1
|
Huang Y, Xu C, Huang X, Tan Y, Li S, Yin Z. Metabolome and Transcriptome Profiling Reveals Age-Associated Variations in Meat Quality and Molecular Mechanisms of Taihe Black-Bone Silky Fowls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21946-21956. [PMID: 39354852 DOI: 10.1021/acs.jafc.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Collapse
Affiliation(s)
- Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
2
|
Yang X, Lin H, Wang M, Huang X, Li K, Xia W, Zhang Y, Wang S, Chen W, Zheng C. Identification of key genes and pathways in duck fatty liver syndrome using gene set enrichment analysis. Poult Sci 2024; 103:104015. [PMID: 39003797 PMCID: PMC11298935 DOI: 10.1016/j.psj.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Hao Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science, Anhui Science and Technology University, Anhui 233100, P.R. China
| | - Mengpan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; College of Animal Science & Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300391, P.R. China
| | - Xuebing Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Kaichao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Weiguang Xia
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Yanan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Shuang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China.
| |
Collapse
|
3
|
Shi B, Zhang Z, Lv X, An K, Li L, Xia Z. Screening of Genes Related to Fat Deposition of Pekin Ducks Based on Transcriptome Analysis. Animals (Basel) 2024; 14:268. [PMID: 38254437 PMCID: PMC10812498 DOI: 10.3390/ani14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Subcutaneous fat deposition is an important index with which to evaluate meat-producing ducks, and affects their meat quality and feed conversion rate. Studying the differentially expressed genes in subcutaneous fat will help to comprehensively understand the potential mechanisms regulating fat deposition in ducks. In this study, 72 Nankou 1 Pekin Ducks and 72 Jingdian Pekin Ducks (half male and half female) at 42 days of age were selected for slaughter performance and transcriptome analysis. The results showed that the breast-muscle yield of Nankou 1 ducks was significantly higher than that of Jingdian ducks, but that the abdominal fat yield and subcutaneous fat yield were higher than that of Jingdian ducks. Thousands of DEGs, including many important genes involved in fat metabolism regulation, were detected by transcriptome. KEGG enrichment analysis showed that the DEGs were significantly enriched on pathways such as regulation of lipolysis in adipocytes, primary bile acid biosynthesis, and biosynthesis of unsaturated fatty acids. SCD, FGF7, LTBP1, PNPLA3, ADCY2, and ACOT8 were selected as candidate genes for regulating subcutaneous fat deposition. The results indicated that Nankou 1 had superior fat deposition ability compared to Jingdian ducks, and that the candidate genes regulated fat deposition by regulating fat synthesis and decomposition.
Collapse
Affiliation(s)
- Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650500, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| |
Collapse
|
4
|
Wen C, Wang Q, Gu S, Jin J, Yang N. Emerging perspectives in the gut-muscle axis: The gut microbiota and its metabolites as important modulators of meat quality. Microb Biotechnol 2024; 17:e14361. [PMID: 37902307 PMCID: PMC10832551 DOI: 10.1111/1751-7915.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
Animal breeding has made great genetic progress in increasing carcass weight and meat yield in recent decades. However, these improvements have come at the expense of meat quality. As the demand for meat quantity continues to rise, the meat industry faces the great challenge of maintaining and even increasing product quality. Recent research, including traditional statistical analyses and gut microbiota regulation research, has demonstrated that the gut microbiome exerts a considerable effect on meat quality, which has become increasingly intriguing in farm animals. Microbial metabolites play crucial roles as substrates or signalling factors to distant organs, influencing meat quality either beneficially or detrimentally. Interventions targeting the gut microbiota exhibit excellent potential as natural ways to foster the conversion of myofibres and promote intramuscular fat deposition. Here, we highlight the emerging roles of the gut microbiota in various dimensions of meat quality. We focus particularly on the effects of the gut microbiota and gut-derived molecules on muscle fibre metabolism and intramuscular fat deposition and attempt to summarize the potential underlying mechanisms.
Collapse
Affiliation(s)
- Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| | - Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural AffairsChina Agricultural UniversityBeijingChina
- Department of Animal Genetics and Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversityHainanChina
| |
Collapse
|
5
|
Duan M, Xu L, Gu T, Sun Y, Xia Q, He J, Pan D, Lu L. Investigation into the characteristic volatile flavor of old duck. Food Chem X 2023; 20:100899. [PMID: 38144818 PMCID: PMC10740054 DOI: 10.1016/j.fochx.2023.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
In order to explore the characteristic aroma flavor and its formation mechanism of old ducks, two ages (30 days and 60 days) of young ducks and three ages of old ducks (300 days, 900 days, and 1500 days) were selected and studied. An electronic nose was applied to evaluate the overall aroma flavor, and the result showed significant differences between the five duck samples. By gas chromatography-mass spectrometry (GC-MS), forty-eight volatile flavor compounds were detected, including seven aldehydes, six esters, five alcohols, five nitrogen compounds, twenty-one hydrocarbons, and four others. Among these compounds, twelve components, such as hexanal and dimethyl anthranilate, were considered as the characteristic flavor compounds along with duck aging. Furthermore, correlation analysis indicated that meat's unsaturated free fatty acids, especially linoleic acid (C18:2), were responsible for the duck's characteristic flavor formation. These data contribute to the flavor research and identification of old ducks.
Collapse
Affiliation(s)
- Mingcai Duan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ligen Xu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Jun He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Zhang X, Tang B, Li J, Ouyang Q, Hu S, Hu J, Liu H, Li L, He H, Wang J. Comparative transcriptome analysis reveals mechanisms of restriction feeding on lipid metabolism in ducks. Poult Sci 2023; 102:102963. [PMID: 37586191 PMCID: PMC10450974 DOI: 10.1016/j.psj.2023.102963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Presently, excessive fat deposition is the main reason to limit the development of duck industry. In the production, the methods of restricted feeding (RF) were widely used to reduce the lipid deposition of ducks. The liver (L), abdominal adipose (AA), and subcutaneous adipose (SA) were the main tissues of lipid metabolism and deposition of ducks. However, the mechanisms of lipid metabolism and deposition of ducks under RF have not been fully clarified. In this study, in order to better understand the mechanisms of lipid metabolism and deposition in ducks under RF, a total of 120 male Nonghua ducks were randomly divided into a free feeding group (FF, n = 60) and RF group (RF, n = 60), then comparative transcriptomic analysis of L, AA, and SA between FF (n = 3) and RF (n = 3) ducks was performed at 56 d of age. Phenotypically, L, AA, and SA index of FF group was higher than that in RF group. There were 279, 390, and 557 differentially expressed genes (DEGs) in L, AA, and SA. Functional enrichment analysis revealed that ECM-receptor interaction and metabolic pathways were significantly enriched in L, AA, and SA. Lipid metabolism-related pathways including fatty acid metabolism, unsaturated fatty acid synthesis, and steroidogenesis were significantly enriched in AA and SA. Moreover, through integrated analysis weighted gene coexpression network (WGCNA) and protein-protein interaction network, 10 potential candidate genes involved in the ECM-receptor interaction and lipid metabolism pathways were identified, including 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), aldolase B (ALDOB), formimidoyltransferase cyclodeaminase(FTCD), phosphoenolpyruvate carboxykinase 1 (PCK1), tyrosine aminotransferase (TAT), stearoyl-CoA desaturase (SCD), squalene epoxidase (SQLE), phosphodiesterase 4B (PDE4B), choline kinase A (CHKA), and elongation of very-long-chain fatty acids-like 2 (ELOVL2), which could play a key role in lipid metabolism and deposition of ducks under RF. Our study reveals that the liver might regulate the lipid metabolism of abdominal adipose and subcutaneous adipose through ECM-receptor interaction and metabolic pathways (fatty acid metabolism, unsaturated fatty acid synthesis, and steroid synthesis), thus to reduce the lipid deposition of ducks under RF. These results provide novel insights into the avian lipid metabolism and will help better understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xin Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiangming Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
7
|
Umami N, Rahayu ERV, Suhartanto B, Agus A, Suryanto E, Rahman MM. Effect of Cichorium intybus on production performance, carcass quality and blood lipid profile of hybrid duck. Anim Biosci 2023; 36:84-97. [PMID: 36108697 PMCID: PMC9834650 DOI: 10.5713/ab.22.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE One hundred hybrid male ducks (Mojosari×Alabio) were used to examine the efficacy of chicory supplementation as nutritional feed manipulation on production performance, and blood lipid profile of hybrid ducks. METHODS The ducks were tagged, weighed, and then allotted randomly to one of the four treatment diets using a completely randomized design. The experimental diets were: i) P0 (100% basal diets+0% chicory as control), ii) P1 (95% basal diets+5% chicory), iii) P2 (90% basal diets+10% chicory) and iv) P3 (85% basal diets+15% chicory). For each treatment group, there were 5 replicates of 5 birds each. All experimental diets were isonitrogenous and isocaloric using locally available ingredients. RESULTS Hybrid ducks with fed diets supplemented fresh chicory (5%, 10%, and 15%) showed increased feed intake and body weight gain, as well as feed conversion ratio to be smaller than those ducks fed diets without chicory supplementation (control). The ducks fed 10% chicory supplementation contained significantly (p<0.05) lower ash and higher organic matter contents of meat than those ducks fed other diets. The ducks fed 15% chicory supplementation showed the lowest crude protein and cholesterol content of meat among the treatment diets. Ducks fed chicory supplementation showed lower (p<0.05) blood cholesterol and triglyceride levels than those ducks fed without chicory supplementation, while dietary interventions had no major (p>0.05) influence on low-density lipoprotein and high-density lipoprotein levels in duck blood. CONCLUSION In this study, 10% chicory supplementation showed the best results characterized by an increase in growth performance, carcass quality, small intestinal histomorphology, and lower cholesterol levels of meat.
Collapse
Affiliation(s)
- Nafiatul Umami
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281,
Indonesia,Corresponding Author: Nafiatul Umami, Tel: +62-878-3937-5048, Fax: +62-274-521578, E-mail:
| | | | - Bambang Suhartanto
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281,
Indonesia
| | - Ali Agus
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281,
Indonesia
| | - Edi Suryanto
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281,
Indonesia
| | | |
Collapse
|
8
|
Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2227-6. [PMID: 36564558 DOI: 10.1007/s11427-022-2227-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022]
Abstract
Pork meat is closely related to physicochemical alterations during growth and development, resulting in differences in nutritional value and meat flavor. This study aimed to evaluate the composition of amino acids, fatty acids, and metabolic profiles in the longissimus thoracis muscle (LM) of Shaziling pigs aged 30, 90, 150, 210, and 300 days. The results showed that the predominant fatty acids identified in the LM of Shaziling pigs were C16:0, C16:1, C18:0, C18:1n9c, and C18:2n6c. An opposite correlation was observed for C18:2n6c and n6/n3 polyunsaturated fatty acids (P<0.05). Alanine, aspartate, glutamate, D-glutamine, and D-glutamate metabolism were the main metabolic pathways for the Shaziling pig meat flavor (P<0.05). Moreover, the correlation coefficients revealed that the contents of anserine, C16:0, C16:1, and C18:1n9c were positively correlated with intramuscular fat and/or pH24h and were negatively correlated with the values of L* (lightness) and b* (yellowness) (P<0.05). In conclusion, age greatly affected the meat quality of Shaziling pigs, and the contents of muscular anserine, C16:0, C16:1, and C18:1n9c might be promising indicators for better meat quality.
Collapse
|
9
|
Ogbuagu N, Ayo J, Aluwong T, Akor-Dewu M. L-serine modulates activities of antioxidant enzymes and behavioral responses in broiler chickens subjected to feed restriction during the hot-dry season. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
L-serine improves lipid profile, performance, carcass weight and intestinal parameters in feed restricted broiler chickens during the hot-dry season. Trop Anim Health Prod 2022; 54:324. [PMID: 36169771 DOI: 10.1007/s11250-022-03318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The study evaluated effects of L-serine on lipid profile, performance, carcass weight and small intestinal parameters in heat-stressed broiler chickens subjected to feed restriction. Broiler chickens were divided into four groups, comprising 30 each. Group 1, feed restriction (FR); Group 2, feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group 3, ad libitum (AL); Group 4, ad libitum + L-serine (200 mg/kg) (AL + L-serine). L-serine was administered orally from days 1 to 14, and feed restriction was performed on days 7-14. Serum harvested from blood samples on days 21, 28 and 35 was evaluated for lipid profile. Feed and water intake, live weight gain, organ and carcass weight were measured. At 35 days old, broiler chickens (n = 7) per group were sacrificed to evaluate small intestinal morphology. Temperature-humidity index in the pen (30.88 ± 0.81) was above thermoneutral zone, indicating that chickens were subjected to heat stress. Concentrations of low-density lipoprotein, total cholesterol and total triglycerides were lower (p < 0.05), while higher concentration of high-density lipoprotein was recorded in L-serine groups than in the controls. Feed intake and live weight gain on day 35 in L-serine groups were higher (p < 0.05) than in controls. In L-serine groups, liver, spleen, pancreas and heart weight were higher, but abdominal fat was lower than in FR and AL groups. Villus height:crypt height ratio and area of villus surface were highest in L-serine groups than any other group. In conclusion, L-serine decreased low-density lipoprotein, increased feed intake, live weight, organ and carcass weight, villus height:crypt height ratio and villus surface area.
Collapse
|
11
|
Ge K, Geng Z. Proteomic analysis of the liver regulating lipid metabolism in Chaohu ducks using two-dimensional electrophoresis. Open Life Sci 2022; 17:960-972. [PMID: 36060646 PMCID: PMC9386610 DOI: 10.1515/biol-2022-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aimed to characterize the liver protein profile of Chaohu ducks using two-dimensional electrophoresis and proteomics. The livers were quickly collected from 120 healthy, 84-day-old Chaohu ducks. The intramuscular fat (IMF) content of the left pectoralis muscle was determined using the Soxhlet extraction method. The total protein of liver tissues from the high and low IMF groups was extracted for proteomics. Functional enrichment analysis of the differentially expressed proteins (DEPs) was conducted using gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG). In total, 43 DEPs were identified. Functional enrichment analysis indicated that these DEPs were significantly related to four lipid metabolic processes: carboxylic acid metabolic process, ATP metabolic process, oxoacid metabolic process, and organic acid metabolic process. Three pathways correlated with lipid metabolism were identified using KEGG analysis: glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. Eight key proteins associated with lipid metabolism were identified: ALDOB, GAPDH, ENO1, RGN, TPI1, HSPA9, PRDX1, and GPX1. Protein–protein interaction analysis revealed that the glycolysis/gluconeogenesis pathway mediated the interaction relationship. Key proteins and metabolic pathways were closely related to lipid metabolism and showed a strong interaction in Chaohu ducks.
Collapse
Affiliation(s)
- Kai Ge
- Department of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Yu'an District, Liuan, Anhui Province, 237012, China
| | - Zhaoyu Geng
- Department of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
12
|
Yang X, Yang C, Tang D, Yu Q, Zhang L. Effects of dietary supplementation with selenium yeast and jujube powder on mitochondrial oxidative damage and apoptosis of chicken. Poult Sci 2022; 101:102072. [PMID: 36055020 PMCID: PMC9445384 DOI: 10.1016/j.psj.2022.102072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
The main objective of this study was to explore the effects of dietary selenium yeast and jujube powder on mitochondrial oxidative damage and cell apoptosis of broilers during postmortem aging, chicken breasts of broilers fed diets supplemented with different concentrations of selenium yeast and jujube powder were used as research subjects. With the prolongation of postmortem aging time, the levels of reactive oxygen species (ROS), carbonyl content, mitochondrial permeability transition pore (MPTP) openness, and mitochondrial membrane permeability increased significantly (P < 0.05). The contents of the sulfhydryl, mitochondrial membrane potential, shear force, and cytochrome C (Cyt-c) reduction level decreased significantly (P < 0.05). The activity of Caspase-3 and Caspase-9 increased from 0 to 24 h postmortem but fell from 24 to 72 h postmortem. Compared with the control group, dietary selenium yeast and jujube powder significantly reduced mitochondrial oxidative damage. They greatly increased the shear force, mitochondrial membrane potential, and Cyt-c reduction levels (P < 0.05). Among them, the combination group of high-dose selenium yeast and jujube powder had more significant effects on ROS scavenging, reducing cell membrane permeability, protecting cell membrane integrity, and increasing Cyt-c reduction level (P < 0.05). In conclusion, cell apoptosis intensifies during the chicken breast's aging time, and muscle tenderness continues. Still, different doses of dietary selenium yeast and jujube powder can inhibit mitochondrial oxidation to various degrees. The combined group of selenium yeast and jujube powder with 0.6 mg·kg−1 has the best effect. This study is of great significance for applying natural antioxidant ingredients such as selenium yeast and jujube powder in the development and utilization of poultry feed.
Collapse
|
13
|
Li J, Zhang D, Yin L, Li Z, Yu C, Du H, Jiang X, Yang C, Liu Y. Integration analysis of metabolome and transcriptome profiles revealed the age-dependent dynamic change in chicken meat. Food Res Int 2022; 156:111171. [DOI: 10.1016/j.foodres.2022.111171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
|
14
|
Li J, Yang C, Ran J, Yu C, Yin L, Li Z, Liu Y. The age-dependent variations for fatty acid composition and sensory quality of chicken meat and associations between gene expression patterns and meat quality. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Lv G, Zeng Q, Ding X, Bai S, Zhang K. Effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks. Anim Biosci 2021; 35:247-259. [PMID: 34289584 PMCID: PMC8738944 DOI: 10.5713/ab.21.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
Objective This study was conducted to investigate the effects of age and diet forms on growth-development patterns, serum metabolism indicators, and parameters of body fat deposition in Cherry Valley ducks. Methods According to the hatching age and initial weight, a total of 150 1-day-old male SM3 Cherry Valley ducks were randomly assigned to two diet forms (pellet vs powder form). Each treatment had with 5 replicates per treatment and 15 meat ducks per replicate. The study lasted 42 d, which was divided into two periods (1 to 21 vs 22 to 42 d). Results Our results showed that compared with powder group, ducks in pellet group had greater growth performance during different period (p<0.05). The inflection point was 24 d and was not numerically affected by diet forms. Increasing age (42 vs 21 d) significantly increased the weight of body fat and hepatic fat metabolism related enzyme activities in ducks (p<0.05), meanwhile, increasing age (42 vs 21 d) improved serum metabolism indicators and decreased mRNA expression levels of fat metabolism-related genes in liver (p<0.05). Ducks fed different diets (pellet vs powder form) increased growth performance as well as the weight of body fat and improved serum metabolism indicators (p<0.05). In addition, interactions were found between age and diet forms on the levels of serum metabolism indicators in ducks (p<0.05). Conclusion In conclusion, powder feed reduced growth performance of ducks, and the day of inflection point was 24 days old. Ducks with higher age or fed with pellet diet showed higher fat deposition. The effect of age and feed forms on body fat deposition might result from changes in the contents of serum metabolism indicators, key enzyme activity of lipid production, and hepatic gene expressions.
Collapse
Affiliation(s)
- Gang Lv
- Institute of Livestock and Poultry, Tongwei Co., Ltd., Chengdu, Sichuan-610041, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan-611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan-611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan-611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan-611130, China
| |
Collapse
|
16
|
Guo L, Wei C, Yi L, Yang W, Geng Z, Chen X. Transcriptional Insights into Key Genes and Pathways Underlying Muscovy Duck Subcutaneous Fat Deposition at Different Developmental Stages. Animals (Basel) 2021; 11:ani11072099. [PMID: 34359227 PMCID: PMC8300375 DOI: 10.3390/ani11072099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Subcutaneous fat is an important factor affecting the meat quality and feed conversion rate of waterfowl. The current study compared the transcriptome data of Muscovy duck subcutaneous fat among three developmental stages, aiming at exploring the key regulatory genes for subcutaneous fat deposition. The results generated abundant candidate genes and pathways involving in subcutaneous fat deposition in Muscovy duck. This study provides an important reference for revealing the developmental mechanisms of subcutaneous fat in duck. Abstract Subcutaneous fat is a crucial trait for waterfowl, largely associated with meat quality and feed conversion rate. In this study, RNA-seq was used to identify differentially expressed genes of subcutaneous adipose tissue among three developmental stages (12, 35, and 66 weeks) in Muscovy duck. A total of 138 and 129 differentially expressed genes (DEGs) were identified between 35 and 12 weeks (wk), and 66 and 35 wk, respectively. Compared with 12 wk, subcutaneous fat tissue at 35 wk upregulated several genes related to cholesterol biosynthesis and fatty acid biosynthesis, including HSD17B7 and MSMO1, while it downregulated fatty acid beta-oxidation related genes, including ACOX1 and ACSL1. Notably, most of the DEGs (92.2%) were downregulated in 66 wk compared with 35 wk, consistent with the slower metabolism of aging duck. Protein network interaction and function analyses revealed GC, AHSG, FGG, and FGA were the key genes for duck subcutaneous fat from adult to old age. Additionally, the PPAR signaling pathway, commonly enriched between the two comparisons, might be the key pathway contributing to subcutaneous fat metabolism among differential developmental stages in Muscovy duck. These results provide several candidate genes and pathways potentially involved in duck subcutaneous fat deposition, expanding our understanding of the molecular mechanisms underlying subcutaneous fat deposition during development.
Collapse
|
17
|
Guo Y, Guo X, Deng Y, Cheng L, Hu S, Liu H, Hu J, Hu B, Li L, He H, Wang J. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism-related genes expression in breast and thigh muscles of Nonghua ducks. Poult Sci 2020; 99:4832-4844. [PMID: 32988520 PMCID: PMC7598316 DOI: 10.1016/j.psj.2020.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rearing system is a critical nongenetic factor influencing meat quality of ducks. In this study, a total of 360 birds were randomly allocated into floor rearing system (FRS) and net rearing system (NRS) to compare their effects on intramuscular fat (IMF) deposition, fatty acid composition, and related gene expression in muscles of Nonghua ducks. Sawdust bedding and stainless mesh bed were equipped in FRS and NRS, respectively. At the eighth week (8w) and 13th week (13w), the breast and thigh muscles of ducks were collected to determine the profiles of lipids composition and the expressions of lipid metabolism-related genes. The IMF content was higher in 13w-FRS than 8w-FRS and 8w-NRS in breast muscle, whereas it was higher in 13w-NRS than other groups in thigh muscle (P < 0.05). C16:1, C20:5(n-3) of muscles were higher in 8w-NRS than 8w-FRS, whereas C18:1(n-9)c, C18:2(n-6)c, Ʃ monounsaturated fatty acid (MUFA), and ƩMUFA/Ʃsaturated fatty acid (SFA) ratio of muscles were higher in 13w-NRS than 8w-FRS and 8w-NRS (P < 0.05). C22:6(n-3), C20:4(n-6) of breast muscle and C20:3(n-6) of thigh muscle were higher in 13w-NRS than 13w-FRS (P < 0.05). Fatty acids variation was studied by principal component analysis, exhibiting extensive positive loadings on principal components. SREBP1, ACADL, and FABP3 were downregulated in breast muscle, whereas PPARα and ELOVL5 were upregulated in thigh muscle of NRS ducks at 13w. Principal components were extensively correlated with lipids composition parameters, and principal components of breast muscle 1 and principal components of thigh muscle 1 were correlated with SREBP1 and PPARα, respectively (P < 0.05). In conclusion, with increasing age, FRS enhanced IMF deposition in breast muscle, and the same promotion in thigh muscle was because of NRS. The variation of fatty acids in muscles was uniform, and the change of single fatty acid was unable to distinguish NRS and FRS. However, as NRS downregulated SREBP1, ACADL and FABP3 in breast muscle and upregulated PPARα and ELOVL5 in thigh muscle, NRS could improve nutrient value and meat quality by increasing ƩMUFA, ƩMUFA/ƩSFA ratio, and important PUFA levels. Therefore, NRS was more recommended than FRS for Nonghua ducks during week 8 to 13 posthatching.
Collapse
Affiliation(s)
- Yifan Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Guo
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
18
|
Yu J, Yang HM, Lai YY, Wan XL, Wang ZY. The body fat distribution and fatty acid composition of muscles and adipose tissues in geese. Poult Sci 2020; 99:4634-4641. [PMID: 32868008 PMCID: PMC7598136 DOI: 10.1016/j.psj.2020.05.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated the body fat distribution and fatty acid composition of muscles and adipose tissues of Yangzhou geese, including thirty 60-day-old goslings (15 males and 15 females) and 20 320-day-old geese (10 males and 10 females). Adipose tissues of Yangzhou geese were distributed widely and could be divided into 5 types: subcutaneous fat, abdominal fat, sartorial fat, neck fat, and mesenteric fat. Higher contents of abdominal fat, sartorial fat, neck fat, and mesenteric fat but a lower content of subcutaneous fat were found in adult geese than in goslings (P ≤ 0.05). Adult female geese deposited more fat than adult male geese (P ≤ 0.05). No difference was found in the fat distribution and fat content between male and female goslings (P > 0.05). The breast muscle of adult geese was characterized by a higher content of total monounsaturated fatty acids (ΣMUFAs) and a lower content of n-6 polyunsaturated fatty acids (ΣPUFAs n-6) than that of goslings (P ≤ 0.05). Lower concentrations of total saturated fatty acids and ΣPUFA were found in adult female geese than in female goslings (P ≤ 0.05). In comparison with adult female geese, the breast muscle of adult male geese had higher total saturated fatty acids and stearic acid (P ≤ 0.05). For the thigh muscle, adult female geese had a higher ΣMUFAs content than adult male geese (P ≤ 0.05). In adipose tissues, adult geese had a higher Σn-6/Σn-3 ratio but had lower contents of erucic acid, linolenic acid, arachidonic acid, docosatetraenoic acid, and ΣPUFA n-3 than goslings, and adult female geese had a higher ΣMUFAs content than adult male geese (P ≤ 0.05). In conclusion, adult geese, especially adult female geese, accumulated more fat than goslings. Both age and sex affected the fatty acid composition of muscles and adipose tissues in geese. This research provides essential information not only for the nutritional evaluation of geese but also for the consumption and processing of goose products.
Collapse
Affiliation(s)
- J Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China
| | - Y Y Lai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China
| | - X L Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China.
| |
Collapse
|
19
|
Zhang M, Song S, Zhao D, Shi J, Xu X, Zhou G, Li C. High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. J Nutr Biochem 2020; 85:108487. [PMID: 32827667 DOI: 10.1016/j.jnutbio.2020.108487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
High-fat diets have been associated with neurodegenerative diseases, which are also largely related to the type and amount of dietary proteins. However, to our knowledge, it is little known how dietary proteins affect neurodegenerative changes. In this study, we investigated the effects of dietary proteins in a high-fat diet on hippocampus functions related to enteric glial cells (EGCs) in Wistar rats that were fed either 40% or 20% (calorie) casein, chicken protein or pork protein for 12 weeks (n=10 each group). Inflammatory factors, glutamatergic system, EGCs, astrocytes and nutrient transporters were measured. A high-chicken-protein diet significantly increased the levels of systemic inflammatory factors, Tau protein and amyloid precursor protein mRNA level in the rat hippocampus. The type and level of dietary proteins in high-fat diets did not affect the gene expression of glial fibrillary acidic protein and α-synuclein (P>.05), indicating a negligible effect on astrocyte activity. However, the high-protein diets up-regulated glutamate transporters compared with the low-protein diets (P<.05), while they reduced the γ-aminobutyric acid content in high-chicken and -pork-protein diets (P<.05). Thus, compared with a low-protein diet (20%), a high-chicken or -pork-protein diet (40%) under a high-fat background could alter the balance between glutamatergic system and neurotransmitter and have a stronger effect on the interactions between hippocampal glutamatergic system and EGCs.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 211171, Nanjing, PR China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Jie Shi
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs; Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University; 210095, Nanjing, PR China.
| |
Collapse
|
20
|
Wang X, Jiang G, Kebreab E, Li J, Feng X, Li C, Zhang X, Huang X, Fang C, Fang R, Dai Q. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res Int 2020; 133:109126. [PMID: 32466939 DOI: 10.1016/j.foodres.2020.109126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
This study investigated the effects of breed and age on meat quality, and metabolite profiles of duck breast meat, and the relationship between changes in metabolite profiles and the meat quality. The meat quality and 1H nuclear magnetic resonance (NMR)-based metabolomics of breast meat from Pekin and Linwu ducks at 2 different ages (42 and 72d) was analyzed. The results showed that age exerted a greater effect on the observed meat quality traits of breast meat than breed, and its interaction (breed × age) effect on pH values and yellowness (b*) of duck breast meat was significant. Total of 32 metabolites were detected in breast meat of Pekin and Linwu duck. The difference of metabolite profiles in breast meat between Pekin and Linwu duck at 72 d was greater than that at 42 d, while the effects of age on metabolites of duck meat from both breeds were similar. Anserine, aspartate, and carnosine were the most relevant metabolites of duck breast meat quality, and nicotinamide in duck breast meat was negatively correlated with cooking loss. These results provide an overall perspective for bridging the gap between the breed and age on duck meat quality and metabolome, and improve the understanding of the relationship between metabolites and duck meat quality.
Collapse
Affiliation(s)
- Xiangrong Wang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Department of Animal Science, University of California, Davis, CA 95616, United States; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Guitao Jiang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Jinghui Li
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Xiaoyu Feng
- Department of Animal Science, University of California, Davis, CA 95616, United States.
| | - Chuang Li
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xu Zhang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Xuan Huang
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China.
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| | - Qiuzhong Dai
- Hunan Institute of Animal Science and Veterinary Medicine, Changsha, Hunan 410131, China; Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, Hunan 410128, China.
| |
Collapse
|
21
|
Guo D, Shen Y, Li W, Li Q, Miao Y, Zhong Y. Upregulation of flavin-containing monooxygenase 3 mimics calorie restriction to retard liver aging by inducing autophagy. Aging (Albany NY) 2020; 12:931-944. [PMID: 31927537 PMCID: PMC6977670 DOI: 10.18632/aging.102666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Flavin-containing monooxygenase 3 (FMO3) gene expression is often upregulated in long-lived murine models. However, the specific relationship between FMO3 and aging remains unknown. Here, we show that 40% calorie restriction (CR), which is considered to be one of the most robust interventions to delay aging progression, markedly upregulates FMO3. Most importantly, upregulation of hepatocyte FMO3 in murine models prevented or reversed hepatic aging. Accordingly, the upregulation of FMO3 mimicked the effects of CR: reduced serum levels of pro-inflammatory cytokine interleukin-6 and fasting insulin; relief of oxidative stress, with lower hepatic malondialdehyde levels and higher superoxide dismutase activity; reduced serum and hepatic levels of total cholesterol and triglyceride, as well as reduced lipid deposition in the liver; and diminished levels of aging-related markers β-gal and p16. There were also synergistic effects between FMO3 upregulation and CR. Inhibition of autophagy blocked the anti-aging effects of upregulation of hepatocyte FMO3, including reversing the amelioration of the serum and hepatic parameters related to inflammation, oxidative stress, lipid metabolism, liver function, and hepatocyte senescence. Our results suggest that the upregulation of FMO3 mimics CR to prevent or reverse hepatic aging by promoting autophagy.
Collapse
Affiliation(s)
- Donghao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Yun Shen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinjie Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Ge K, Ye P, Yang L, Kuang J, Chen X, Geng Z. Comparison of slaughter performance, meat traits, serum lipid parameters and fat tissue between Chaohu ducks with high- and low-intramuscular fat content. Anim Biotechnol 2019; 31:245-255. [PMID: 31524052 DOI: 10.1080/10495398.2019.1664565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study was conducted to investigate the effect of intramuscular fat (IMF) on carcass traits of Chaohu ducks. Two-hundred-forty ducks were separated by sex and raised in separate pens. Slaughter performance, meat quality, and serum lipid parameters were identified. Based on IMF, samples were divided into males with high IMF (CHM) or low IMF (CLM) and females with high IMF (CHF) or low IMF (CLF). There were significant differences in the living body weight, abdominal fat ratio (%), shear force, IMF, total cholesterol (TC), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) content between female and male ducks. In addition, compared with the CLM group, the shear force (p = 0.001) was significantly greater but the lightness (p = 0.006) was lower in the CHM group. TC, HDL and LDL content were also significantly higher (p = 0.033, 0.027 and 0.012, respectively) in the CHM group. The butcher ratio (0.028), eviscerating rate (0.039) and breast meat ratio (0.028) in the CHF group was significantly lower than that in CLF group, while these parameters showed no difference between CHM and CLM. In conclusion, IMF had a significantly positive correlation with subcutaneous fat and abdominal fat and was also positively correlated with TC, HDL and LDL in Chaohu ducks.
Collapse
Affiliation(s)
- Kai Ge
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China.,College of Biological and Pharmaceutical Engineering, West Anhui University, Liuan, Anhui Province, China
| | - Pengfei Ye
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Lei Yang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Jinlong Kuang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Xingyong Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Zhaoyu Geng
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| |
Collapse
|
23
|
Guo D, Shen Y, Li W, Li Q, Zhao Y, Pan C, Chen B, Zhong Y, Miao Y. 6-Bromoindirubin-3'-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver. Front Pharmacol 2019; 10:320. [PMID: 31057395 PMCID: PMC6477879 DOI: 10.3389/fphar.2019.00320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
Liver aging is associated with age-related histopathological and functional changes that significantly enhance the risk of numerous diseases or disorders developing in elderly populations. 6-Bromoindirubin-3'-oxime (6BIO), a potent inhibitor of glycogen synthase kinase-3 (GSK-3), has been implicated in various age-related diseases and processes, such as tumorigenesis, neurodegeneration, and diabetes. Recent studies have also revealed that 6BIO increases autophagy in yeast, mammalian cell lines, and dopaminergic neurons, which is one of the classical mechanisms strongly associated with liver aging. However, the impact or the mechanism of action of 6BIO in liver remains entirely unknown. Here, we find that 6BIO reduces oxidative stress, improves lipid metabolism, enhances autophagy, and significantly retards liver aging via modulating the GSK-3β pathway and mTOR pathway. Our findings suggest that 6BIO could be a potential agent to protect the liver in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
- Donghao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Shen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinjie Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|