1
|
Marchal L, Bello A, Archer G, Sobotik EB, Dersjant-Li Y. Total replacement of soybean meal with alternative plant-based ingredients and a combination of feed additives in broiler diets from 1 day of age during the whole growing period. Poult Sci 2024; 103:103854. [PMID: 38815497 PMCID: PMC11170138 DOI: 10.1016/j.psj.2024.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
The capacity of combinations of feed enzymes, natural betaine and a probiotic, combined with alternative plant-based ingredients, to totally replace soybean meal (SBM) in a broiler diet was evaluated. Day-old Ross 308 males (2,574) were assigned to 9 treatments (13 pens/treatment, 22 birds/pen) in a completely randomized design. All diets were pelleted and fed ad libitum in 4 phases: starter, grower, finisher 1, finisher 2 (0-10, 10-21, 21-35, and 35-42 d of age, respectively). Treatments included: 1) control diet containing SBM (SBM control), supplemented with phytase (PhyG), at 2,000, 1,500, 1000 and 1,000 FTU/kg in each phase and xylanase (X) at 750 U/kg, [crude protein (CP): 23.5%, 22.0%, 20.2% and 19.3% in each phase]; 2) to 5), alternative (ALT), SBM-free diets, containing the same CP level as the control ("CP high"), supplemented with PhyG as in the control, protease (P, 800 U/kg) and in 2) xylanase (750 U/kg) (ALT+PhyG+P+X), 3) xylanase-β-glucanase (XB, 1,200 U/kg and 152 U/kg) (Alt+PhyG+P+XB), 4) XB plus betaine (800 g/ton) (ALT+PhyG+P+XB+Bet), and 5) XB plus a probiotic [150,000 colony forming units (CFU)/g] (ALT+PhyG+P+XB+Prob); 6) to 9) as treatments 2) to 5) but with CP reduced by -2.0 to -1.5% points vs. control ('CP low'). Final (d 42) BW and overall (d 0-42) feed conversion ratio (FCR) of birds fed the SBM control exceeded breeder objectives (+3.8% and -1.9%, respectively). Overall FCR was reduced and d 42 BW increased in birds fed "low" vs. "high" CP (P < 0.01). Overall FCR and feed intake were not different in ALT+PhyG+XB+P+Bet and ALT+PhyG+XB+P+Prob vs. the control, whereas final BW was reduced (P < 0.05) in all ALT treatments but close to breeder objectives (98.3%) in ALT+PhyG+XB+P+Prob. Feed costs of this treatment were similar to the control. Total replacement of SBM with alternative plant-based ingredients in a CP-low diet supplemented with hydrolytic enzymes and probiotics can achieve growth performance outcomes close to commercial breeder objectives.
Collapse
Affiliation(s)
- L Marchal
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands.
| | - A Bello
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands
| | - G Archer
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - E B Sobotik
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - Y Dersjant-Li
- Danisco Animal Nutrition & Health (IFF), BH Oegstgeest 2342, The Netherlands
| |
Collapse
|
2
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
3
|
Wealleans AL, Ashour RA, Abu Ishmais MA, Al-Amaireh S, Gonzalez-Sanchez D. Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:457-470. [PMID: 38975585 PMCID: PMC11222113 DOI: 10.5187/jast.2023.e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 02/19/2023] [Indexed: 07/09/2024]
Abstract
This study aimed to evaluate the effect of supplementing different protease enzymes on growth performance, intestinal morphology, and selected carcass traits in broilers fed diets reduced 3.5% in crude protein (CP) and amino acids (AA). One thousand one-day-old Ross 308 broilers (41 g) were assigned to five dietary treatments with ten replicates of 20 birds each: a positive control (PC) diet formulated to meet Ross 308 AA requirements, a negative control (NC) diet reformulated to provide 3.5% lower CP and AA compared to PC, NC supplemented with a multi-protease (PR1) solution, containing 3 different coated proteases produced from Aspergillus niger, Bacillus subtilis and Bacillus licheniformis, NC supplemented with a serine protease (PR2) produced from Bacillus licheniformis, and NC supplemented with an alkaline protease (PR3) produced from Bacillus licheniformis. At slaughter, 40 birds per treatment were used to assess the effect of the different treatments on carcass traits. At 32 days, samples of the duodenum, jejunum, and ileum of 10 birds per treatment were collected for intestinal morphology evaluation. Birds fed PC and NC supplemented with multi-protease exhibited better (p < 0.05) feed efficiency compared to NC and NC supplemented with all the other protease enzymes. Multi-protease supplementation was linked to the highest (p < 0.05) carcass weight and yield. There were significant differences (p < 0.05) between treatments in all gut segments, with PC, PR1, PR2, and PR3 exhibiting longer villi height (VH) compared to NC. This study demonstrates that 3.5% reduction of CP and AA negatively affected for the overall period feed efficiency, carcass yield, and intestinal morphology. The supplementation of the multi-protease restored feed efficiency and improved carcass yield.
Collapse
Affiliation(s)
| | | | - Majdi A. Abu Ishmais
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sadiq Al-Amaireh
- Suliman Al-Amaireh & Partners Co., Tabarbor 11731, Amman, Jordan
| | | |
Collapse
|
4
|
Liu L, Yang N, Chen Y, Xu Z, Zhang Q, Miao X, Zhao Y, Hu G, Liu L, Song Z, Li X. Effects of fulvic acid on broiler performance, blood biochemistry, and intestinal microflora. Poult Sci 2024; 103:103273. [PMID: 38096671 PMCID: PMC10762468 DOI: 10.1016/j.psj.2023.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
To study the effects of mineral fulvic acid (FuA) on broiler performance, slaughter performance, blood biochemistry index, antioxidant function, immune performance, and intestinal microflora, 360 Arbor Acres (AA) broiler chickens with similar body weights were randomly divided into 5 groups with 6 replicates in each group and 12 chickens in each replicate in the current study. Chickens in the control group (C) were fed with the basal diet, and chickens in the test groups (I, II, III, and IV) were fed with the diet supplemented with 0.05%, 0.1%, 0.2%, and 0.3% mineral FuA, respectively. The indicators were measured on the hatching day, d 21 and d 35. From the whole experimental period, FuA supplement significantly increased average body weight (ABW) (P < 0.05), average daily gain (ADG) of broilers (P < 0.05), and thymus weight (P < 0.05) in II and IV groups, but bascially reduced the pH value of thigh meat. FuA supplement significantly improved aspartate aminotransferase (AST) activity in the group III on d 35 (P < 0.05) and the serum levels of IgA and IgG on d 21 and d 35 (P < 0.05), but reduced glutathione peroxidase (GSH-Px) level on d 21 (P < 0.05) and malondialdehyde (MDA) level in serum on d 35 (P < 0.05). FuA supplement significantly affected the abundance of Barnesiella, Lachnospiraceae, Alistipes, Lactobacillus, and Christensenellaceae on genus level. Differences between group III and other groups were significant in the genera microflora composition on d 21 and d 35. Functional analysis showed that the cecum microbiota were mainly enriched in carbohydrate metabolism, amino acid metabolism, and energy metabolism. In conclusion, FuA may potentially have significant positive effects on the growth performance and immune function of AA chickens through the modulation of the gut microbiota, and the 0.1% FuA was the best in broiler diet based on the present study.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Na Yang
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Yueji Chen
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhihao Xu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Qingwei Zhang
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Xiuxiu Miao
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Yanan Zhao
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Geng Hu
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhi Song
- Shandong Agricultural Fertilizer Technology Co., Ltd., Feicheng, Shandong 271600, China
| | - Xianyao Li
- College of Animal Science and Technology Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tai'an 271018, China.
| |
Collapse
|
5
|
Tian Y, Zhang J, Li F, Wang A, Yang Z, Li J. Dietary supplementation with different alternative to in-feed antibiotic improves growth performance of broilers during specific phases. Poult Sci 2023; 102:102919. [PMID: 37494806 PMCID: PMC10393815 DOI: 10.1016/j.psj.2023.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
The effects of substituting Bacillus subtilis, Astragalus membranaceus, and enzymes for aureomycin to improve the growth performance of broilers during specific phases were studied to develop alternatives to in-feed antibiotics and decrease drug residues in meat food and antibiotic resistance. Six hundred one-day-old broilers were randomly assigned to 5 groups. Broilers in the control group were supplied with basal diets (CT), and those in the remaining 4 groups were supplied with feed containing aureomycin premix (AU), B. subtilis powder (BS), A. membranaceus root powder (AM), and enzyme compound powder (EN), respectively. Compared to the control group, broilers in the other groups exhibited better growth performance during different phases. Microbial analysis of cecal contents suggested that treatment with BS or EN significantly increased the abundance of Lactobacillus or Bifidobacteria but inhibited Escherichia coli or Clostridium welchii; however, these bacteria were suppressed by AU treatment except C. welchii. The digestibility of the feed in vitro was significantly enhanced by adding BS or EN to the feed, consistent with findings for growth performance. In conclusion, dietary supplementation with 3 additives could improve the growth performance of broilers during specific phases. Future studies should focus on designing suitable schedules to partially replace in-feed antibiotics.
Collapse
Affiliation(s)
- Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenghua Li
- Research and Development Center of Shandong Soocom Animal Remedy Co., Ltd., Jinan, 250306, China
| | - Anguo Wang
- Research and Development Center of Shandong Soocom Animal Remedy Co., Ltd., Jinan, 250306, China
| | - Zhiqiang Yang
- Shandong Institute of Modern Chinese Veterinary Medicine Industry Development, Jinan, 250306, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
6
|
Hashim M, Gonzalez-Sanchez D, Wealleans A, Abdelkader M, El-Safty SAR, Abdelhady ARY. Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals (Basel) 2023; 13:2378. [PMID: 37508155 PMCID: PMC10376475 DOI: 10.3390/ani13142378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study evaluated the effects of supplementing different doses of a multienzyme (KZP) consisting of carbohydrases and a protease on growth performance, duodenal pH and morphology, and carcass traits in broilers fed diets with increasing reductions in energy. One thousand two hundred one-day-old broiler chicks were allocated to five dietary treatments with eight replicates of 30 birds each: a positive control diet formulated to meet Arbor Acres' nutritional requirements (PC); a negative control diet reformulated to 80 kcal/kg less than the apparent metabolizable energy (AME) of the PC (NC1); a negative control diet reformulated to 120 kcal/kg less than the AME of the PC (NC2); an NC1 diet supplemented with 300 g/t of KZP (NC1 + KZP300); and an NC2 supplemented with 500 g/t of KZP (NC2 + KZP500). Growth performance was measured throughout the study. At 35 days, 10 birds per treatment were randomly selected and euthanized for a carcass trait evaluation, and samples of the duodenum were collected for morphological examination and pH level determination. The final average body weight and feed conversion ratio were better (p < 0.05) for the broilers in the NC1 + KZP300 group compared to those in NC1, NC2 and NC2 + KZP500 groups and were similar to those of the PC birds (p > 0.05). Birds from the NC1 + KZP500 group showed a better (p < 0.05) final body weight and feed efficiency compared to the NC1 and NC2 groups. The villus height was greater (p < 0.05) for the PC and NC1 + KZP300 groups compared to the rest of the treatments. The crypt depth was longer (p < 0.05) for the NC1 and NC2 groups compared to the NC1 + KZP300 group. The supplementation of KZP to both the NC1 and NC2 diets reduced (p < 0.05) the abdominal fat %. This study demonstrates that supplementing energy-reduced diets with KZP improved performance in broiler chickens.
Collapse
Affiliation(s)
- Mosaad Hashim
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
| | | | | | | | - Salah Abdel Rahman El-Safty
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| | - Abdel Rahman Y Abdelhady
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
7
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
8
|
The effects of a Bacillus licheniformis and phytase mixture added to broiler diets on growth performance, nutrient digestibility, and cecal microecosystem. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
This study aims to evaluate the effects of Bacillus licheniformis and 6-phytase added alone or in combination to broiler chicken diets on the growth performance, apparent ileal digestibility coefficient (AID) of nutrients, microbial activity, and cecal bacterial communities. In total, 400 one-day-old female Ross 308 chicks were randomly allocated to 4 dietary treatments (10 replicate pens, 10 birds each). The following groups were defined: NC (negative control), basal diet without any feed additive supplementation; NC+Pro, basal diet with addition of the B. licheniformis preparation (500 g/t of diet); NC+Phy, basal diet with addition of phytase (200 g/t of diet); and NC+Pro+Phy, basal diet combined with both studied additives. B. licheniformis positively affected (P<0.05) the feed intake (FI) and feed conversion ratio (FCR) in the first 10 d of bird rearing. Moreover, phytase supplementation elevated the FCR from 21 to 35 d. In the entire experiment, an interaction between phytase and probiotic was observed only in terms of decreasing the bird FI (P=0.005) without a negative effect on the FCR (P>0.05). Furthermore, the AID of ether extract was improved by phytase supplementation. In terms of the cecal microecology, both separately administered factors promoted Lactobacillaceae in the ceca. Interactions between probiotic preparation and phytase were noted that indicated a decreased Clostridiales population and favored Ruminococcaceae proliferation. It can be concluded that for the first time in the available literature, the favorable interactions between B. licheniformis and phytase resulted in improved performance and cecal microbiota changes in broilers.
Collapse
|
9
|
Hilal A, Florowska A, Wroniak M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery-A Bibliometric Review. Gels 2023; 9:68. [PMID: 36661834 PMCID: PMC9857866 DOI: 10.3390/gels9010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein-polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | | | |
Collapse
|
10
|
Zou Q, Fan X, Xu Y, Wang T, Li D. Effects of dietary supplementation probiotic complex on growth performance, blood parameters, fecal harmful gas, and fecal microbiota in AA+ male broilers. Front Microbiol 2022; 13:1088179. [PMID: 36605508 PMCID: PMC9808919 DOI: 10.3389/fmicb.2022.1088179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis were made into a probiotic complex (PC). The PC was supplemented in AA+ male broilers' diets to investigate the effects of PC on broiler growth performance, carcass traits, blood indicators, harmful gas emissions in feces and microbiota. Three hundred and sixty 1-day-old AA+ male broilers with an average initial body weight (data) were randomly divided into 3 dietary treatments of 6 replicates each, with 20 birds per replicate. The control group (T0) was fed a basal diet, while the test groups (T1 and T2) were supplemented with 0.025 and 0.05% PC in the basal diet, respectively. The trail was 42 days. The results showed that the supplementation of 0.05% PC significantly (p < 0.05) improved average daily gain (ADG) and average daily feed intake (ADFI) of broilers from 22 to 42 days and 1-42 days. Compared to the control group, the breast rate was significantly higher in T2, and the thymic index was significantly higher than that in T1 treatment (p < 0.05). The addition of PC had no significant effects on antibody potency in broiler serum (p > 0.05), but significantly increased albumin and total protein content in serum (p < 0.05). The addition of PC reduced H2S and NH3 emissions in the feces; the levels of Escherichia coli and Salmonella in the feces were significantly reduced and the levels of Lactobacillus were increased. And the most significant results were achieved when PC was added at 0.05%. Correlation analysis showed a significant positive correlation (p < 0.05) between the levels of E. coli and Salmonella and the emissions of H2S and NH3. Conclusion: Dietary supplementation with a 0.05% probiotic complex could improve the growth performance of broilers and also reduced fecal H2S and NH3 emissions, as well as fecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, PC made by Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.05%.
Collapse
|
11
|
Abd El-Hack ME, Alagawany M, El-Shall NA, Shehata AM, Abdel-Moneim AME, Naiel MAE. Probiotics in Poultry Nutrition as a Natural Alternative for Antibiotics. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:137-159. [DOI: 10.2174/9789815049015122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Since the early 1950s, antibiotics have been used in poultry for improving
feed efficiency and growth performance. Nevertheless, various side effects have
appeared, such as antibiotic resistance, antibiotic residues in eggs and meat, and
imbalance of beneficial intestinal bacteria. Consequently, it is essential to find other
alternatives that include probiotics that improve poultry production. Probiotics are live
microorganisms administered in adequate doses and improve host health. Probiotics are
available to be used as feed additives, increasing the availability of the nutrients for
enhanced growth by digesting the feed properly. Immunity and meat and egg quality
can be improved by supplementation of probiotics in poultry feed. Furthermore, the
major reason for using probiotics as feed additives is that they can compete with
various infectious diseases causing pathogens in poultry's gastrointestinal tract. Hence,
this chapter focuses on the types and mechanisms of action of probiotics and their
benefits, by feed supplementation, for poultry health and production.
Collapse
Affiliation(s)
| | | | - Nahed A. El-Shall
- Alexandria University,Department of poultry and fish diseases,Elbehira,Egypt
| | | | | | | |
Collapse
|
12
|
Ahmad R, Yu YH, Hsiao FSH, Su CH, Liu HC, Tobin I, Zhang G, Cheng YH. Influence of Heat Stress on Poultry Growth Performance, Intestinal Inflammation, and Immune Function and Potential Mitigation by Probiotics. Animals (Basel) 2022; 12:ani12172297. [PMID: 36078017 PMCID: PMC9454943 DOI: 10.3390/ani12172297] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The poultry industry sustains severe economic loss under heat stress conditions. Heat stress adversely affects the productivity, physiological status, and immunity of birds. To date, several mitigation measures have been adopted to minimize the negative effects of heat stress in poultry. Nutritional strategies have been explored as a promising approach to mitigate heat stress-associated deleterious impacts. Of these, probiotic feeding has a strong potential as a nutritional strategy, and this approach warrants further investigation to improve thermotolerance in poultry. Abstract Heat stress has emerged as a serious threat to the global poultry industry due to climate change. Heat stress can negatively impact the growth, gut health, immune function, and production and reproductive performances of poultry. Different strategies have been explored to mitigate heat stress in poultry; however, only a few have shown potential. Probiotics are gaining the attention of poultry nutritionists, as they are capable of improving the physiology, gut health, and immune system of poultry under heat stress. Therefore, application of probiotics along with proper management are considered to potentially help negate some of the negative impacts of heat stress on poultry. This review presents scientific insight into the impact of heat stress on poultry health and growth performance as well as the application of probiotics as a promising approach to alleviate the negative effects of heat stress in poultry.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
| | - Chin-Hui Su
- Ilan Branch, Livestock Research Institute, Yilan 268020, Taiwan
| | - Hsiu-Chou Liu
- Ilan Branch, Livestock Research Institute, Yilan 268020, Taiwan
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (G.Z.); (Y.-H.C.)
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan
- Correspondence: (G.Z.); (Y.-H.C.)
| |
Collapse
|
13
|
Ayalew H, Zhang H, Wang J, Wu S, Qiu K, Qi G, Tekeste A, Wassie T, Chanie D. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Front Vet Sci 2022; 9:916473. [PMID: 35782570 PMCID: PMC9247512 DOI: 10.3389/fvets.2022.916473] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023] Open
Abstract
This article aimed to describe the current use scenario, alternative feed additives, modes of action and ameliorative effects in broiler production. Alternative feed additives have promising importance in broiler production due to the ban on the use of certain antibiotics. The most used antibiotic alternatives in broiler production are phytogenics, organic acids, prebiotics, probiotics, enzymes, and their derivatives. Antibiotic alternatives have been reported to increase feed intake, stimulate digestion, improve feed efficiency, increase growth performance, and reduce the incidence of diseases by modulating the intestinal microbiota and immune system, inhibiting pathogens, and improving intestinal integrity. Simply, the gut microbiota is the target to raise the health benefits and growth-promoting effects of feed additives on broilers. Therefore, naturally available feed additives are promising antibiotic alternatives for broilers. Then, summarizing the category, mode of action, and ameliorative effects of potential antibiotic alternatives on broiler production may provide more informed decisions for broiler nutritionists, researchers, feed manufacturers, and producers.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Haijun Zhang
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Teketay Wassie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Demissie Chanie
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
14
|
Wickramasuriya SS, Macelline SP, Kim E, Shin TK, Cho HM, Jayasena DD, Heo JM. Exogenous emulsifiers and multi-enzyme combination improves growth performance of the young broiler chickens fed low energy diets containing vegetable oil. Anim Biosci 2022; 35:1585-1591. [PMID: 35468275 PMCID: PMC9449380 DOI: 10.5713/ab.22.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The present study examined the effects of exogenous emulsifiers and multi-enzyme supplementation into a low energy density diet on growth performance, visceral organ parameters, blood metabolites, ileal morphology, and nutrient digestibility in broiler chickens from hatch to 21 days. Methods One hundred and sixty-eight one-day-old Ross 308 broiler chickens were allocated in a completely randomized design to 24 pens and each pen was assigned to one of four dietary treatments to give six replications with seven chickens in a cage. Dietary treatments were: i) positive control with standard energy level (PC); ii) negative control with 100 kcal/kg lower energy of the standard level (NC); iii) NC diet supplemented 0.05% calcium stearoyl-2 lactylate as an emulsifier (NC+E); and iv) NC diet supplemented with both 0.05% calcium stearoyl-2 lactylate and 0.05% multi-enzyme (NC+E+M). Corn and soybean meal-based control diets containing vegetable oil were formulated to meet the Ross 308 nutrition specification. Chickens were fed ad-libitum with the treatment diets and sampling was conducted on day 21. Results Our results revealed that emulsifier and multi-enzyme supplementation into NC diets improved (p<0.05) feed efficiency of the broiler chickens compared to the broiler chickens fed NC diets from hatch to 21 days. Supplementation of emulsifier and multi-enzyme into NC diet improved (p<0.05) nutrient digestibility of the broiler chickens. However, emulsifier and multi-enzymesupplementation into diet did not influence (p>0.05) visceral organ weight, blood metabolites, and intestinal morphology in broiler chickens fed NC diets. Conclusion Supplementation of emulsifier and multi-enzyme in the NC diet would support improving growth performance in young broiler chickens with improved feed efficiency and increased nutrient digestibility thereby curtailing the negative impact of energy reduction in the diets.
Collapse
Affiliation(s)
| | - Shemil Priyan Macelline
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney 2006, Australia
| | - Eunjoo Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Taeg Kyun Shin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Min Cho
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Dinesh D Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
15
|
Effects of a direct fed microbial (DFM) on broiler chickens exposed to acute and chronic cyclic heat stress in two consecutive experiments. Poult Sci 2022; 101:101705. [PMID: 35183990 PMCID: PMC8861399 DOI: 10.1016/j.psj.2022.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Two consecutive 35 d experiments were conducted to investigate the effects of a multistrain DFM fed continuously to broiler chickens exposed to HS from 28 to 35 d on broiler performance, body composition, ileal digestibility, and intestinal permeability using serum Fluorescein Isothiocyanate Dextran (FITC-d) concentration. The treatments were arranged as a 2 × 2 factorial with temperature: Elevated (HS: 33 ± 2°C for 6 h and 27.7°C for the remaining 18 h from 28 to 35 days of age) and Thermoneutral (TN: 22 to 24°C over the entire 24-h day from 28 to 35 days of age) and diet: corn-soybean meal based with and without DFM (3-strain Bacillus; Enviva PRO) fed over the entire 35-d period as the two factors. Experimental diets were formulated to meet all nutrient recommendations based on breed standards using a starter (0–10 d), grower (10–21 d), and finisher (21–35 d) period. For each of the 2 experiments, 648 Ross 708 broiler chicks were allotted among the treatments with 9 replicate pens of 18 broilers. Data were analyzed as a 2 × 2 factorial within each experiment in JMP 14. In both experiments, cloacal temperatures were increased (P ≤ 0.05) in the broilers subjected to the HS treatment at both 28 d (acute) and 35 d (chronic). Supplementing birds with DFM reduced cloacal temperatures in the Experiment 1 at 28 d, but not at the other time periods. The HS treatment reduced body weight gain and lean tissue accretion from 0 to 35 d in both experiments (P ≤ 0.05). In Experiment 2, when the litter was reused BWG was increased by 36 g/bird with supplementation of DFM (P ≤ 0.05). Ileal digestibility at 28 d (2 h post HS) was improved with DFM supplementation in both experiments (P ≤ 0.05). Serum FITC-d increased with HS at both 28 and 35 d. Serum FITC-d was generally decreased with DFM at 28 d but the response was inconsistent at 35 d. Overall, the results suggest that HS reduced broiler performance and DFM treatment improved intestinal permeability and nutrient digestibility responses to HS in both experiments but did not improve performance until built up litter was used in Experiment 2.
Collapse
|
16
|
Peng S, Wang X, Wang Y, Lv T, Zhao H, Wang Y, Zhu S, Qiu H, Zeng J, Dai Q, Lin Q. Effects of Dietary Bacillus and Non-starch Polysaccharase on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Intestinal Morphology, and Serum Antioxidant Profiles in Ducks. Front Microbiol 2021; 12:786121. [PMID: 34956153 PMCID: PMC8692731 DOI: 10.3389/fmicb.2021.786121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Given the desirable results of using probiotics and enzyme preparations as feed supplements in poultry health, here, the effects of Bacillus and Non-starch Polysaccharase (NSPase) on the growth performance, serum antioxidant profiles, and gut microbial communities of early stage ducks is investigated. A total of 400 Zhijiang ducks (of similar body weight and 1 day age) was selected and randomly divided into four groups. The feeding period was 28 days. Each group contained 10 replicates of 10 birds. Control group (I) was fed with basal diet, while treatment groups II to IV were fed, respectively, with 150 mg/kg NSPases, 25 mg/kg Bacillus probiotics, and 150 mg/kg NSPases + 25 mg/kg Bacillus probiotics in their basal diet. The results demonstrated that dietary Bacillus (25 mg/kg) increased average final weight, average daily gain (ADG), and decreased the malonaldehyde (MDA) in birds (P < 0.05). Dietary Bacillus (25 mg/kg) and NSPases + Bacillus (150 mg/kg + 25 mg/kg) presented much higher glutathione (GSH) and activities of superoxide dismutase (SOD) in birds (P < 0.05). Additionally, as revealed by β-diversity indices and analysis of similarities, dietary NSPases + Bacillus could affect the ileum microbial abundances and diversities at the genera level (P < 0.05), but it had no effect on the caecal microbiota. Also, 16S rRNA sequencing revealed that dietary Bacillus and NSPases + Bacillus increased the populations of Ruminococcaceae genera in the cecum (P < 0.05), and S24-7_group and Lactobacillus genera in the ileum (P < 0.05). However, dietary NSPases and Bacillus alone and in combination could significantly decrease the content of Bacteroides in the ileum (P < 0.05). According to Spearman correlation analysis, 7 ilea bacterial microbiomes (S24-7 group, Lactobacillus, Subgroup 2, Subgroup 1, Kitasatospora, Candidatus Solibacter, and Akkermansia) were positively correlated with SOD (P < 0.05). In conclusion, Bacillus (25 mg/kg) and NSPases (150 mg/kg) included in the diet could efficiently enhance the growth performance by altered gut microbiota composition at the genera level and antioxidant indices of ducks.
Collapse
Affiliation(s)
- Simin Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yuyu Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianguo Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Van Hoeck V, Wu D, Somers I, Wealleans A, Vasanthakumari B, Gonzalez Sanchez A, Morisset D. Xylanase impact beyond performance: a prebiotic approach in broiler chickens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Gibbs K, Lacharme-Lora L, Dersjant-Li Y, Evans C, Wigley P. A probiotic and mixed-enzymes combination reduces the inflammatory response, faecal shedding and systemic spread of Campylobacter jejuni in broilers. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has questioned the notion that Campylobacter jejuni is a harmless resident of the avian gastrointestinal tract (GIT). The following trial examined the effect of dietary supplementation with a mixture of enzymes and Bacillus-based probiotics on growth performance, C. jejuni colonisation, GIT immune responses, faecal shedding and extra-intestinal spread in broilers. Fifty-eight, Ross 308 d-old broilers were randomly assigned to one of four treatments, giving 14 or 15 birds/pen. Birds were given nutritionally complete, complex, phased diets unsupplemented (two treatments) or supplemented (two treatments) with a multi-enzyme containing 2,000 U/kg xylanase, 200 U/kg amylase and 4,000 U/kg protease, and 75,000 cfu/g of a combination of three strains of Bacillus amyloliquefaciens. One control and one supplemented diet group contained birds orally challenged with 105 cfu C. jejuni strain M1 on d 21 of age. Among challenged birds, the mixed-enzymes and probiotic combination numerically reduced faecal C. jejuni shedding (-98% vs challenged control) three days-post-infection (d.p.i.), and at 7 d.p.i. numerically reduced C. jejuni colonisation of the ileal mucosa (-1000-fold vs control) and totally inhibited systemic spread of C. jejuni to the liver, compared to the control (P<0.05). It suppressed early pro-inflammatory chemokine response seen in the ileum, caecum and caecal tonsil tissues (at 3 d.p.i.) in challenged control birds (-18 to -46-fold; P<0.05) and altered expression of pro-inflammatory (IL-1β, IL-6, IL-17A and IL-17F) and regulatory (IL-10 and TGF-β) cytokines. The data demonstrated inhibition of a sustained pro-inflammatory response to C. jejuni infection and improved intestinal barrier integrity in supplemented birds. This highlighted the importance of looking beyond simple measurements of feed conversion and body weight gain when seeking to understand the effects and mode of action of poultry dietary interventions. Achieving a favourable balance between the gut, immune function, microbiome and nutrition should be the goal for achieving good gastrointestinal health and optimal performance.
Collapse
Affiliation(s)
- K. Gibbs
- Danisco Animal Nutrition, Willem Einthovenstraat 4, 2342 BH Oegstgeest, the Netherlands
| | - L. Lacharme-Lora
- Institute of Infection & Global Health, University of Liverpool, Chester high road, Neston, CH64 7TE, United Kingdom
| | - Y. Dersjant-Li
- Danisco Animal Nutrition, Willem Einthovenstraat 4, 2342 BH Oegstgeest, the Netherlands
| | - C. Evans
- Danisco Animal Nutrition, Willem Einthovenstraat 4, 2342 BH Oegstgeest, the Netherlands
| | - P. Wigley
- Institute of Infection & Global Health, University of Liverpool, Chester high road, Neston, CH64 7TE, United Kingdom
| |
Collapse
|
19
|
Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms 2021; 9:microorganisms9061341. [PMID: 34205811 PMCID: PMC8233972 DOI: 10.3390/microorganisms9061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
There are well documented complications associated with the continuous use of antibiotics in the poultry industry. Over the past few decades, probiotics have emerged as viable alternatives to antibiotics; however, most of these candidate probiotic microorganisms have not been fully evaluated for their effectiveness as potential probiotics for poultry. Recent evaluation of a metagenome of broiler chickens in our laboratory revealed a prevalence of Lactobacillus reuteri (L. reuteri) and Actinobacteria class of bacteria in their gastrointestinal tract. In this study Lactobacillus reuteri and Streptomyces coelicolor (S. coelicolor) were selected as probiotic bacteria, encapsulated, and added into broiler feed at a concentration of 100 mg/kg of feed. In an 8-week study, 240 one day-old chicks were randomly assigned to four dietary treatments. Three dietary treatments contained two probiotic bacteria in three different proportions (L. reuteri and S. coelicolor individually at 100 ppm, and mixture of L. reuteri and S. coelicolor at 50 ppm each). The fourth treatment had no probiotic bacteria and it functioned as the control diet. L. reuteri and S. coelicolor were added to the feed by using wheat middlings as a carrier at a concentration of 100 ppm (100 mg/kg). Chickens fed diets containing L. reuteri and S. coelicolor mixture showed 2% improvement in body weight gain, 7% decrease in feed consumption, and 6–7% decrease in feed conversion ratios. This research suggests that L. reuteri and S. coelicolor have the potential to constitute probiotics in chickens combined or separately, depending on the desired selection of performance index.
Collapse
|
20
|
Neveling DP, Dicks LMT. Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing. Probiotics Antimicrob Proteins 2021; 13:1-11. [PMID: 32556932 DOI: 10.1007/s12602-020-09640-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogens develop resistance to antibiotics at a rate much faster than the discovery of new antimicrobial compounds. Reports of multidrug-resistant bacteria isolated from broilers, and the possibility that these strains may spread diseases amongst humans, prompted many European countries to ban the inclusion of antibiotics in feed. Probiotics added to broiler feed controlled a number of bacterial infections. A combination of Enterococcus faecium, Pediococcus acidilactici, Bacillus animalis, Lactobacillus salivarius and Lactobacillus reuteri decreased the colonisation of Campylobacter jejuni and Salmonella Enteritidis in the gastro-intestinal tract (GIT) of broilers, whereas Bacillus subtilis improved feed conversion, intestinal morphology, stimulated the immune system and inhibited the colonisation of Campylobacter jejuni, Escherichia coli and Salmonella Minnesota. Lactobacillus salivarius and Pediococcus parvulus improved weight gain, bone characteristics, intestinal morphology and immune response, and decreased the colonisation of S. Enteritidis. Lactobacillus crispatus, L. salivarius, Lactobacillus gallinarum, Lactobacillus johnsonii, Enterococcus faecalis and Bacillus amyloliquefaciens decreased the Salmonella count and led to an increase in lysozyme and T lymphocytes. Probiotics may also improve feed digestion through production of phytases, lipases, amylases and proteases or stimulate the GIT to secrete digestive enzymes. Some strains increase the nutritional value of feed by production of vitamins, exopolysaccharides and antioxidants. Bacteriocins, if produced, regulate pathogen numbers in the GIT and keep pro-inflammatory and anti-inflammatory reactions in balance.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
21
|
Ghodrati M, Rajabi Islami H, Hosseini Shekarabi SP, Shenavar Masouleh A, Shamsaie Mehrgan M. Combined effects of enzymes and probiotics on hemato-biochemical parameters and immunological responses of juvenile Siberian sturgeon (Acipenser baerii). FISH & SHELLFISH IMMUNOLOGY 2021; 112:116-124. [PMID: 33713825 DOI: 10.1016/j.fsi.2021.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/09/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A 10-week feeding trial was run to investigate the separate and simultaneous effects of exogenous enzymes (Enz), probiotics (Pro), and Pro-Enz mixtures on the hematology indices, serum biochemical parameters, and innate-immunity status of juvenile Siberian sturgeon. The fish (138.06 ± 3.64 g) were randomly dispersed into 12 tanks (20 individuals per tank) and fed with Enz (Phytase, protease, and xylanase), Pro (Pediococcus pentosaceus and Lactococcus lactis), and Pro-Enz cocktail. At the end of the feeding bioassay, the highest values of red blood cell count, hemoglobin concentration, hematocrit level, and lymphocyte percentage followed by the lowest neutrophil percentage were obtained in Pro-Enz treatment (P < 0.05). Despite a significantly lower level of alkaline phosphatase in the fish fed with Pro supplemented diet (P < 0.05), no significant difference was found in the serum level of alanine aminotransferase and aspartate aminotransferase among the experimental groups (P > 0.05). Total protein content was significantly upregulated in serum and skin mucus samples from those fed with supplemented diets compared to the control group (P < 0.05). In both serum and skin mucus samples, higher immune responses in terms of lysozyme activity, immunoglobulin M, total protein was seen in Pro-Enz treatment compared to the control group followed by the serum complement components (P < 0.05). The results indicate that the combinational supplementation of Siberian sturgeon diet with the exogenous enzymes and probiotics modulates the physiometabolic responses and innate immune system to a higher grade than their individual supplementation.
Collapse
Affiliation(s)
- Mojtaba Ghodrati
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Alireza Shenavar Masouleh
- Department of Fish Health and Diseases, International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Mehdi Shamsaie Mehrgan
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Sallam EA, Mohammed LS, Elbasuni SS, Azam AE, Soliman MM. Impacts of Microbial based Therapy on Growth Performance, Intestinal Health, Carcass Traits and Economic Efficiency of Clostridium perfringens-Infected Cobb and Arbor Acres Broilers. Vet Med Sci 2021; 7:773-791. [PMID: 33720539 PMCID: PMC8136931 DOI: 10.1002/vms3.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The poultry farms need a safe and effective alternative for antibiotics that can counteract the negative impacts of necrotic enteritis (NE), which causes severe mortalities and economic losses. The current study was aimed to examine the influence of antibiotic (Flagymox) and the microbial‐based administration on carcass traits in Clostridium(C.)perfringens‐infected Cobb and Arbor Acres broilers. A total number of 360 Cobb and Arbor Acres broiler chicks (180 numbers per breed) were allocated to four groups; negative control group (without any treatments); positive control group (administration of C. perfringens at the rate of 1 × 109cfu/bird via crop gavage twice daily from day 16 to 18 post‐hatch); C. perfringens challenge plus antibiotic (Flagymox®) group, and Clostridiumperfringens challenge plus microbial‐based treatment (Big‐lactoα®) group. The results indicated that the Flagymox and Big‐lactoα treated Cobb breed group achieved a significant increase in their body weight (BW) than the positive control group at the third week post‐infection. Also, the Arbor Acres breed gained significantly higher weight compared to the Cobb breed at the third week. Total weight gain (TWG) from 0 to the fifth week in the Cobb and Arbor Acres breeds were higher in the groups treated with Flagymox and Big‐lactoα compared to the birds challenged with C. perfringens without any treatment, thus, increasing the total return (TR) in the treated groups. Economic efficiency showed no significant differences (p < .05) between the treatment groups of both the breeds. Although the treatment cost of Flagymox is higher than the microbial‐based treatment (0.86 versus 0.35 LE), there were no mortalities reported in the microbial‐based groups in both the breeds resulting in significantly low losses compared to the Flagymox treated groups. The groups treated with the microbial‐based products in both breeds were superior in dressing percentage (75.16 and 77.06% for Cobb and Arbor Acres, respectively) compared to that of the other groups. In conclusion, microbial‐based therapy improved the growth rate, carcass traits, survival rate, and economic efficiency in necrotic enteritis induced in Cobb and Arbor Acres broilers.
Collapse
Affiliation(s)
- Eman A Sallam
- Animal and Poultry Production, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Liza S Mohammed
- Veterinary Economics and Farm Management, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Avian and Rabbit diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Aya E Azam
- Animal Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
23
|
Hadieva G, Lutfullin M, Pudova D, Akosah Y, Shagimardanova E, Gogoleva N, Sharipova M, Mardanova A. Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota. 3 Biotech 2021; 11:126. [PMID: 33643761 DOI: 10.1007/s13205-020-02634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/25/2023] Open
Abstract
We investigated the effect of the strain Bacillus subtilis GM5 on growth, feed conversion, and the composition of cecum microbiota in broiler chickens. Half of which received a control diet, while the other half was fed a diet supplemented with GM5 spores. Cecal contents on days 1, 10, and 42 were subjected to metataxonomic analysis. Principal Component Analysis showed that the control and probiotic groups formed three separate clusters, indicating changes, which occurred gradually in microbial communities. On day 1, Firmicutes (53.87-57.61%) and Proteobacteria (43.77-38.93%) were prevalent in both groups, whereas samples of days 10 and 42 were predominantly occupied by Firmicutes (54.55-81.79%) and Bacteroidetes (26.94-30.45%). In the group of chickens treated with probiotic, the average daily gain in body weight was higher, while feed conversion decreased by 1.44%. A surge in the presence of beneficial bacteria of the Ruminococcaceae family was observed. The introduction of the probiotic led to an elevated Firmicutes/Bacteroidetes ratio, which positively correlated with chickens' bodyweight (Spearman ρ = 1.0, P < 0.05). Supplementing broiler feed with B. subtilis GM5 spores leads to improved feed intake and digestibility, which is paramount in reducing the cost of the final product. Thus, the probiotic strain GM5 modulates the cecal microbiota of broiler chickens and increases microbial diversity, which is well exhibited on the 42nd day. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02634-2.
Collapse
|
24
|
Marchal L, Bello A, Sobotik EB, Archer G, Dersjant-Li Y. A novel consensus bacterial 6-phytase variant completely replaced inorganic phosphate in broiler diets, maintaining growth performance and bone quality: data from two independent trials. Poult Sci 2021; 100:100962. [PMID: 33652522 PMCID: PMC7936205 DOI: 10.1016/j.psj.2020.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 12/20/2020] [Indexed: 01/17/2023] Open
Abstract
Total replacement of dietary inorganic phosphate (Pi) by a novel consensus bacterial 6-phytase variant (PhyG) in phytate-rich diets (>0.3% phytate-P) was investigated in 2 trials using growth performance and bone quality as outcome measures. Both trials utilized a completely randomized design with 5 dietary treatments across 4 phases: starter (0-10 d), grower (10-21 d), finisher 1 (21-35 d), and finisher 2 (35-42 d). Treatments comprised a nutritionally adequate positive control (PC) diet containing monocalcium phosphate and 4 experimental diets (IPF1, IPF2, IPF3, and IPF4), all containing no added Pi and reduced in Ca by 0.2 to 0.3% units vs. PC. IPF1contained PhyG at 1,000 FTU/kg (all phases); IPF2 contained PhyG at 1,000 FTU/kg (all phases) and was additionally reduced in digestible AA, ME, and sodium (-0.2 to -0.4% points, -74 kcal/kg, -0.04% points, respectively, vs. PC); IPF3 contained PhyG at 3,000 FTU/kg in starter, 2,000 FTU/kg in grower, and 1,000 FTU/kg in finisher phases; and IPF4 contained xylanase (2,000 U/kg) and PhyG (2,000 FTU/kg in starter, 1,500 FTU/kg in grower, and 1,000 FTU/kg in finisher phases) and was additionally reduced in ME (-71 kcal/kg vs. PC). Ross 308 broilers were used (trial 1: n = 1,200 mixed sex; 24 birds per pen × 10 replicates; trial 2: n = 1,300 males; 26 birds × 10 replicates). During all phases in both trials, all IPF treatments maintained or improved BW, ADG, ADFI, FCR and BW-corrected FCRc and bone quality parameters vs. PC. vs. PC, treatment IPF3 increased ADG during starter phase (+10.8%) and reduced overall FCRc (-12 points, P < 0.05) in Trial 1, and increased overall ADG (+4.4%), day 35 and day 42 BW (+3.5%, +4.9%), and reduced overall FCRc (-11 points) in Trial 2 (P < 0.05). IPF4 produced equivalent performance to IPF3 (both trials). These are the first data to demonstrate total replacement of Pi by microbial phytase during an entire growth cycle in broiler diets.
Collapse
Affiliation(s)
- L Marchal
- Animal Nutrition, DuPont Nutrition and Biosciences, 2342 BH Oegstgeest, the Netherlands; Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands.
| | - A Bello
- Animal Nutrition, DuPont Nutrition and Biosciences, 2342 BH Oegstgeest, the Netherlands
| | - E B Sobotik
- Department of Poultry Science, Texas A&M University, College Station, 77843-2472 USA
| | - G Archer
- Department of Poultry Science, Texas A&M University, College Station, 77843-2472 USA
| | - Y Dersjant-Li
- Animal Nutrition, DuPont Nutrition and Biosciences, 2342 BH Oegstgeest, the Netherlands
| |
Collapse
|
25
|
Emanuel Manggotu Nahak T, Endang Tri Hastuti Wahyuni A, Yanuartono, Rangga Tabbu C. Probiotics and Herbs Combination in Commercial Feed Additives as Growth Promoter in Broiler Chicken. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213304008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prohibition on the use of Antibiotic Growth Promoter (AGP) causes the use of probiotics, herbs, enzymes and organic acids as an alternatives to AGP. This study aimed to determine the role of combination of probiotic and herbs in commercial feed additives on broiler performance. Sixty day-old male broiler were divided into 3 groups where each group consisted of 20 chickens with 4 replication each group. Group I was given commercial feed, group II was given commercial feed + AGP and group III was given commercial feed + combination of probiotics, herbs, enzymes and organic acids. All chickens were kept for 5 weeks. Body weight gain (BWG), body weight (BW) and Feed Convertion Ratio (FCR) were calculated every week. Carcass percentage was calculated at week 5. The results obtained from BWG and BW on group III at weeks 4 and 5 weeks were higher and significant difference (P<0.05) compared to groups I and II. The percentage of carcasses between groups did not have a significant difference (P>0.05). FCR values in group III from week 1 to weeks 5 were lower than groups I and II. The use of combination of probiotics, herbs, enzymes and organic acids has proven to have a good role on broiler performance so that it can replace AGP as a feed additive on broiler.
Collapse
|
26
|
Comparative study of protease hydrolysis reaction demonstrating Normalized Peptide Bond Cleavage Frequency and Protease Substrate Broadness Index. PLoS One 2020; 15:e0239080. [PMID: 32956384 PMCID: PMC7505449 DOI: 10.1371/journal.pone.0239080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Two commercial proteases (subtilisin-typed FNA from Bacillus amyloliquefaciens, and chymotrypsin-like NPP from Nocardiopsis prasina), porcine pepsin, porcine pancreatin having protease activity and their combinations were studied in vitro by LC-MS for their ability to digest soy protein isolate (SPI) under conditions close to those found in the stomach (pH 3.7) and small intestine (pH 6.5). The total number of peptides generated, and their size distribution were obtained under each set of the digestion conditions. These peptides were grouped according to their C-terminal amino acid (AA) residue (P1) and mass, based on which two concepts were proposed, i.e., Normalized Peptide Bond Cleavage Frequency (NPBCF) and Protease Substrate Broadness Index (PSBI). At pH 3.7, FNA+pepsin increased PSBI vs. pepsin alone by 2.7 and 4.9 percentage points (p.p.) at a SPI:protease ratio of 20:1 and 100:1, respectively. At pH 6.5, FNA+pancreatin improved PSBI by 9.1 and 10.2 p.p. at SPI:protease 20:1 and 100:1, respectively, vs. pancreatin alone. NPP generated 38% more peptides than FNA when administered with pancreatin at SPI:protease 200:1:1 and pH 6.5, but FNA alone (28.9) or FNA+pancreatin (29.1) gave a higher PSBI than pancreatin (22.2), NPP (20.3) and NPP+pancreatin (22.0). At pH 3.7 FNA generated 59% and 39% of peptides of pepsin at SPI:protease of 20:1 and 100:1, respectively, and both groups of peptides had similar size distribution. At pH 6.5 more small sized peptides were generated by FNA or FNA+pancreatin than pancreatin and NPP alone or pancreatin+NPP. In conclusion, FNA showed complementary effects with pepsin and pancreatin in terms of PSBI and generated more small sized peptides compared to NPP.
Collapse
|
27
|
Wang X, Tan B, Liao P, Cui Z, Zhang S, Li X, Yin Y, Xiao D. Functional bioactive substance improves the growth performance, antioxidant capacity and immune function of growth retardation pigs. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1728235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xianze Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Zhijuan Cui
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Shuo Zhang
- Yunnan Yin Yulong Academician Workstation at Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology co., Ltd., Kunming, People’s Republic of China
| | - Xiaozhen Li
- Yunnan Yin Yulong Academician Workstation at Yunnan Yin Yulong Academician Workstation, Yunnan Xinan Tianyou Animal Husbandry Technology co., Ltd., Kunming, People’s Republic of China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, People’s Republic of China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People’s Republic of China
| |
Collapse
|
28
|
Singh AK, Tiwari UP, Berrocoso JD, Dersjant-Li Y, Awati A, Jha R. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers. Poult Sci 2020; 98:5571-5581. [PMID: 31198939 DOI: 10.3382/ps/pez310] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/18/2019] [Indexed: 12/23/2022] Open
Abstract
This study evaluated the effects of a combination of xylanase, amylase, and protease (XAP), with probiotics (3 Bacillus spp.) supplementation on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients in Cobb 500 broilers from 0 to 21 d. A completely randomized 2 × 4 factorial design (2 levels of fiber; 4 types of supplements) with 8 replicate cages (6 birds/cage) was used. Each low and high-fiber diet contained 500 FTU/kg Buttiauxella sp. phytase and was supplemented with: (a) none (control), (b) XAP (2,000 U xylanase + 200 U amylase + 4,000 U protease/kg diet), (c) probiotics (75,000 CFU/g of Bacillus spp.), or (d) XAP + probiotics. High fiber decreased (P < 0.05) nitrogen-corrected apparent metabolizable energy (AMEn), AID of all amino acids (AA), AID and ATTD of dry matter (DM), crude protein (CP), starch, and gross energy (GE). High fiber increased (P < 0.01) the flow of total non-starch polysaccharides (NSP) in both ileum and total tract. The XAP + probiotics increased (P < 0.01) AMEn as well as AID and ATTD of DM, CP, GE, starch, while alone, XAP yielded similar improvement except for DM compared with control. The supplemental XAP alone improved (P < 0.01) the digestibility of most of the AAs compared with control. Moreover, XAP + probiotics increased (P < 0.05) AID of all AA except arginine and serine compared with control. A fiber × supplements interaction (P < 0.05) was found for AID of histidine and threonine, and their digestibility in high-fiber diet was improved to a level comparable to low-fiber diet by XAP + probiotics. The flow of NSP in XAP group was 5 to 6% lower than in control while NSP flow in XAP + probiotic group was further 4% lower than that of XAP group (P < 0.01). The results infer that the combination of XAP and probiotics can effectively optimize the nutrient digestibility in broilers fed both low and high-fiber diets.
Collapse
Affiliation(s)
- A K Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - U P Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - J D Berrocoso
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Y Dersjant-Li
- Danisco Animal Nutrition/DuPont, Marlborough SN8 1XN, UK
| | - A Awati
- Danisco Animal Nutrition/DuPont, Marlborough SN8 1XN, UK
| | - R Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
29
|
Feng Y, Wang L, Khan A, Zhao R, Wei S, Jing X. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens. Poult Sci 2020; 99:263-271. [PMID: 32416810 PMCID: PMC7587633 DOI: 10.3382/ps/pez482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Wheat bran, while a nutritious and economic feed ingredient, contents high levels of non-starch polysaccharides which entraps nutrients and interferes digestion and absorption. To study the influence of fermented wheat bran by xylanase-producing Bacillus cereus on growth performance and intestinal microflora of broiler chickens, a total of 180 broilers (21-day-old, mixed of male and female) were randomly divided into 3 treatments, with 6 replicates in each treatment and 10 broilers in each replicate: 1) control check (CK), corn-soybean meal-based diet; 2) wheat bran group (WB), 5% of the corn were replaced with wheat bran; and 3) fermented wheat bran group (FWB), 5% of the corn were replaced with fermented wheat bran. Growth performance was determined in the period of 21- to 42-day-old. Intestinal digestive enzyme activities and microbiota diversity were analyzed on day 42. No differences were observed on growth performance among treatments (P > 0.05). The activity of amylase in the duodenum of FWB was 1.56 times higher than CK (P < 0.05). The Chao1 index of microbiota in cecum of FWB increased 24.26% compared with CK (P < 0.01). The amount of Bifidobacteriaceae in cecum of WB was 29.1 times and 15.8 times higher than CK and FWB (P < 0.05) respectively. Principal co-ordinates analysis in cecum revealed the dissimilarity microbiota among treatments. In summary, the use of fermented wheat bran to partially replace corn (5%) in diets had no adverse effect on growth performance and triggered beneficial effects such as increasing duodenal amylase activity and intestinal microflora abundance in broiler chickens. These observations support that solid-state fermentation by xylanase-producing Bacillus cereus is feasible approach to pre-treat wheat bran for feedstuff industry.
Collapse
Affiliation(s)
- Yan Feng
- College of Life and Science, Shanxi Agricultural University, 030801, China.
| | - Lei Wang
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Rui Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Siang Wei
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Xiaoyuan Jing
- College of Life and Science, Shanxi Agricultural University, 030801, China
| |
Collapse
|
30
|
Kiarie EG, Leung H, Akbari Moghaddam Kakhki R, Patterson R, Barta JR. Utility of Feed Enzymes and Yeast Derivatives in Ameliorating Deleterious Effects of Coccidiosis on Intestinal Health and Function in Broiler Chickens. Front Vet Sci 2019; 6:473. [PMID: 31921926 PMCID: PMC6933770 DOI: 10.3389/fvets.2019.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis induced necrotic lesions impair digestive capacity and barrier function in concurrence with increased risks for secondary bacterial infections. The industry has been successful in controlling coccidiosis with anticoccidials and vaccination. However, concerns over Eimeria species resistant to anticoccidials, gaps in vaccination and restriction on antibiotics is stimulating research and application of alternative and/or complimentary strategies for coccidiosis control. The aim of this paper is to appraise literature on the utility of feed enzymes and yeast derivatives in modulating coccidiosis. Feed enzymes can complement endogenous enzymes (protease, amylase, and lipase) that may become insufficient in coccidiosis afflicted birds. Coccidiosis in the upper small intestine creates conditions that enhances efficacy of phytase and there are reports indicating supplemental phytase can mitigate the negative impact of coccidiosis on bone quality. Increase in intestinal short chain fatty acids due supplemental fiber degrading enzymes has been linked with reduced survivability of Eimeria. There is evidence whole yeast (live or dead) and derivatives can modulate coccidiosis. Immunomudulation properties of the yeast derivatives have been shown to enhance cellular and humoral immunity in Eimeria challenge models which is critical for effectiveness of coccidial vaccination. Moreover, yeast nucleotides have been shown to be beneficial in stimulating healing of intestinal mucosal surface. Other novel work has shown that certain yeast cells can produce derivatives with anticoccidial compounds effective in attenuating oocysts shedding. Yeast cell surface has also been shown to be an effective oral Eimeria vaccine delivery vehicle. Overall, while further refinement research is warranted to address inconsistencies in responses and commercial application, there is evidence feed enzymes and yeast derivatives could complement strategies for maintaining intestinal function to bolster growth performance in broilers compromised with coccidiosis. However, broilers receive diets containing several feed additives with distinct mode of actions and yet there is dearth of empirical data on the expected responses.Future evaluations should consider combinations of additives to document animal responses and potential synergies.
Collapse
Affiliation(s)
- Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Haley Leung
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Rob Patterson
- Department of Technical Services and Innovation, Canadian Bio-Systems Inc., Calgary, AL, Canada
| | - John R. Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
31
|
Khadieva GF, Lutfullin MT, Mochalova NK, Lenina OA, Sharipova MR, Mardanova AM. New Bacillus subtilis Strains as Promising Probiotics. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|