1
|
Niu YJ, Wu J, Ren W, Liu G, Wu G, Peng Y, Zheng D, Jin K, Zuo Q, Li G, Han W, Cui XS, Chen G, Li B. Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117727. [PMID: 39818136 DOI: 10.1016/j.ecoenv.2025.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model. We observed a significant reduction in PGC numbers and an increase in apoptosis levels with AFB1 treatment. Further analysis revealed that AFB1 induced mitochondrial structural and functional abnormalities. Additionally, AFB1 treatment led to increased oxidative stress, lipid peroxidation, ferroptosis, and autophagy in chicken PGCs, ultimately affecting their biological characteristics. Interestingly, we found that the NRF2-mediated antioxidant pathway was activated in AFB1-treated PGCs. Inhibiting NRF2 exacerbated oxidative stress and cell death in PGCs, suggesting NRF2 upregulation plays a protective role under AFB1 regulation. This study illuminates AFB1's toxic effects on chicken PGCs and provides insights into potential mechanisms, establishing a basis for strategies to prevent and treat AFB1's adverse effects on poultry genetic transmission.
Collapse
Affiliation(s)
- Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Jun Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenjie Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dan Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Allen J, Balasubramanian B, Donoghue AM, Upadhyaya I, Luo Y, Upadhyay A. Effect of trans-cinnamaldehyde nanoemulsion wash on chicken embryo development in fertilized eggs. Poult Sci 2023; 102:102812. [PMID: 37302329 PMCID: PMC10404770 DOI: 10.1016/j.psj.2023.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Cleanliness of eggs is critical in successful hatching egg operations. The objective of this study was to investigate the effect of trans-cinnamaldehyde nanoemulsion (TCNE) wash treatments, as a sanitation strategy, on embryonic development in fertilized eggs. Trans-cinnamaldehyde is a generally recognized as safe status phytochemical obtained from cinnamon bark. TCNE were prepared with emulsifiers Tween 80 (Tw.80) or gum Arabic and lecithin (GAL) by sonication. Day-old fertilized eggs were subjected to TCNE wash treatments at 34°C for 5 min, followed by 18 d of incubation at 37.7°C. Washing of fertilized eggs with TCNE-Tw.80 or GAL at 0.48% concentration did not significantly alter the egg weight at d 18 of incubation, as compared to baseline and control (P > 0.05). The egg weight loss (calculated as percentage) did not differ significantly between eggs subjected to nanoemulsion wash treatments and control eggs (P > 0.05). In case of embryo fertility and mortality, for baseline and control, ∼ 95% fertility rate was achieved, with combined early and midterm mortality at 16%. Likewise, TCNE-Tw.80 or TCNE-GAL resulted in 95% fertility (P > 0.05), with 11% and 17% combined early and midterm mortality, respectively. Furthermore, TCNE wash treatments did not differ significantly in yolk sac and embryo weight (as compared to control) and did not affect the length of the d 18 embryo (P > 0.05). Moreover, TCNE wash treatments did not alter tibia weight and length (P > 0.05). Results suggest that TCNE could potentially be used as a natural antimicrobial for fertilized egg sanitation. Further studies in industry settings are warranted.
Collapse
Affiliation(s)
- J Allen
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - B Balasubramanian
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - A M Donoghue
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR 72701, USA
| | - I Upadhyaya
- Department of Extension, University of Connecticut, Storrs, CT 06269, USA
| | - Y Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - A Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
3
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
4
|
Owumi SE, Irozuru CE, Arunsi UO, Faleke HO, Oyelere AK. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems. J Food Biochem 2022; 46:e14090. [PMID: 35112365 DOI: 10.1111/jfbc.14090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50μg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50μg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Chioma E Irozuru
- Molecular Drug Metabolism Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hammed O Faleke
- Membrane Biochemistry and Biotechnology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Bhattacharya B, Narain V, Bondesson M. E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105995. [PMID: 34673467 DOI: 10.1016/j.aquatox.2021.105995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
As electronic cigarettes (e-cigarettes) become increasingly popular smoking devices, there is an increased risk for unintended exposure to e-cigarette liquids through improper disposal resulting in leaching into the environment, third hand vapor exposure through air, or embryonic exposure through maternal vaping. Thus, the safety of e-cigarettes for wildlife and developing embryos need to be thoroughly investigated. We examined perturbations in zebrafish embryonic development after exposures to two cinnamon flavored vaping liquids (with 12 mg/ml nicotine and without nicotine) for e-cigarettes from two different vendors, as well as the flavoring chemical cinnamaldehyde. We focused on the effects of the vaping liquids on hatching success and bone, cartilage and blood vessel development in 3-4 days old transgenic zebrafish larvae. We found that exposures to both of the vaping liquids perturbed the development of the cleithrum and craniofacial cartilage. Exposure to the liquids further caused non-overlapping and partially or completely missing intersegmental vessels. Hatching success was also reduced. Exposure to pure cinnamaldehyde replicated the effects of the vaping liquids with a 50% effect concentration (EC50) of 34-41 µM. Quantification of the amount of cinnamaldehyde in the vaping liquids by mass spectrometry revealed EC50s around 10-40 times lower than for pure cinnamaldehyde, suggesting that additional compounds or metabolites present in the vaping liquids mediate toxicity. Presence of nicotine in one of the vaping liquids decreased its EC50s about two fold compared to the liquid without nicotine. Exposure to the humectants propylene glycol and vegetable glycerin did not affect the vascular, cartilage or bone development in zebrafish embryos. In conclusion, our study shows that exposure to cinnamaldehyde containing vaping liquids causes severe tissue-specific defects in developing embryos.
Collapse
Affiliation(s)
- Beas Bhattacharya
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States
| | - Vedang Narain
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
6
|
Elwan H, Xie C, Miao LP, Dong X, Zou XT, Mohany M, Ahmed MM, Al-Rejaie SS, Elnesr SS. Methionine alleviates aflatoxinb1-induced broiler chicks embryotoxicity through inhibition of caspase-dependent apoptosis and enhancement of cellular antioxidant status. Poult Sci 2021; 100:101103. [PMID: 34229218 PMCID: PMC8261005 DOI: 10.1016/j.psj.2021.101103] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022] Open
Abstract
Practical methods for preventing embryotoxicity in chickens that are caused by aflatoxin-B1 (AFB1) are currently rare. Binding absorbers are commonly used in feeding stuff to reduce laying hens' exposure to off-contaminated diets, thus reducing residue exposure to fertilized eggs. Nonetheless, several adsorbents have been shown to affect the use of nutrients and the absorption of minerals in poultry. Thus, seeking an effective strategy to counter or control embryotoxicity in broiler chicks caused by AFB1 is a problem. A total of 180 embryonated eggs were injected with 36 ng AFB1 with or without 5.90 mg L-methionine (Met) 30 embryonated eggs each, followed by incubation in an incubator until hatching time. The in ovo injection of Met significantly reduced toxicity caused by AFB1 in broiler embryos by enhancing the liver and kidney functions, lipid profiles, and alleviated oxidative stress during the incubation period. Furthermore, the relative gene expressions (SSTR5, TSH-β, Bcl-2, GSH-Px, GST-a, and SOD in the liver) were up-regulated with in ovo injection of AFB1+Met compared to AFB1 alone. Moreover, there was a dowin-regulated trend in Bax, Caspases-3, Caspases-7, Caspases-9, CYP1A1, CYP2H1, and P53 gene expression with in ovo injection of AFB1+Met compared to AFB1 alone. The in ovo injection of Met led to less apoptotic cells in liver tissues. Such results might be necessary for the poultry industry as it is focused on managing the embryotoxicity of AFB1, which affecting poultry production and welfare. Results from this study demonstrated that in ovo Met injection could alleviate AF-induced toxicity in chicken embryos.
Collapse
Affiliation(s)
- Hamada Elwan
- College of Animal Science, Zhejiang University, Hangzhou, China; Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, 61519, Egypt
| | - Chao Xie
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - L P Miao
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao-Ting Zou
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - S S Elnesr
- College of Animal Science, Zhejiang University, Hangzhou, China; Department of Poultry Production, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| |
Collapse
|
7
|
Zhang X, He Y, Zhang W, Wang Y, Liu X, Cui A, Gong Y, Lu J, Liu X, Huo X, Lv J, Guo M, Du X, Han L, Chen H, Chen J, Li C, Chen Z. Development of Microsatellite Marker System to Determine the Genetic Diversity of Experimental Chicken, Duck, Goose, and Pigeon Populations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851888. [PMID: 33511214 PMCID: PMC7822670 DOI: 10.1155/2021/8851888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Poultries including chickens, ducks, geese, and pigeons are widely used in the biological and medical research in many aspects. The genetic quality of experimental poultries directly affects the results of the research. In this study, following electrophoresis analysis and short tandem repeat (STR) scanning, we screened out the microsatellite loci for determining the genetic characteristics of Chinese experimental chickens, ducks, geese, and pigeons. The panels of loci selected in our research provide a good choice for genetic monitoring of the population genetic diversity of Chinese native experimental chickens, ducks, geese, and ducks.
Collapse
Affiliation(s)
- Xiulin Zhang
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Yang He
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Wei Zhang
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Yining Wang
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Xinmeng Liu
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Aique Cui
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Yidi Gong
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Jing Lu
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Xin Liu
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Xueyun Huo
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Jianyi Lv
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Meng Guo
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Xiaoyan Du
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Lingxia Han
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Chen
- Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Li
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| | - Zhenwen Chen
- Capital Medical University, School of Basic Medical Sciences, Beijing 100069, China
| |
Collapse
|
8
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
9
|
Manafi M. Toxicity of aflatoxin B1 on laying Japanese quails (Coturnix coturnix japonica). JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1436550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Milad Manafi
- Department of Animal Science, Faculty of Agricultural Science, Malayer University, Malayer, Iran
| |
Collapse
|