1
|
Seo KW, Do KH, Jung CM, Lee SW, Lee YJ, Lim SK, Lee WK. Comparative genetic characterisation of third-generation cephalosporin-resistant Escherichia coli isolated from integrated and conventional pig farm in Korea. J Glob Antimicrob Resist 2023; 34:74-82. [PMID: 37394034 DOI: 10.1016/j.jgar.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum β-lactamase (ESBL)/pAmpC β-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of β-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of β-lactamase genes, conjugation assays were conducted. RESULTS Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC β-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC β-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Chang Min Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Onnuri Animals Hospital, Cheonan, Korea
| | - Seong Won Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Boehringer Ingelheim Animal Health Korea Ltd., Seoul, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; GutBiomeTech, Cheongju, Korea.
| |
Collapse
|
2
|
Seo KW, Do KH, Shin MK, Lee WK, Lee WK. Comparative genetic characterization of CMY-2-type beta-lactamase producing pathogenic Escherichia coli isolated from humans and pigs suffering from diarrhea in Korea. Ann Clin Microbiol Antimicrob 2023; 22:7. [PMID: 36658572 PMCID: PMC9854124 DOI: 10.1186/s12941-023-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pathogenic Escherichia coli are an important cause of bacterial infections in both humans and pigs and many of antimicrobials are used for the treatment of E. coli infection. The objective of this study was to investigate the characteristics and relationship between humans and pigs regarding third-generation cephalosporin resistance and CMY-2-producing E. coli in Korea. RESULTS All 103 third-generation cephalosporin-resistant E. coli isolates showed multidrug resistance. Also, except for β-lactam/β-lactamase inhibitor combinations, all antimicrobials resistant rates were higher in pigs than in humans. A total of 36 isolates (humans: five isolates; pigs: 31 isolates) were positive for the CMY-2-encoding genes and thirty-two (88.9%) isolates detected class 1 integrons with 10 different gene cassette arrangements, and only 1 isolate detected a class 2 integron. The most common virulence genes in pigs were LT (71.0%), F18 (51.6%), and STb (51.6%), while stx2 (80.0%) was the most frequently detected gene in humans. Stx2 gene was also detected in pigs (6.5%). Interestingly, 36 CMY-2-producing E. coli isolates showed a high diversity of sequence types (ST), and ST88 was present in E. coli from both pigs (11 isolates) and humans (one isolate). CONCLUSION Our findings suggest that a critical need for comprehensive surveillance of third-generation cephalosporin resistance is necessary to preserve the usefulness of third-generation cephalosporins in both humans and pigs.
Collapse
Affiliation(s)
- Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Hyo Do
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Wan-Kyu Lee
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
3
|
Liao M, Wu J, Li Y, Lu X, Tan H, Chen S, Huang W, Lian X, Sun J, Liao X, Liu Y, Feng S, Zhang R. Prevalence and Persistence of Ceftiofur-Resistant Escherichia coli in A Chicken Layer Breeding Program. Animals (Basel) 2022; 13:ani13010090. [PMID: 36611699 PMCID: PMC9817529 DOI: 10.3390/ani13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
We determined the longitudinal persistence of ceftiofur-resistant Escherichia coli from a chicken breeding farm in China. A total of 150 samples were collected from 5 breeding periods in a flock of layer hens, and the prevalence of ceftiofur-resistant E. coli fluctuated across the 5 chicken breeding stages: eggs, 3.33%; growing period, 100%; early laying period, 36.7%; peak laying period, 66.7% and late laying period, 80%. The most prevalent ceftiofur resistance genes were blaCTX-M-55, blaCMY and blaNDM, and ST101 was the most prevalent and persistent sequence type across the breeding periods. Our results indicated that this breeder flock was heavily contaminated by ST101 ceftiofur-resistant E. coli and that its presence should be intensively monitored on chicken farms.
Collapse
Affiliation(s)
- Meina Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoqing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Huizhen Tan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Wenqing Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xinlei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.F.); (R.Z.)
| | - Rongmin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.F.); (R.Z.)
| |
Collapse
|
4
|
Kang HJ, Lim SK, Lee YJ. Genetic characterization of third- or fourth-generation cephalosporin-resistant avian pathogenic Escherichia coli isolated from broilers. Front Vet Sci 2022; 9:1055320. [PMID: 36504870 PMCID: PMC9732669 DOI: 10.3389/fvets.2022.1055320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
The third- or fourth-generation cephalosporins (3GC or 4 GC) are classified as "critically important antimicrobials for human medicine" by WHO, but resistance to these drugs is increasing rapidly in avian pathogenic E. coli (APEC). This study investigated the distribution and genetic characteristics of 3GC- or 4 GC-resistant APEC isolates from five major integrated broiler operations in Korea. The prevalence of 3GC- or 4GC-resistant APEC isolates in 1-week-old broilers was the highest in farms of operation C (53.3%); however, the highest prevalence of these isolates in 4-week-old broilers was the highest on the farms of operation A (60.0%), followed by operations E (50.0%) and C (35.7%). All 49 3GC- or 4GC-resistant APEC isolates had at least one β-lactamase-encoding gene. The most common β-lactamase-encoding genes was extended-spectrum β-lactamase gene, bla CTX-M-15, detected in 24 isolates (49.0%), followed by bla TEM-1 (32.7%). Sixteen isolates (32.7%) harbored class 1 integrons, and four isolates (8.2%) showed different gene cassette-arrangements. However, only 1 of 26 isolates harboring class 2 integrons carried a gene cassette. Furthermore, both CRISPR 1 and 2 arrays were detected in most isolates (36 isolates; 73.5%), followed by CRISPR 2 (18.4%) and CRISPR 1 (4.1%). Interestingly, CRISPR 2 was significantly more prevalent in multidrug resistant (MDR)-APEC isolates than in non-MDR APEC isolates, whereas CRISPR 3 and 4 were significantly more prevalent in non-MDR APEC isolates (each 11.1%; p < 0.05). None of the protospacers of CRISPR arrays were directly associated with antimicrobial resistance. Our findings indicate that the distribution and characteristics of 3GC or 4GC-resistant APEC isolates differed among the integrated broiler operations; moreover, improved management protocols are needed to control the horizontal transmission of 3GC or 4GC-resistant APEC isolates.
Collapse
Affiliation(s)
- Hyo Jung Kang
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Aldea I, Gibello A, Hernández M, Leekitcharoenphon P, Bortolaia V, Moreno MA. Clonal and plasmid-mediated flow of ESBL/AmpC genes in Escherichia coli in a commercial laying hen farm. Vet Microbiol 2022; 270:109453. [DOI: 10.1016/j.vetmic.2022.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
|
6
|
Kim H, Kim YA, Seo YH, Lee H, Lee K. Prevalence and Molecular Epidemiology of Extended-Spectrum-β-Lactamase (ESBL)-Producing Escherichia coli from Multiple Sectors of Poultry Industry in Korea. Antibiotics (Basel) 2021; 10:antibiotics10091050. [PMID: 34572632 PMCID: PMC8466054 DOI: 10.3390/antibiotics10091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the molecular epidemiology of extended-spectrum-β-lactamase producing Escherichia coli (ESBL-EC) from poultry, the poultry farm environment, and workers in Korea. A total of 1376 non-duplicate samples were collected from 21 poultry farms, 20 retail stores, 6 slaughterhouses, and 111 workers in a nationwide study in Korea from January 2019 to August 2019. The overall positive rate of ESBL-EC was 6.8%, with variable positive rates according to sources (0.9% of worker, 5.2% of poultry, 10.0% of chicken meat, and 14.3% of environment). Common ESBL types were CTX-M-55 and CTX-M-14 in a total of 93 ESBL-EC isolates. Whole genome sequencing revealed that 84 ESBL-EC isolates had an outstanding accumulation of numerous antimicrobial resistance (AMR) genes associated with resistance to various classes of antimicrobials for human use and well-known antimicrobial gene (ARG)-carrying plasmids. Core gene multi locus sequence typing, using 2390 core genes, indicated no dominant clone or common type in each province. In conclusion, the isolation rates of ESBL-EC were not negligible in the poultry industry-related samples, sharing common ESBL types of human ESBL-EC isolates in Korea.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Laboratory Medicine, National Police Hospital, Seoul 05715, Korea;
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea
- Correspondence: ; Tel.: +82-31-900-0908
| | - Young Hee Seo
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.H.S.); (H.L.); (K.L.)
| | - Hyukmin Lee
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.H.S.); (H.L.); (K.L.)
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyungwon Lee
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea; (Y.H.S.); (H.L.); (K.L.)
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Song HJ, Moon DC, Mechesso AF, Kang HY, Kim MH, Choi JH, Kim SJ, Yoon SS, Lim SK. Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea. Microorganisms 2020; 8:E1434. [PMID: 32962074 PMCID: PMC7564670 DOI: 10.3390/microorganisms8091434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to identify and characterize extended-spectrum β-lactamase (ESBL)-and/or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli isolated from healthy broiler chickens slaughtered for human consumption in Korea. A total of 332 E. coli isolates were identified from 339 cloacal swabs in 2019. More than 90% of the isolates were resistant to multiple antimicrobials. ESBL/pAmpC-production was noted in 14% (46/332) of the isolates. Six of the CTX-M-β-lactamase-producing isolates were found to co-harbor at least one plasmid-mediated quinolone resistance gene. We observed the co-existence of blaCMY-2 and mcr-1 genes in the same isolate for the first time in Korea. Phylogenetic analysis demonstrated that the majority of blaCMY-2-carrying isolates belonged to subgroup D. Conjugation confirmed the transferability of blaCTX-M and blaCMY-2 genes, as well as non-β-lactam resistance traits from 60.9% (28/46) of the ESBL/pAmpC-producing isolates to a recipient E. coli J53. The ISECP, IS903, and orf477 elements were detected in the upstream or downstream regions. The blaCTX-M and blaCMY-2 genes mainly belonged to the IncI1, IncHI2, and/or IncFII plasmids. Additionally, the majority of ESBL/pAmpC-producing isolates exhibited heterogeneous PFGE profiles. This study showed that healthy chickens act as reservoirs of ESBL/pAmpC-producing E. coli that can potentially be transmitted to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.-J.S.); (D.C.M.); (A.F.M.); (H.Y.K.); (M.H.K.); (J.-H.C.); (S.-J.K.); (S.-S.Y.)
| |
Collapse
|
8
|
Seo KW, Lee YJ. The occurrence of CTX-M-producing E. coli in the broiler parent stock in Korea. Poult Sci 2020; 100:1008-1015. [PMID: 33518059 PMCID: PMC7858018 DOI: 10.1016/j.psj.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
A large number of antimicrobials are used for the treatment of bacterial infections, and the emergence of antimicrobial-resistant Escherichia coli (E. coli) in livestock and the transfer of resistant isolates to humans poses a serious potential risk to public health. In particular, broiler parent stock produce thousands of eggs for commercial broiler chickens and can transfer antimicrobial-resistant bacteria and drug-resistance genes to chicks. This study was conducted to investigate the prevalence and characteristics of third-generation cephalosporin-resistant and extended-spectrum β-lactamases (ESBL)-producing E. coli isolated from the broiler parent stock in Korea. Among 51 cefotaxime-resistant E. coli isolates, 45 (88.2%) isolates were identified as multidrug resistant and 21 isolates showed phenotypic and genotypic characteristics of CTX-M-producing E. coli. The CTX-M genes CTX-M-14, CTX-M-15, CTX-M-1, and CTX-M-1 were detected in 10, 7, 3, and 1 isolates, respectively. ISEcp1 or IS26 + ISEcp1 were identified upstream of all CTX-M-type genes, and orf477 and IS903 were detected downstream of 9 and 10 CTX-M-type genes, respectively. Thirteen (61.9%) of the 21 CTX-M-producing E. coli isolates harbored class 1 integrons with 4 different gene cassette arrangements. Among the plasmid replicons, CTX-M-1 was located on I1, F, and FIB; CTX-M-14 on F and FII; CTX-M-15 on FII, FIA, and FIB; and CTX-M-65 on FIB. This is the first study to investigate the presence and distribution of third-generation cephalosporin-resistant and CTX-M-producing E. coli isolated from the broiler parent stock level in Korea, and the results indicate that comprehensive surveillance and persistent monitoring systems in broiler parent stock farms are necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Seo KW, Shim JB, Kim YB, Son SH, Bi Noh E, Yoon S, Lim SK, Ju Lee Y. Impacts and characteristics of antimicrobial resistance of Escherichia coli isolates by administration of third-generation cephalosporins in layer hatcheries. Vet Microbiol 2020; 243:108643. [PMID: 32273023 DOI: 10.1016/j.vetmic.2020.108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
We investigated the characteristics and persistence of Escherichia coli resistant to third-generation cephalosporins (3GCs) by early administration of ceftiofur or gentamicin and to analyze the impact of 3GC use in hatcheries. We studied 10 ceftiofur-treated flocks (CTFs) and 10 gentamicin-treated flocks (GTFs) of layers. Fecal samples were collected at 1, 2, 4, 8, 18, and 30 weeks of age for all flocks. Among the 446 E. coli isolates, 58 (29.0 %) of 200 isolates in CTFs were identified as 3GC-resistant E. coli and 28 (11.4 %) of 246 isolates in GTFs were identified as 3GC-resistant E. coli. The presence of 3GC-resistant E. coli isolates at 1, 2, and 4 weeks was significantly higher in CTFs than in GTFs (p < 0.05). Moreover, the rate of resistance to 3GCs gradually decreased from 83.3 % at 1 week of age to 4.4 % at 30 weeks of age in CTFs. Of the 86 3GC-resistant E. coli isolates, 32 isolates had β-lactamase-encoding gene: blaCTX-M-14 (ten isolates), blaCTX-M-15 (three isolates), blaCMY-2 (five isolates), and blaTEM-1 (twenty-five isolates) genes. Plasmid replicon typing revealed that blaCTX-M-14, blaCTX-M-15, blaCMY-2, and blaTEM-1 were located on F, F and FIB, I1 and K, and I1 and FII, respectively. Furthermore, 18 isolates carried class 1 integrons, with four different gene cassettes. These results revealed that ceftiofur used in hatcheries can lead to an increase in the number of 3GC-resistant E. coli with many characteristics. A voluntary ban must be imposed on the use of 3GCs for 1-day-old chicks in poultry industry.
Collapse
Affiliation(s)
- Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State 39762, USA; College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Icheon 17415, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Hyun Son
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|