, Liang R, Liu Y, Song Z, Buyse J, Zhu L. Dietary Bacillus subtilis benefits meat quality by regulating the muscle fiber type and antioxidant capacity of broilers. Poult Sci 2024; 103:104267. [PMID: 39265519 PMCID: PMC11416596 DOI: 10.1016/j.psj.2024.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The effects of dietary Bacillus subtilis (BS) on the meat quality of broilers were evaluated, with an emphasis on the regulation of muscle fiber types and antioxidant capabilities. One hundred and forty-four Arbor Acres male broilers were divided into 3 treatment groups (0, 300 mg/kg and 500 mg/kg dietary BS) and raised for 35 d. The results suggested that BS improved meat quality by improving the muscular pH, meat color, water holding capacity and shear force. Immunofluorescence staining revealed a positive impact of BS on the muscle fiber transformation in thigh muscles, and the gene/protein expression data from specific muscle fiber types confirmed this finding. BS activated AMP-activated protein kinase (AMPK), silent information regulator 1 and peroxisome proliferator-activated receptor gamma coactivator 1alpha. The postmortem analysis revealed that BS increased the activity of glutathione peroxidase and total antioxidant capacity while decreasing the malondialdehyde content. Additionally, BS increased the gene and protein expression of nuclear factor-like 2 (Nrf2) and activated the Nrf2 signaling pathway, including its downstream factors, such as heme oxygenase-1, catalase, superoxide dismutase and glutathione peroxidase. In conclusion, dietary BS improved meat quality by modifying muscle fiber types and enhancing the antioxidant capacity in broilers.
Collapse
Affiliation(s)
- Hairong Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chuanpi Xiao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiqiang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongrong Liang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhigang Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Johan Buyse
- Division Laboratory of Livestock Physiology, Department of Biosystems, Leuven 3001, Belgium
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
2
|
Jiang L, Bai K, Wang T. Bacillus subtilis fmbj ameliorates lipopolysaccharide-induced intestinal dysfunction in broilers by enhancing the SIRT1/PGC1α pathway. Poult Sci 2024; 103:103964. [PMID: 38936217 PMCID: PMC11259727 DOI: 10.1016/j.psj.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to explore the impact of dietary Bacillus subtilis fmbj (BS) supplementation on acute intestinal dysfunction induced by lipopolysaccharide (LPS) in broilers. One hundred and eighty 1-day-old male Arbor Acres broilers were randomly divided into three treatment groups, each comprising ten replicates of 6 birds. On d 20, LPS-challenged (LPS group and LPS-BS group) and LPS-unchallenged (CON group) broilers received intraperitoneal injections of 1 mg/kg body weight LPS solution and an equivalent volume of sterile saline, respectively. Compared to the CON group, LPS disrupted (P < 0.05) the morphology of the small intestine (jejunum or ileum), exacerbated (P < 0.05) serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, induced (P < 0.05) small intestinal oxidative damage, and altered (P < 0.05) the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum. The LPS-BS group exhibited a tendency towards improvement in small intestinal morphology, serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, small intestinal oxidative damage, and the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum when compared to the LPS group. In conclusion, BS supplementation may confer protection against LPS-induced acute intestinal dysfunction in broilers by enhancing the activation of SIRT1/PGC1α, suggesting its potential as a valuable additive for the poultry industry.
Collapse
Affiliation(s)
- Luyi Jiang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310023, China; Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310023, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Koranteng AAA, Ansah KO, Lamptey VK, Chen C, Mohamed TM, Tang Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals (Basel) 2024; 14:1676. [PMID: 38891723 PMCID: PMC11171082 DOI: 10.3390/ani14111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This study evaluated the effects of Pediococcus pentosaceus GT001 on Salmonella typhimurium (S. typhimurium)-challenged broiler chickens. Two hundred Ross 708 broiler day-old chicks with comparable weight were distributed at random into four treatments with five replicates and ten chicks per replicate. The following were the treatment groups: (B) basal diet (control); (B + S) basal diet and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g; (B + P) basal diet + Pediococcus pentosaceus GT001 at 4.0 × 108 cfu/g; (B + P + S) basal diet + P. pentosaceus GT001 at 4.0 × 108 cfu/g and birds were challenged with S. typhimurium at 1.0 × 107 cfu/g. There was a significant reduction (p < 0.05) in the body weight of the Salmonella-infected birds compared to the other treatment groups. However, the FCRs of the broilers were comparable among the different treatment groups (p > 0.05). The lipid profile and liver function indices measured were significantly enhanced in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) compared to the group that was Salmonella-challenged (p < 0.05) but were similar to those in the control group. The serum antioxidant activities, such as the T-AOC, SOD, CAT, GHS-Px and MDA, were significantly improved in the P. pentosaceus GT001-supplemented groups (B + P and B + P + S) (p < 0.05). The MDA was similar in the B + P and B + P + S groups, but both were significantly lower than the control and the Salmonella groups. The administration of P. pentosaceus GT001 enhanced the lipase and amylase levels in both the serum and intestine of the broilers (p < 0.05). The immunoglobin (IgA, IgG, IgM) and cytokine (IL-10 and IL-6) levels in the serum were significantly higher in the B, B + P and B + P + S treatment groups (p < 0.05). The immune-related organs (bursa and spleen) were significantly influenced in the birds fed with P. pentosaceus GT001. No significant variation was noted among all the dietary treatments in terms of the measured meat quality indices. The small intestinal digesta content of the Salmonella load was below a detectable range after 14 days of infection (p < 0.05). No significant differences were observed among the different treatment groups in terms of the breast pH, drip loss and meat color (p > 0.05). The inclusion of P. pentosaceus GT001 also modified the community structure in the cecum. This indicates that it has health benefits and could be incorporated in the broiler diet.
Collapse
Affiliation(s)
- Gifty Ziema Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Leonardo Abormegah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Peter Asiedu
- Department of Animal Production and Health, School of Agricultural and Technology, University of Energy and Natural Resources, Sunyani 214, Ghana;
| | - Akua Durowaa Oduro-Owusu
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Achiamaa Asafu-Adjaye Koranteng
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Kwabena Owusu Ansah
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Vida Korkor Lamptey
- Council for Scientific and Industrial Research, Animal Research Institute, Accra 20, Ghana; (L.A.); (A.D.O.-O.); (A.A.-A.K.); (K.O.A.); (V.K.L.)
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| | - Taha Mohamed Mohamed
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Z.B.); (C.C.)
| |
Collapse
|
4
|
Guo C, Liu S, Di L, Tang S. The impact of bacillus pumilus TS2 isolated from yaks on growth performance, gut microbial community, antioxidant activity, and cytokines related to immunity and inflammation in broilers. Front Vet Sci 2024; 11:1383262. [PMID: 38737458 PMCID: PMC11082403 DOI: 10.3389/fvets.2024.1383262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Intensive poultry farming faces challenges like gut inflammation in the absence of antibiotics, resulting in reduced productivity, heightened susceptibility to enteric diseases, and other complications. Alternative strategies are needed to manage inflammation and maintain sustainable poultry production. Yaks living in high-altitude hypoxic environments have specialized gut microbes. However, yak probiotics remain largely uncharacterized. We previously isolated a strain of Bacillus pumilus (named TS2) from yaks and demonstrated its potential as a probiotic in vitro. Therefore, in this study, we evaluated the in vivo growth-promoting, antioxidant, immune, and anti-inflammatory effects of Bacillus pumilus isolated from yaks in broilers. We demonstrated the safety of TS2 isolated from yaks in broilers. Furthermore, we found that TS2 increased the average daily weight gain (ADWG) and reduced the feed conversion ratio (FCR). Supplementation with TS2 also improved the mucosal morphology, the ratio of villi to crypt cells, and enzyme activity. High-throughput sequencing showed that the abundance of Lactobacillus was higher in the TS2 treated broilers. Importantly, the serum level of malondialdehyde (MDA) was reduced and the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity were increased in the low-dose TS2 group, while the inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were downregulated compared with the control group. We demonstrated that TS2 supplementation can increase the overall growth performance and ameliorate the blood parameters related to inflammation and immunity in broilers.
Collapse
Affiliation(s)
- Chuangen Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Animal Disease Prevention and Control Center of Rongchang, Chongqing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liangjiao Di
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Qin M, Wang Z, Liang M, Sha Y, Liu M, Liu J, Wang T, Zhao C, Wang Z, Guo D, Li R. Effects of dietary supplementation with tea polyphenols and probiotics on laying performance, biochemical parameters intestinal morphology and microflora of laying hens. Int J Biol Macromol 2024; 256:128368. [PMID: 38029914 DOI: 10.1016/j.ijbiomac.2023.128368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zengguang Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Mingzhi Liang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yufen Sha
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Minxiao Liu
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Jiewei Liu
- College of Animal Science and Technology, Jiangxi Agriculture University, Nanchang 330045, China; GuangDong Shengdilecun Ecological Food Co., Ltd, Kaiping 529300, China
| | - Ting Wang
- Yantai Municipal Agriculture and Rural Affairs Bureau, Yantai 264000, China
| | - Chengxin Zhao
- Yantai Jinhai Pharmaceutical Co., Ltd, Yantai 265323, China
| | - Zhixin Wang
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Duitian Guo
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Ruili Li
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| |
Collapse
|
6
|
Abdel-Halim NHM, Farrag EAE, Hammad MO, Habotta OA, Hassan HM. Probiotics Attenuate Myopathic Changes in Aging Rats via Activation of the Myogenic Stellate Cells. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10202-2. [PMID: 38112993 DOI: 10.1007/s12602-023-10202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.
Collapse
Affiliation(s)
- Nehal H M Abdel-Halim
- Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Eman A E Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt.
| | - Maha O Hammad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Ola Ali Habotta
- Forensic and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Hend M Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
7
|
Chai C, Guo Y, Mohamed T, Bumbie GZ, Wang Y, Zeng X, Zhao J, Du H, Tang Z, Xu Y, Sun W. Dietary Lactobacillus reuteri SL001 Improves Growth Performance, Health-Related Parameters, Intestinal Morphology and Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13101690. [PMID: 37238120 DOI: 10.3390/ani13101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
It was assumed that dietary inclusion of Lactobacillus reuteri SL001 isolated from the gastric contents of rabbits could act as an alternative to feed antibiotics to improve the growth performance of broiler chickens. We randomly assigned 360 one-day-old AA white-feathered chicks in three treatments: basal diet (control), basal diet plus zinc bacitracin (antibiotic), and basal diet plus L. reuteri SL001 (SL001) treatment. The results showed the total BW gain and average daily gain (ADG) of broilers in SL001 treatment increased significantly (p < 0.05, respectively) compared with the control group from day 0 to 42. Moreover, we observed higher levels of immune globulins in both the SL001 group and the antibiotic group. Total antioxidant capacity and levels of antioxidant factors were also significantly increased (p ≤ 0.05, respectively) in the SL001 treatment group, while the interleukin 6, interleukin 4, creatinine, uric acid, total cholesterol, triglyceride, VLDL, LDL and malondialdehyde were remarkably decreased (p < 0.05, respectively). In the ileum of SL001 treatment broilers, the height of villi and the ratio of villi height to crypt depth were significantly increased (p < 0.05). Meanwhile, the crypt depth reduced (p < 0.01) and the ratio of villi height to crypt depth increased (p < 0.05) in the jejunum compared to the control. The abundance of microbiota increased in the gut of broilers supplemented with SL001. Dietary SL001 significantly increased the relative abundance of Actinobacteria in the cecal contents of broilers (p < 0.01) at the phylum level. In conclusion, L. reuteri SL001 supplementation promotes the growth performance of broiler chickens and exhibits the potential application value in the industry of broiler feeding.
Collapse
Affiliation(s)
- Chunli Chai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yaowen Guo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Taha Mohamed
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Gifty Z Bumbie
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zeng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jinghua Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Huamao Du
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Liu Y, Gu W, Liu X, Zou Y, Wu Y, Xu Y, Han D, Wang J, Zhao J. Joint Application of Lactobacillus plantarum and Bacillus subtilis Improves Growth Performance, Immune Function and Intestinal Integrity in Weaned Piglets. Vet Sci 2022; 9:vetsci9120668. [PMID: 36548829 PMCID: PMC9781797 DOI: 10.3390/vetsci9120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to explore the effects of the joint application of Lactobacillus plantarum and Bacillus subtilis on growth performance, immune function, antioxidant capacity, intestinal integrity, and gut microbiota composition in weaned piglets. The piglets were allocated randomly into 4 dietary groups, which were a control diet (NC), NC + 150 ppm mucilage sulfate (PC), and 3 additional diets containing 1 kg/t (LT), 1.5 kg/t (MT), or 2 kg/t (HT) mixture of Lactobacillus plantarum and Bacillus subtilis, respectively. Results showed that joint application of Lactobacillus plantarum and Bacillus subtilis increased ADFI and ADG of weaned piglets in d 14~28 and d 28~42 (p < 0.05), and decreased serum concentrations of DAO, IL-1β, TNF-α, and IL-2. The LT group increased jejunal and colonic sIgA contents compared with the PC group (p < 0.05). Groups of MT and HT increased colonic mRNA expression of host defense peptides and tight junction proteins compared with the NC and PC groups. The joint application of Lactobacillus plantarum and Bacillus subtilis increased the abundance of colonic Lactobacillus compared with NC and PC groups (p < 0.10). In conclusion, the joint application of Lactobacillus plantarum and Bacillus subtilis as an antibiotics alternative improved growth performance via promoting immune function and intestinal integrity of weaned piglets.
Collapse
Affiliation(s)
- Yisi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Gu
- Shandong Provincial Key Laboratory of Animal Microecological Agent, Shandong Baolai Leelai Bioengineering Co., Ltd., Tai’an 271000, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youwei Zou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youhan Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-156-0091-1358
| |
Collapse
|
9
|
Ajayi OI, Smith OF, Oso AO, Oke OE. Evaluation of in ovo feeding of low or high mixtures of cysteine and lysine on performance, intestinal morphology and physiological responses of thermal-challenged broiler embryos. Front Physiol 2022; 13:972041. [PMID: 36134329 PMCID: PMC9483814 DOI: 10.3389/fphys.2022.972041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the effect of in ovo feeding cysteine, lysine or their combinations on the perinatal and post-hatch physiological responses of broiler embryos exposed to heat stress during incubation. A total of two thousand fertile eggs of broiler breeders (Ross 308) flock (at 38 weeks of age) were used for this study. In the first 10 days, the eggs were incubated using the conventional protocol of relative humidity and temperature of 55% and 37.8°C respectively. From day ten onward, the temperature was increased to 39.6°C for 6 h per day. On day 17.5, 1,500 eggs with the evidence of living embryos were randomly selected and assigned to 6 treatments having five replicates of 50 eggs each. The treatments were: un-injected eggs (UI), eggs injected with only 0.5 ml distilled water (DW), 3.5 mg/egg cysteine (CY), 2mg/egg lysine (LY), 3.4 mg cysteine+2 mg lysine (CLH) and 1.7 mg cysteine+1 mg lysine (CLL). On day 21, the hatchability, anatomical characteristics, chick quality and the antioxidant status of the chicks were evaluated. During the post-hatch phase, data were collected on the haematology, biochemical parameters, growth performance and intestinal morphology of the birds. The results revealed that the hatchability of CY chicks was higher (p < 0.05) than in the other treatments, while the lowest values were recorded in CLH. The hatching muscle of the chicks of CLL was similar to those of CY but higher (p < 0.05) than the others. The MDA of DW and UI chickens was similar and higher than birds in the other treatment groups. The serum SOD of CLL birds was comparable to that of CY but higher than the values recorded in the other treatments. The final weights of CLL chickens were similar to those of LY but significantly higher (p < 0.05) than those of the other treatments. The duodenal villus heights of the birds of CLL were higher than those of the other treatment groups, whereas the villus height of the birds of CLH was higher than those of UI, DW and CY. Overall, in ovo feeding of cysteine alone improved the hatchability of thermally-challenged broiler embryos. In contrast, a low-dose mixture of cysteine plus lysine improved the post-hatch growth performance.
Collapse
Affiliation(s)
- O. I. Ajayi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. F. Smith
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A. O. Oso
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Nigeria
| | - O. E. Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: O. E. Oke,
| |
Collapse
|
10
|
Pan X, Cai Y, Kong L, Xiao C, Zhu Q, Song Z. Probiotic Effects of Bacillus licheniformis DSM5749 on Growth Performance and Intestinal Microecological Balance of Laying Hens. Front Nutr 2022; 9:868093. [PMID: 35571886 PMCID: PMC9093703 DOI: 10.3389/fnut.2022.868093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effects of Bacillus licheniformis DSM5749 on the production performance and intestinal health in laying hens. A total of 32-week-old laying hens (Hyline Brown) were randomly assigned to two dietary groups (10 replicates of 27 laying hens), namely, basal diet and basal diet complemented with 200 g/t B. licheniformis (3.2 × 109 CFU/kg). The trial lasted for 8 weeks, and samples were collected at the last week. Results revealed that B. licheniformis DSM5749 significantly improved laying performance, including an increase in egg production rate and average daily egg yield, and a decrease in the feed-to-egg ratio during the entire 8-week experimental period (P < 0.05). B. licheniformis DSM5749 increased the levels of superoxide dismutase and glutathione peroxidase in the liver and decreased the IL-1 level in the serum (P < 0.05). In addition, the integrity of intestinal morphology (villus height, crypt depth, and villus height/crypt depth), tight junctions (ZO-1, Claudin-1, and Occludin), and lipase vitality in the intestine were potentiated by B. licheniformis DSM5749 in laying hens (P < 0.05). B. licheniformis DSM5749 decreased the Firmicutes/Bacteroidetes ratio (P < 0.05) in the cecum. Furthermore, B. licheniformis DSM5749 modulated the microbiota in the cecum of the laying hens, increased the relative abundance of beneficial bacteria (e.g., Prevotella) at the genus level and decreased the relative abundance of potential pathogens (e.g., Desulfovibrio). In conclusion, B. licheniformis DSM5749 can improve laying performance, promote intestinal health, affect the composition of cecal microorganisms, and regulate the intestinal micro-ecological balance, making B. licheniformis a good probiotic candidate for application in the laying hens industry.
Collapse
Affiliation(s)
- Xue Pan
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, China
| | - Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Qidong Zhu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
11
|
Mohamed TM, Sun W, Bumbie GZ, Elokil AA, Mohammed KAF, Zebin R, Hu P, Wu L, Tang Z. Feeding Bacillus subtilis ATCC19659 to Broiler Chickens Enhances Growth Performance and Immune Function by Modulating Intestinal Morphology and Cecum Microbiota. Front Microbiol 2022; 12:798350. [PMID: 35281307 PMCID: PMC8904210 DOI: 10.3389/fmicb.2021.798350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
This study investigated dietary supplementation with Bacillus subtilis (BS) ATCC19659 on growth performance, biochemical indices, intestinal morphology, and cecum microflora in broiler chicks. A total of 600 Arbor 1-day Acres broilers of either sex were allotted to 5 treatments: chicks were fed a corn- and soybean-based diet (CON); chicks were fed basal diet containing 500 mg ZnB/kg (ZnB); chicks were fed basal diet containing 1 × 108 CFU/g feed of BS-ATCC19659 (BS-1); chicks were fed basal diet containing 3 × 108 CFU/g feed of BS-ATCC19659 (BS-3); and chicks were fed basal diet containing 5 × 108 CFU/g feed of BS-ATCC19659 (BS-5). Each treatment comprised 6 replicates with 20 birds for each replicate pen. Chicks in the BS-5 and BS-3 groups had higher body weight at the 21st and 42nd days and average daily gain from 1 to 21 days than that in the CON group (p < 0.05). Chicks in the BS-5 and ZnB groups had higher serum antioxidant activities and immunity response than those in the CON group (p < 0.05). Compared with the CON group, the liver mRNA abundance of GHR, TGF-β, IGF-1, IFN-γ, SOD, CAT, and GPX of chicks in three BS groups and the ileum villus length (μm) of chicks in BS-3 and ZnB groups was increased (p < 0.05). Compared with the CON group, the villus height-to-crypt depth ratio of the ileum of chicks in the BS-5 and BS-3 groups and the crypt depth and villus height-to-crypt depth ratio of the jejunum in the BS-5 and ZnB groups were increased (p < 0.05). The abundance of the Cyanobacteria phyla in the cecum decreased in response to treatment with both BS-ATCC19659 and ZnB groups (p < 0.05). Compared with the CON group, the cecum abundance of genera GCA-900066575 (Lachnospiraceae), Anaerofustis, and Papillibacter (Firmicutes phylum) in three BS groups were increased (p < 0.05); The abundance of genus Escherichia–Shigella reduced in the BS-3 group (p < 0.05). Compared with the CON group, the cecum abundance of genus Clostridia_unclassified in ZnB and BS-5 groups was decreased (p < 0.05) of broilers. Generally, Bacillus subtilis ATCC19659 as feed additive positively affected growth performance, immunity response, and cecal microflora of broilers.
Collapse
Affiliation(s)
- Taha M Mohamed
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China.,Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Weizhong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Gifty Z Bumbie
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Abdelmotaleb A Elokil
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | | | - Rao Zebin
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ping Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Effects of glucose oxidase and its combination with B. amyloliquefaciens SC06 on intestinal microbiota, immune response and antioxidative capacity in broilers. Animal 2022; 16:100473. [PMID: 35218993 DOI: 10.1016/j.animal.2022.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Glucose oxidase (GOD) is an aerobic dehydrogenase, which catalyses the oxidation of β-D-glucose to gluconic acid and hydrogen peroxide. This study aimed to investigate the effects of dietary glucose oxidase and its combined effects with Bacillus amyloliquefaciens SC06 (BaSC06) on the intestinal microbiota, immune function and antioxidant capacity of broilers. One-day-old male Lingnan yellow-feathered broilers (n = 720) were randomly assigned to four treatment groups: Control group (basal diet), Anti group (basal diet supplemented with 200 mg/kg enramycin), GOD group (basal diet supplemented with 75 U/kg GOD), and combination of GOD and BaSC06 (GB) group (GOD diet (75 U/kg) supplemented with 1 × 108 colony-forming units BaSC06/kg feed), with six replicates per group and 30 birds per replicate. The experiment was conducted over 52 days. The results indicated a significant decrease in α-diversity (Observed species, Chao1, PD_whole_tree and Shannon) with GOD treatment, compared with the control group. GB treatment also significantly decreased the Shannon index of cecal microbiota. GOD treatment significantly decreased the α-diversity, whereas GB treatment significantly increased these indices except for the Chao1 index, compared with the Anti group. Compared with the control group, the relative abundance of Bacteroides in the GOD and GB groups was significantly increased, whereas a decrease in Firmicutes was observed. Compared with the Anti group, GOD treatment significantly increased the relative abundances of Bacteroides and Lactobacillales, while GB treatment significantly increased Lactobacillales and decreased Proteobacteria levels. In addition, GOD treatment significantly decreased interleukin-10 and interferon-γ levels, compared with the control group. In contrast, GB treatment significantly downregulated interferon-γ levels and upregulated secretory immunoglobulin A, transforming growth factor-β and interleukin-2 expression in the jejunal mucosa. GOD treatment significantly decreased transforming growth factor-β and interleukin-10 levels, whereas GB treatment markedly increased interferon-γ expression in the jejunal mucosa compared with the Anti group. Furthermore, GB treatment significantly increased the total antioxidant capability levels and the total superoxide dismutase (T-SOD) and catalase (CAT) activities compared with the control group. Meanwhile, GOD treatment significantly increased glutathione peroxidase (GSH-Px) activity in the jejunal mucosa. Total superoxide dismutase, GSH-Px and CAT activities in the Anti group were higher than in the GOD and GB groups. The malondialdehyde levels in the control group were the highest among all groups. In conclusion, our results indicated that supplementation with GOD alone and its combination with BaSC06 in diet could increase antioxidant capacity, immune function and improve the intestinal microbiota composition of broilers. Combination treatment with GOD with BaSC06 exerted stronger effects than GOD treatment only.
Collapse
|
13
|
Effects of Bacillus methylotrophicus SY200 Supplementation on Growth Performance, Antioxidant Status, Intestinal Morphology, and Immune Function in Broiler Chickens. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09924-6. [PMID: 35150396 DOI: 10.1007/s12602-022-09924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
The present study was focused on evaluating the effects of Bacillus methylotrophicus SY200 in broiler production. A total of 120 healthy 7-day-old broiler chicks were randomly assigned to four dietary treatments, which included basal diet supplemented with 0%, 0.10%, 0.25%, or 0.50% (w/w) B. methylotrophicus SY200 preparation (1.0 × 109 cfu/g), regarded as negative control group (NC), low-dose group (BML), medium-dose group (BMM), and high-dose group (BMH), respectively. Each treatment was fed the corresponding experimental diet for 35 days. Results showed that dietary supplementation of B. methylotrophicus SY200 could improve broiler weight gain, especially the finisher phase. Further studies suggested that a certain amount of B. methylotrophicus SY200 enhanced the broiler antioxidant status and improved the morphological development of jejunum. Besides, dietary supplementation of B. methylotrophicus SY200 especially in 0.50% levels significantly increased the relative weight of immune organs and Newcastle disease virus antibody titer, similarly, increased mRNA expression levels of claudin-1, claudin-3, zonula occluden-1, and zonula occluden-2 were observed in the jejunum of BMM group. Moreover, B. methylotrophicus SY200 also showed beneficial effects in improving broilers microbiota homeostasis by increasing the number of beneficial bacteria. Conclusively, B. methylotrophicus SY200 could effectively improve the antioxidant status, modulate the intestinal structure, enhance the intestinal mucosal barrier function, and regulate the immune function of broilers, which finally improves the performance of the chicken in the finisher period.
Collapse
|
14
|
Zhang L, Hong Y, Liao Y, Tian K, Sun H, Liu X, Tang Y, Hassanin AA, Abdelnour SA, Suthikrai W, Srisakwattana K, Tharasanit T, Lu Y. Dietary Lasia spinosa Thw. Improves Growth Performance in Broilers. Front Nutr 2022; 8:775223. [PMID: 35096929 PMCID: PMC8793882 DOI: 10.3389/fnut.2021.775223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of dietary Lasia spinosa Thw. (LST) powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology, and cecal microbiome in broiler chickens. A total of 400 1-day-old male Guangxi partridge broilers (initial body weight: 42.52 ± 0.06 g) were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), 10 replicates for each treatment, and 10 broilers in each treatment group. Results indicated that the average daily feed intake of broilers during 22-42 days and the average daily gain of chickens during 1-42 days significantly increased by dietary supplementation of LST powder (p < 0.01), while the feed conversion ratio during the overall periods was decreased by dietary supplementation of LST powder (p < 0.01). Except for the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver (p > 0.05), the levels of SOD, catalase (CAT) and GSH-Px in serum, liver, and breast muscle were significantly increased in the LST supplemented groups (p < 0.05), while the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in serum, liver, and breast muscle were significantly decreased in the LST supplemented groups (p < 0.05). Furthermore, the levels of triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased by the addition of dietary LST powder (p < 0.01), while the levels of HDL-C, Ca, Fe, Mg, and P were linearly increased by the addition of dietary LST powder (p < 0.01). With respect to the gut morphometric, crypt depth was significantly decreased by LST supplementation (p < 0.05), while villus height and the ratio of villus height to crypt depth were notably increased by LST supplementation (p < 0.05). Sequencing of 16S ribosomal RNA (16S rRNA) from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. The α-diversity of microbiota in broilers was increased (p < 0.05) in the LST1 group, but was decreased (p < 0.05) in the LST2 and LST4 groups compared with the LST0 group. The differential genera enriched in the LST1 group, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg, and reduced blood lipid in the treated broilers.
Collapse
Affiliation(s)
- Lang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yongxing Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, China
| | - Kui Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haodong Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanfei Tang
- Guangxi Fufeng Agriculture and Animal Husbandry Co Ltd, Nanning, China
| | | | - Sameh A. Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Wanwipa Suthikrai
- Research and Development Center for Livestock Production Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittiya Srisakwattana
- Research and Development Center for Livestock Production Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Yun Y, Ji S, Yu G, Jia P, Niu Y, Zhang H, Zhang X, Wang T, Zhang L. Effects of Bacillus subtilis on jejunal integrity, redox status, and microbial composition of intrauterine growth restriction suckling piglets. J Anim Sci 2021; 99:6362641. [PMID: 34473279 DOI: 10.1093/jas/skab255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.
Collapse
Affiliation(s)
- Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Zhao Y, Zeng D, Wang H, Qing X, Sun N, Xin J, Luo M, Khalique A, Pan K, Shu G, Jing B, Ni X. Dietary Probiotic Bacillus licheniformis H2 Enhanced Growth Performance, Morphology of Small Intestine and Liver, and Antioxidant Capacity of Broiler Chickens Against Clostridium perfringens-Induced Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 12:883-895. [PMID: 31713770 DOI: 10.1007/s12602-019-09597-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reduction in the use of antibiotics in the poultry industry has considerably increased the appearance of Clostridium perfringens (CP)-induced subclinical necrotic enteritis (SNE), forcing researchers to search alternatives to antibiotic growth promoters (AGP) like probiotics. This study aimed to investigate the effect and the underlying potential mechanism of dietary supplementation of Bacillus licheniformis H2 to prevent SNE. A total of 180 1-day-old male broiler chickens (Ross 308) were randomly divided into three groups, with six replicates in each group and ten broilers per pen: (a) basal diet in negative control group(NC group); (b) basal diet + SNE infection(coccidiosis vaccine + CP) (SNE group); (c) basal diet + SNE infection + H2 pre-treatment(BL group). Growth performance, morphology of small intestine and liver, and antioxidant capacity of the serum, ileum, and liver were assessed in all three groups. The results showed that H2 significantly suppressed (P < 0.05) the negative effects on growth performance induced by SNE, including loss of body weight gain, decrease of feed intake, and raise of feed conversion ratio among the different treatments at 28 days. The addition of H2 also increased (P < 0.05) the villus height: crypt depth ratio as well as villus height in the ileum. Chicks fed with H2 diet had lower malondialdehyde (MDA) concentration in the ileum in BL group than that in SNE group (P < 0.05). Moreover, compared with other treatment groups, dietary H2 improved the activities of antioxidant enzymes in the ileum, serum, and liver (P < 0.05). H2 may also prevent SNE by significantly increasing the protein content (P < 0.05) of Bcl-2 in the liver. Dietary supplementation of H2 could effectively prevent the appearance of CP-induced SNE and improve the growth performance of broiler chickens damaged by SNE, of which the mechanism may be related to intestinal development, antioxidant capacity, and apoptosis which were improved by H2.
Collapse
Affiliation(s)
- Ying Zhao
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Lab of Brain Connectivity, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaodan Qing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Paenibacillus polymyxa (LM31) as a new feed additive: Antioxidant and antimicrobial activity and its effects on growth, blood biochemistry, and intestinal bacterial populations of growing Japanese quail. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114920] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Liu X, Chen Y, Tang S, Deng Y, Xiao B, He C, Guo S, Zhou X, Qu X. Dietary encapsulated Bacillus subtilis and essential oil supplementation improves reproductive performance and hormone concentrations of broiler breeders during the late laying period. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Guo M, Li M, Zhang C, Zhang X, Wu Y. Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Front Microbiol 2020; 11:1768. [PMID: 32849392 PMCID: PMC7396511 DOI: 10.3389/fmicb.2020.01768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Bacillus subtilis (B. subtilis) has a variety of proposed beneficial effects for chickens, including growth promotion and disease prevention. In this study, chickens were fed a diet containing B. subtilis for 21 days and growth performance, intestinal morphology, intestinal microbiota, immune responses, and disease resistance were investigated. After 21 days of feeding, chickens fed a diet containing B. subtilis had higher body weights. The concentrations of serum immunoglobulins IgA and IgM were significantly increased by B. subtilis in the diet. Moreover, chickens fed with B. subtilis had greater villus height (VH), shallower crypt depth (CD), and a higher VH/CD ratio in the jejunum than chickens fed a standard control diet. Diet with B. subtilis can balance intestinal microbiota, facilitate an increase in beneficial bacteria, and inhibit the pathogenic bacteria after 21 days of feeding. After an Escherichia coli (E. coli) challenge, the survival rate of chickens fed with B. subtilis was 66.67%, which was significantly higher than the controls. The E. coli contents in spleens and lungs from chickens fed a diet with B. subtilis were lower than those in controls. In addition, B. subtilis can trigger the toll-like receptor 4 and cause induction of proinflammatory cytokine (Il1β, Il6, and Il8) production to develop innate immune responses in chickens. In conclusion, diets containing B. subtilis can improve growth performance, serum immunoglobulin levels, the intestinal villus-crypt system, intestinal homeostasis, immune responses, and disease resistance against E. coli in chickens.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingtao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengcheng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaorong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yantao Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L, Li W. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci 2019; 98:5028-5039. [PMID: 31064013 DOI: 10.3382/ps/pez226] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the effects of Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. A total of 540 one-day-old broiler chicks (Cobb500) were randomly allocated to three groups of 180 birds, and fed either a basal diet or a basal diet supplemented with 108 colony-forming units Lac16 or BSC10 per kilogram feed for 21 D. The results revealed that both Lac16 and BSC10 maintained ileal mucosal morphology, and BSC10 regulated the expression of barrier function-related genes. Birds fed with probiotics decreased malondialdehyde level in jejunal mucosa and serum, and the increased activities of hepatic GSH-Px and jejunal CAT were observed in BSC10 group (P < 0.05). Immunohistochemistry of Bax, Bcl-2 and proliferating cell nuclear antigen and TUNEL-immunofluorescence assay demonstrated that Lac16 and BSC10 exerted beneficial effects on cell apoptosis and proliferation, as indicated by the gene expression of down-regulated Bax and p53 as well as a significant upregulation of Bcl-2 (P < 0.05). In addition, Lac16 and BSC10 significantly increased NO production and iNOS activity in liver and jejunal mucosa, and gene expression of IFN-γ (P < 0.01), IL-6 (P < 0.05), and IL-10 (P < 0.05 and P < 0.01, respectively) in ileum mucosa, whereas markedly decreased the expression of Cox2 (P < 0.05). Furthermore, it was found that Lac16 and BSC10 significantly reduced levels of alkaline phosphatase (P < 0.05 and P < 0.01, respectively) and creatine kinase (P < 0.05). Moreover, BSC10 significantly reduced uric acid (P < 0.05) and low-density lipoprotein levels (P < 0.01). Taken together, Lac16 and BSC10 could improve intestinal and body health status of broilers by increasing intestinal barrier function, anti-oxidative capacity and immunity, and decreasing cell apoptosis with strain-specificity.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Zhonghua Zeng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
21
|
Effects of peanut meal extracts fermented by Bacillus natto on the growth performance, learning and memory skills and gut microbiota modulation in mice. Br J Nutr 2019; 123:383-393. [PMID: 31769373 DOI: 10.1017/s0007114519002988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated that the nutritional properties of peanut meal (PM) can be improved after being fermented. The assessment of fermented PM has been reported to be limited to various physical and chemical evaluations in vitro. In the present study, PM was fermented by Bacillus natto to explore the effects of fermented PM extract (FE) on growth performance, learning and memory ability and intestinal microflora in mice. Ninety newly weaned male Kunming (KM) mice were randomly divided into seven groups: normal group (n 20), low-dose FE group (n 10), middle-dose FE group (MFE) (n 10), high-dose FE group (HFE) (n 20), unfermented extraction group (n 10), model group (10) and natural recovery group (10). Learning and memory skills were performed by the Morris water maze (MWM) test, and the variation in gut microbiota (GM) composition was assessed by 16S rDNA amplicon sequencing. The results show that HFE remarkably improved the growth performance in mice. In the MWM test, escape latency was shortened in both MFE and HFE groups, while the percentage of time, distance in target quadrant and the number crossing over the platform were significantly increased in the HFE group. Moreover, the FE played a preventive role in the dysbacteriosis of mice induced by antibiotic and increased the richness and species evenness of GM in mice.
Collapse
|
22
|
Chen J, Kuang Y, Qu X, Guo S, Kang K, He C. The effects and combinational effects of Bacillus subtilis and montmorillonite supplementation on performance, egg quality, oxidation status, and immune response in laying hens. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Liu J, Zhang H, Li J. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 2019; 18:112. [PMID: 31217027 PMCID: PMC6585042 DOI: 10.1186/s12934-019-1161-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Yaks living in the high-altitude hypoxic environment of Tibetan plateau (3600 m) have special gut microbes. However, it is still little research on yak probiotics until now. Therefore, the purpose of our study was to evaluate the growth promoting effect, antioxidant capability, immune effect, and anti-inflammatory ability of Bacillus subtilis and Bacillus velezensis isolated from Tibetan yaks in mice model. RESULTS The results showed that the isolated strains supplementation not only improve the growth performance but also increased the length of villus in the small intestine and intestinal digestive enzyme activity. Importantly, we observed that the T-AOC, SOD, and GSH-PX levels were increased and the MDA content was reduced in probiotic-treated mice, which implied that probiotics supplementation can ameliorate the antioxidative activity of mice. The levels of AST and ALT correlated with the hepatic injury were reduced and the levels of AKP, TP, GLB, ALB, Ca, and P were markedly higher than those in the control group. Additionally, mice treated with probiotics exhibited higher serum IgG, IgM and IgA, which can reflect the immune status to some extent. At the same time, the major pro-inflammatory factor TNF-α, IL-6, and IL-8 were down-regulated and the anti-inflammatory factor IL-10 was up-regulated compared with the control groups. CONCLUSIONS In conclusion, these results demonstrated that Bacillus subtilis and Bacillus velezensis supplementation can increase overall growth performance and ameliorate the blood parameters related to inflammation and immunity of mice.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, People's Republic of China.
| |
Collapse
|
24
|
Nabi F, Iqbal MK, Zhang H, Rehman MU, Shahzad M, Huang S, Han Z, Mehmood K, Ahmed N, Chachar B, Arain MA, Li J. Clinical efficiency and safety of Hsp90 inhibitor Novobiocin in avian tibial dyschondroplasia. J Vet Pharmacol Ther 2018; 41:902-911. [PMID: 30004119 DOI: 10.1111/jvp.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Tibial dyschondroplasia (TD) is a bone defect of broilers and other poultry birds that disturbs growth plate and it causes lameness. Previously we evaluated differential expression of multiple genes involved in growth plate angiogenesis and reported the safety and efficacious of medicinal plant root extracted for controlling TD. In this study, clinical and protective effect of an antibiotic Novobiocin (Hsp90 inhibitor) and expression of Hsp90 and proteoglycan aggrecan was examined. The chicks were divided into three groups; Control, thiram-induced TD, and Novobiocin injected TD. After the induction of TD, the Novobiocin was administered through intraperitoneal route to TD-affected birds until the end of the experiment. The expressions and localization of Hsp90 were evaluated by qRT-PCR, immunohistochemistry (IHC) and western blot, respectively. Morphological, histological examinations, and serum biomarker levels were evaluated to assess specificity and protective effects of Novobiocin. The results showed that TD causing retarded growth, enlarged growth plate, distended chondrocytes, irregular columns of cells, decreased antioxidant capacity, reduced protein levels of proteoglycan aggrecan, and upregulated in Hsp90 expression (p < 0.05) in dyschondroplastic birds as compared with control. Novobiocin treatment restored growth plate morphology, reducing width, stimulated chondrocyte differentiation, sprouting blood vessels, corrected oxidative imbalance, decreased Hsp90 expressions and increased aggrecan level. Novobiocin treatment controlled lameness and improved growth in broiler chicken induced by thiram. In conclusion, the accumulation of the cartilage and up-regulated Hsp90 are associated with TD pathogenesis and irregular chondrocyte morphology in TD is along with reduced aggrecan levels in the growth plate. Our results indicate that Novobiocin treatment has potential to reduce TD by controlling the expression of Hsp90 in addition to improve growth and hepatic toxicity in broiler chicken.
Collapse
Affiliation(s)
- Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad K Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahzad
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Bahram Chachar
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Muhammad A Arain
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Veterinary Medicine, Tibet Agricultural and Animal Husbandry College, Tibet, China
| |
Collapse
|
25
|
Liu X, Peng C, Qu X, Guo S, Chen JF, He C, Zhou X, Zhu S. Effects of Bacillus subtilis C-3102 on production, hatching performance, egg quality, serum antioxidant capacity and immune response of laying breeders. J Anim Physiol Anim Nutr (Berl) 2018; 103:182-190. [PMID: 30484908 DOI: 10.1111/jpn.13022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
To investigate the supplemental effects of Bacillus subtilis C-3102 on the production, hatching performance, egg quality, serum antioxidant capacity and immune response of laying breeders, a total of 480 Xuefeng black-bone (25-week-old) hens were randomly assigned into four treatment groups: Hens fed the basal diets with 0 (CON), 3.0 × 105 (BS-1), 6.0 × 105 cfu/g (BS-2) and 9.0 × 105 (BS-3) cfu/g of B. subtilis C-3102. As the B. subtilis C-3102 level increased, egg weight (linear, p < 0.01; quadratic, p = 0.003), fertility (linear, p = 0.021; quadratic, p = 0.059), hatchability (linear, p = 0.038; quadratic, p = 0.119) and yolk colour (linear, p = 0.006; quadratic, p = 0.021) increased in a linear or quadratic manner. Yolk index increased quadratically (linear, p = 0.054; quadratic, p = 0.017), and eggshell thickness (linear, p = 0.036; quadratic, p = 0.128), the activity of GSH-Px (linear, p = 0.024; quadratic, p = 0.078), the concentration of IgM (linear, p = 0.016; quadratic, p = 0.056) and the level of AIV-Ab (linear, p = 0.034; quadratic, p = 0.103) in the serum increased linearly as dietary supplementation of B. subtilis C-3102 increased. The results showed that dietary treatments did not affect egg production, feed conversion ratio, egg mass, hatchability of fertile eggs, eggshell-breaking strength, egg-shape index, yolk percentage, Haugh unit, T-SOD, T-AOC, MDA, IgA and IgG concentrations and the level of NDV-Ab in the serum. In conclusion, dietary supplementation of 9.0 × 105 cfu/g B. subtilis C-3102 in laying breeders diets may be a feasible means of effectively increasing egg weight, fertility and hatchability, and improving egg quality such as eggshell thickness, yolk index and yolk colour. Besides, B. subtilis C-3102 can enhance the activity of GSH-Px, the concentration of IgM and the level of AIV-Ab in the serum.
Collapse
Affiliation(s)
- Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Canyang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Ji Fa Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xuebin Zhou
- Shanghai Naseco Products Company, Shanghai, China
| | - Shiwei Zhu
- Hunan Songyun Commercial Fowl Company, Huaihua, China
| |
Collapse
|
26
|
Zhang C, Chen K, Zhao X, Geng Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5409-5417. [PMID: 29675963 DOI: 10.1002/jsfa.9084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/25/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Resveratrol has been shown to prevent high ambient temperature (HT)-induced spleen dysplasia, but the mechanisms of action are not clear. This study aims to examine the hypothesis that HT-induced spleen dysplasia may be associated with HT-induced oxidative stress and apoptosis, and resveratrol may activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, thus reducing oxidative stress and apoptosis. RESULTS Results showed that HT caused spleen dysplasia in broilers, reflecting the lower relative weight of the spleen (P < 0.05). Compared with birds in a normal ambient temperature group, birds in the HT group exhibited higher (P < 0.05) malondialdehyde (MDA), protein carbonyl (PC), 8-hydroxydeoxyguanosine (8-OHdG) and Bcl-2 associated X protein (Bax) content, higher Bax, caspase-3 and caspase-9 mRNA levels, and caspase-3 and caspase-9 activity, and a higher Bax/B-cell lympoma/leukemia-2 (Bcl-2) ratio, but they exhibited lower (P < 0.05) glutathione (GSH) and Bcl-2 content, and lower Nrf2, glutathione peroxidase (Gpx), MnSOD, heme oxygenase 1, glutathione reductase (GR) and Bcl-2 mRNA levels, and lower total antioxidant capacity (T-AOC), T-SOD and catalase and maganese superoixide dismutase (CAT) activity, indicating HT-induced oxidative stress and apoptosis. Compared with birds in the HT group, birds in the HT + Res group exhibited higher (P < 0.05) GSH and Bcl-2 content, higher Nrf2, CAT, MnSOD, GR and Bcl-2 mRNA levels, and higher T-AOC, T-SOD and CAT activity, but lower (P < 0.05) MDA content, and Bax and caspase-3 mRNA levels, lower caspase-3 and caspase-9 activities, and Bax/Bcl-2 ratio, indicating that resveratrol activated the Nrf2 signaling pathway and decreased apoptosis in the spleen. CONCLUSION Resveratrol was effective in ameliorating HT-induced spleen dysplasia in broilers through the activation of the Nrf2 signaling pathway, thereby decreasing apoptosis, suggesting that resveratrol may offer a potential nutritional strategy to protect against some HT-induced detriments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kaikai Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaohui Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
27
|
Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, Wu S, Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep 2018; 8:15358. [PMID: 30337568 PMCID: PMC6194052 DOI: 10.1038/s41598-018-33762-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Knowledge about the modulation of gut microbiota improves our understanding of the underlying mechanism by which probiotic treatment benefits the chickens. This study examined the effects of Bacillus subtilis DSM 32315 on intestinal structure and microbial composition in broilers. Broiler chicks were fed basal diets without or with B. subtilis supplementation (1.0 × 109 spores/kg of diet). Supplemental B. subtilis increased average body weight and average daily gain, as well as elevated villus height and villus height to crypt depth ratio of ileum in broilers. Multi-dimension analysis showed a certain degree of separation between the cecal microbiota from treatment and control groups. Increased Firmicutes abundance and reduced Bacteroidetes abundance in cecum were observed responded to B. subtilis addition, which also increased the abundances of Christensenellaceae and Caulobacteraceae, and simultaneously decreased the abundances of potentially harmful bacteria such as Vampirovibrio, Escherichia/Shigella and Parabacteroides. Network analysis signified that B. subtilis addition improved the interaction pattern within cecal microbiota of broilers, however, it exerted little influence on the metabolic pathways of cecal microbiota by comparison of the functional prediction of metagenomes. In conclusion, supplemental B. subtilis DSM 32315 improved growth performance and intestinal structure of broilers, which could be at least partially responsible by the manipulation of cecal microbial composition.
Collapse
Affiliation(s)
- Youbiao Ma
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenming Zhang
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Salah AS, Ahmed-Farid OA, El-Tarabany MS. Carcass yields, muscle amino acid and fatty acid profiles, and antioxidant indices of broilers supplemented with synbiotic and/or organic acids. J Anim Physiol Anim Nutr (Berl) 2018; 103:41-52. [PMID: 30280428 DOI: 10.1111/jpn.12994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
The objective of the current research was to explore the possible impacts of dietary supplementation with synbiotic and/or organic acids (OA) on the performance traits, carcass yields and muscle amino acid and fatty acid (FA) profiles of broilers. Randomly, a total of 160 day-old chicks (Ross 308) were assigned into four equal groups (40 birds each), with each group subdivided into eight replicates (five birds/pen). The control group (CON) fed the basal diet with no supplements, while diets of the treated groups were supplemented with OA (Sodium butyrate 40%; 1 g/kg), synbiotic (comprised Bacillus subtilis, Saccharomyces cerivisiae, Streptococcus faecium, Mannan-Oligosaccharides and β-Glucan; 1 g/kg) and equal mix of OA and synbiotic (2 g/kg). Broilers fed the diets supplemented with synbiotic or synbiotic plus OA produced a significantly higher feed utilization efficiency (p = 0.021) and carcass yields (p = 0.038) than the CON and OA-supplemented groups. The group fed the diet supplemented with the synbiotic showed lowered serum cholesterol (p = 0.049), triglycerides (p = 0.001) and very low density lipoprotein (p = 0.032) when compared with the CON group. Regarding the polyunsaturated FA (PUFA) of breast muscles, synbiotic-supplemented birds had significantly lower n-6:n-3 ratio (p = 0.047), however, a greater hypocholesterolaemic to hypercholesterolaemic FA (H/H) ratio was reported when compared with the CON group (p = 0.002). Among the essential amino acids, the contents of leucine and methionine in the breast (p = 0.032 and 0.007 respectively) and thigh (p = 0.023 and 0.003 respectively) muscles were greater in the synbiotic-supplemented birds compared with the CON group. In conclusion, the synbiotic-supplemented diet improved the PUFA:SFA, n-6:n-3 and H/H ratios by altering the FA composition of broiler muscles, which are important with regards to human health.
Collapse
Affiliation(s)
- Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley Branch, Assuit University, Assuit, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|