1
|
Mahmoudi J, Kazmi S, Vatandoust S, Athari SZ, Sadigh-Eteghad S, Morsali S, Bahari L, Ahmadi M, Hosseini L, Farajdokht F. Coenzyme Q10 and vitamin E alleviate heat stress-induced mood disturbances in male mice: Modulation of inflammatory pathways and the HPA axis. Behav Brain Res 2025; 476:115259. [PMID: 39303989 DOI: 10.1016/j.bbr.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Heat stress, as an environmental stressor, can lead to temperature dysregulation and neuroinflammation, causing depression and anxiety by disrupting brain physiology and functional connectivity. This study looked at how co-enzyme Q10 (Q10) and vitamin E (Vit E), alone and together, affected heat stress-caused anxiety and depression symptoms and inflammation in male mice. Five groups were utilized in the study: control, heat stress (NS), Q10, Vit E, and the combination group (Q10+Vit E). The mice were subjected for 15 min/day to a temperature of 43°C for 14 consecutive days, followed by daily treatments for two weeks with either normal saline, Q10 (500 mg/kg), Vit E (250 mg/kg), or their combination. The forced swimming test (FST) and tail suspension test (TST) were employed to evaluate despair behavior, whereas the elevated plus maze (EPM) and open field test (OFT) were used to assess anxious behaviors. Subsequently, the animals were sacrificed, and serum corticosterone levels, protein expression of inflammasome-related proteins, and hsp70 gene expression were evaluated in the prefrontal cortex (PFC). The study revealed that treatment with Vit E and Q10, alone or together, provided anxiolytic and antidepressant effects in the heat-stress-subjected animals. Also, giving Vit E and Q10 alone or together greatly lowered serum corticosterone levels. In the PFC, they also lowered the levels of hsp70 mRNA and NF-κB, caspase 1, NLRP3, and IL-1β proteins. It is speculated that treatment with Q10 and Vit E can attenuate heat stress-associated anxious and depressive responses by inhibiting the inflammatory pathways and modulating the hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Bahari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Zhou G, Zhang J, Liu S, Dong S, Cong Y, Jiang X, Yu W. Potential of exogenous melatonin administration to mitigate heat stress induce pathophysiology of chicken. J Therm Biol 2024; 122:103883. [PMID: 38875961 DOI: 10.1016/j.jtherbio.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Melatonin (MT) is an amine hormone secreted by the body that has antioxidant and anti-inflammatory properties. The aim of this study was to investigate pathophysiological protection of MT in heat-stressed chickens. By modelling heat-stressed chickens and treating them with MT. After 21 days of administration, serum antioxidant enzymes, biochemical indices, inflammatory cytokine and heat-stress indices were detected, along with cardiopulmonary function indices and histological observations in chickens. The results show heat-stress induced a decrease (P < 0.05) in body weight and an increase in body temperature, which was reversed after MT intervention. Treatment with MT inhibited (P < 0.05) the secretion of pro-inflammatory factors interleukin-1β, interleukin-6, tumor necrosis factor α, serum heat shock protein 70, corticosterone, and elevated (P < 0.05) the levels of biochemical factors total protein, albumin, globulin, and increased (P < 0.05) the activities of antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase in chicken serum caused by heat stress, and the best effect was observed with the medium dose of MT. The heat-stress caused cardiac atrophy and pulmonary congestion, decreased (P < 0.05) the cardiac function indices creatine kinase isoenzyme, cardiac troponin I, angiotensin receptor I, creatine kinase and lung function indices myeloperoxidase, angiotensin-II, heat shock factor I, and increased (P < 0.05) the lung vascular endothelial growth factor II. Sections of the heart and lungs after administration of MT were observed to be more complete with more normal tissue indices. At the same time, compared with heat stress, heart and lung function indices of grade chickens after MT administration were significantly (P < 0.05)reduced and tended to normal levels, and the best effect was observed in the medium-dose MT. In conclusion, heat stress can cause pathophysiological damage in chickens, and 1 mg/kg/d of exogenous melatonin can attenuate this adverse effect.
Collapse
Affiliation(s)
- Guanghu Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingjing Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Sainan Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yimei Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Prevention and Control of Common Animal Diseases, Harbin, 150030, PR China; Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Liang Q, Huan S, Lin Y, Su Z, Yao X, Li C, Ji Z, Zhang X. Screening of heat stress-related biomarkers in chicken serum through label-free quantitative proteomics. Poult Sci 2024; 103:103340. [PMID: 38118221 PMCID: PMC10770749 DOI: 10.1016/j.psj.2023.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023] Open
Abstract
Heat stress (HS) can result in sudden death and is one of the most stressful and costly events in chicken. Currently, biomarkers used clinically to detect heat stress state in chickens are not optimal, especially for living ones. Analysis of changes in serum proteins of heat-stressed chickens can help to identify some novel convenient biomarkers for this. Twenty-four chickens were exposed to HS at 42°C ± 1°C with a relative humidity of 65% for continuous 5 h in a single day, and 10 birds were used as controls (Con). During HS, 15 dead chickens were categorized as heat stress death group (HSD), and 9 surviving ones served as heat stress survivor group (HSS). Label-free quantitative proteomics (LFQP) was used to analyze differentially expressed proteins (DEPs) in serum of tested animals. Candidate proteins associated with HS were validated by enzyme-linked immunosorbent assay (ELISA). Diagnostic value of candidate biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Source of the selected proteins was analyzed in liver tissues with immunohistochemistry and in cell culture supernatant of primary chicken hepatocytes (PCH) using ELISA. In this study, compared to Con, LFQP identified 123 and 53 significantly different serum proteins in HSD and HSS, respectively. Bioinformatics analysis showed that XDH, POSTN, and HSP90 were potential HS biomarkers in tested chickens, which was similar with results from serum ELISAs and immunohistochemistry in liver tissues. The ROC values of 0.793, 0.752, and 0.779 for XDH, POSTN, and HSP90, respectively, permitted the distinction of heat-stressed chickens from the control. Levels of 3 proteins above in the cell culture supernatant of PCH showed an increasing trend as HS time increased. Therefore, considering that mean concentration of POSTN in serum was higher than that of HSP90, XDH, and POSTN may be optimal biomarkers in serum for detecting HS level in chickens, and mainly secreted from hepatocytes. The former indicates that heat-stressed chickens are in a damaged state, and the latter implies that chickens can repair heat stress damage.
Collapse
Affiliation(s)
- Qijun Liang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Shuqian Huan
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Yiduo Lin
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zhiqing Su
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xu Yao
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Chengyun Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Zeping Ji
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China
| | - Xiaohui Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.
| |
Collapse
|
4
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
5
|
Uyanga VA, Musa TH, Oke OE, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front Physiol 2023; 14:1123582. [PMID: 36824469 PMCID: PMC9941544 DOI: 10.3389/fphys.2023.1123582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Heat stress remains a major environmental factor affecting poultry production. With growing concerns surrounding climate change and its antecedent of global warming, research on heat stress in poultry has gradually gained increased attention. Therefore, this study aimed to examine the current status, identify the research frontiers, and highlight the research trends on heat stress in poultry research using bibliometric analysis. Methods: The literature search was performed on the Web of Science Core Collection database for documents published from 2000 to 2021. The documents retrieved were analyzed for their publication counts, countries, institutions, keywords, sources, funding, and citation records using the bibliometric app on R software. Network analysis for co-authorship, co-occurrence, citation, co-citation, and bibliographic coupling was visualized using the VOSviewer software. Results: A total of 468 publications were retrieved, and over the past two decades, there was a gradual increase in the annual number of publications (average growth rate: 4.56%). China had the highest contribution with respect to the number of publications, top contributing authors, collaborations, funding agencies, and institutions. Nanjing Agricultural University, China was the most prolific institution. Kazim Sahin from Firat University, Turkey contributed the highest number of publications and citations to heat stress in poultry research, and Poultry Science was the most productive and the most cited journal. The top 10 globally cited documents mainly focused on the effects of heat stress, alleviation of heat stress, and the association between heat stress and oxidative stress in poultry. All keywords were grouped into six clusters which included studies on "growth performance", "intestinal morphology", "heat stress", "immune response", "meat quality", and "oxidative stress" as current research hotspots. In addition, topics such as; "antioxidants", "microflora", "intestinal barrier", "rna-seq", "animal welfare", "gene expression", "probiotics", "feed restriction", and "inflammatory pathways" were identified for future research attention. Conclusion: This bibliometric study provides a detailed and comprehensive analysis of the global research trends on heat stress in poultry over the last two decades, and it is expected to serve as a useful reference for potential research that will help address the impacts of heat stress on poultry production globally.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| | - Taha H. Musa
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China,*Correspondence: Victoria Anthony Uyanga, ; Hai Lin,
| |
Collapse
|
6
|
Satapathy PP, Mishra SR, Jena GR, Kundu AK. Hyper-transcription of heat shock factors and heat shock proteins safeguard caprine cardiac cells against heat stress. J Therm Biol 2023; 111:103393. [PMID: 36585073 DOI: 10.1016/j.jtherbio.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The present study was undertaken to document the transcriptional abundance of heat shock factors and heat shock proteins and their role in survivability of caprine cardiac cells during heat stress. Cardiac tissues were collected from different goats (n = 6) and primary cardiac cell culture was done in an atmosphere of 5% CO2 and 95% air at 38.5 °C. Cardiac cells accomplished 70-75% confluence after 72 h of incubation. Confluent cardiac cells were exposed to heat stress at 42 °C for 0 (control), 20, 60, 100 and 200 min. Quantitative RT-PCR for β2m (internal control), heat shock factors (HSF1, HSF2, HSF4, HSF5), heat shock proteins (HSP10, HSP40), and Caspase-3 was done and their transcriptional abundance was assessed by Pfaffl method. Transcriptional abundance of HSF1, HSF2, and HSF4 did not change at 20 min, increased (P < 0.05) from 60 to 200 min and reached zenith at 200 min of heat exposure. However, transcriptional abundance of HSF5 was gradually escalated (P < 0.05) from 20 to 200 min and registered highest at 200 min of heat exposure. Transcriptional abundance of HSP10 and HSP40 followed an similar pattern like that of HSF5. Transcriptional abundance of Caspase-3 was significantly down-regulated at 200 min of heat exposure. It could be speculated that over-expression of HSFs and HSPs might have reduced Caspase-3 expression at 200 min of heat exposure suggesting their involvement in cardiac cells survival under heat stress. Moreover, hyper-expression of HSFs and HSPs could maintain the integrity and endurance of cardiac tissues of goats under heat stress.
Collapse
Affiliation(s)
- P P Satapathy
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India.
| | - G R Jena
- Department of Veterinary Clinical Medicine, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| |
Collapse
|
7
|
Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult Sci 2022; 101:101693. [PMID: 35066384 PMCID: PMC8789536 DOI: 10.1016/j.psj.2021.101693] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study was to evaluate the probiotic properties of Bacillus subtilis KC1 as a feed additive in the poultry feed. Effects of the Bacillus subtilis supplementation on growth performance, heat-stress tolerance, resistance to Mycoplasma gallisepticum (MG) and Salmonella Pullorum challenge of broilers were determined. The protective effects of the Bacillus subtilis on liver function and immune response of broilers challenged with Aflatoxin B1 (AFB1) were also scrutinized. The results showed that the Bacillus subtilis supplementation could improve growth performance, increased body weight, relative weight of the immune organ and dressing percentage, and decrease feed conversion ratio. In addition, the Bacillus subtilis supplementation alleviated adverse effects caused by heat stress, MG, and Salmonella Pullorum challenge. Furthermore, the Bacillus subtilis supplementation resulted in improved liver function and enhanced immune response of broilers challenged with AFB1. In conclusion, these results suggested a tremendous potential of Bacillus subtilis KC1 as a feed additive in the poultry feed.
Collapse
|
8
|
Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia. Poult Sci 2022; 101:101821. [PMID: 35537342 PMCID: PMC9118144 DOI: 10.1016/j.psj.2022.101821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress is one of the major environmental stressors challenging the global poultry industry. Identifying the genes responsible for heat tolerance is fundamentally important for direct breeding programs. To uncover the genetic basis underlying the ambient temperature adaptation of chickens, we analyzed a total of 59 whole genomes from indigenous chickens that inhabit South Asian tropical regions and temperate regions from Northern China. We applied FST and π-ratio to scan selective sweeps and identified 34 genes with a signature of positive selection in chickens from tropical regions. Several of these genes are functionally implicated in metabolism (FABP2, RAMP3, SUGCT, and TSHR) and vascular smooth muscle contractility (CAMK2), and they may be associated with adaptation to tropical regions. In particular, we found a missense mutation in thyroid-stimulating hormone receptor (41020238:G>A) that shows significant differences in allele frequency between the chicken populations of the two regions. To evaluate whether the missense mutation in TSHR could enhance the heat tolerance of chickens, we constructed segregated chicken populations and conducted heat stress experiments using homozygous mutations (AA) and wild-type (GG) chickens. We found that GG chickens exhibited significantly higher concentrations of alanine aminotransferase, lactate dehydrogenase, and creatine kinase than AA chickens under heat stress (35 ± 1°C) conditions (P < 0.05). These results suggest that TSHR (41020238:G>A) can facilitate heat tolerance and adaptation to higher ambient temperature conditions in tropical climates. Overall, our results provide potential candidate genes for molecular breeding of heat-tolerant chickens.
Collapse
|
9
|
Dietary Curcumin Improves Energy Metabolism, Brain Monoamines, Carcass Traits, Muscle Oxidative Stability and Fatty Acid Profile in Heat-Stressed Broiler Chickens. Antioxidants (Basel) 2021; 10:antiox10081265. [PMID: 34439513 PMCID: PMC8389285 DOI: 10.3390/antiox10081265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to elucidate the impacts of dietary curcumin supplementation on energy metabolism, brain monoamines and muscle oxidative stability in heat-stressed broilers. In total, 120 day-old chicks were allocated into three equal groups of four replicates. The first group (T1) was maintained on a thermoneutral condition, while the second group (T2) was subjected to 8 h of thermal stress (34 °C), and both groups fed the basal diet with no supplement. The third group (T3) was exposed to the same thermal stress conditions and fed the basal diet supplemented with curcumin (100 mg kg-1 diet). The dietary curcumin supplementation significantly increased the breast yield (p = 0.004), but reduced the percentage of abdominal fat (p = 0.017) compared with the T2 group. The addition of curcumin to broiler diets significantly improved the levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in breast and thigh muscles compared with the T2 group (p < 0.05). The curcumin-supplemented group showed significantly lower levels of malondialdehyde in the breast and thigh muscles than that of the T2 group (p = 0.001 and 0.015, respectively). The dietary curcumin supplementation significantly improved the levels of ATP and CoQ10 in liver tissues (p = 0.012 and 0.001, respectively) and brain serotonin (p = 0.006) as compared to the T2 group. Meanwhile, the heat-stressed group showed significantly higher levels of ADP and Na,K-ATPase in the liver tissues than that of the other experimental groups (p = 0.011 and 0.027, respectively). It could be concluded that dietary curcumin supplementation may improve carcass yield, energy biomarkers, brain serotonin and muscle oxidative stability of heat-stressed broiler chickens.
Collapse
|
10
|
Feng Z, Nadikudi M, Woolley KL, Hemasa AL, Chear S, Smith JA, Gueven N. Bioactivity Profiles of Cytoprotective Short-Chain Quinones. Molecules 2021; 26:molecules26051382. [PMID: 33806577 PMCID: PMC7961879 DOI: 10.3390/molecules26051382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Short-chain quinones (SCQs) have been investigated as potential therapeutic candidates against mitochondrial dysfunction, which was largely thought to be associated with the reversible redox characteristics of their active quinone core. We recently reported a library of SCQs, some of which showed potent cytoprotective activity against the mitochondrial complex I inhibitor rotenone in the human hepatocarcinoma cell line HepG2. To better characterize the cytoprotection of SCQs at a molecular level, a bioactivity profile for 103 SCQs with different compound chemistries was generated that included metabolism related markers, redox activity, expression of cytoprotective proteins and oxidative damage. Of all the tested endpoints, a positive correlation with cytoprotection by SCQs in the presence of rotenone was only observed for the NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent reduction of SCQs, which also correlated with an acute rescue of ATP levels. The results of this study suggest an unexpected mode of action for SCQs that appears to involve a modification of NQO1-dependent signaling rather than a protective effect by the reduced quinone itself. This finding presents a new selection strategy to identify and develop the most promising compounds towards their clinical use.
Collapse
Affiliation(s)
- Zikai Feng
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Monila Nadikudi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Krystel L. Woolley
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Ayman L. Hemasa
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Sueanne Chear
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7005, Australia; (K.L.W.); (J.A.S.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (Z.F.); (M.N.); (A.L.H.); (S.C.)
- Correspondence:
| |
Collapse
|
11
|
Shen Y, Zou Y, Li J, Chen F, Li H, Cai Y. CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury. Int J Mol Sci 2020; 21:E8400. [PMID: 33182370 PMCID: PMC7664939 DOI: 10.3390/ijms21218400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
CDK5RAP3 was regarded as the most significant regulator of cellular responses against heat stress, which is associated with dysfunctions of the immune system and animal susceptibility to disease. Despite this, little known about how CDK5RAP3 regulates heat stress response. In this study, CDK5RAP3 conditional Knockout (CKO) mice, CDK5RAP3-/- mouse embryo fibroblasts (MEFs) and bovine mammary epithelial cells (BMECs) were used as an in vitro and in vivo model, respectively to reveal the role of CDK5RAP3 in regulating the heat stress response. The deletion of CDK5RAP3 unexpectedly caused animal lethality after 1.5-h heat stimulations. Furthermore, BMECs were re-cultured for eight hours after heat stress and was found that the expression of CDK5RAP3 and HSPs showed a similar fluctuating pattern of increase (0-2, 4-6 h) and decrease (2-4, 6-8 h). In addition to the remarkably enhanced expression of heat shock protein, apoptosis rate and endoplasmic reticulum stress, the deletion of CDK5RAP3 also affected nucleoplasmic translocation and trimer formation of heat shock factor 1 (HSF1). These programs were further confirmed in the mammary gland of CDK5RAP3 CKO mice and CDK5RAP3-/- MEFs as well. Interestingly, genetic silencing of HSF1 downregulated CDK5RAP3 expression in BMECs. Immunostaining and immunoprecipitation studies suggested a physical interaction between CDK5RAP3 and HSF1 being co-localized in the cytoplasm and nucleus. Besides, CDK5RAP3 also interacted with HSP90, suggesting an operative machinery at both transcriptional level and protein functionality of HSP90 per se. Together, our findings suggested that CDK5RAP3 works like a novel nucleoplasmic shuttle or molecular chaperone, deeply participating in HSF1-mediated heat stress response and protecting cells from heat injury.
Collapse
Affiliation(s)
- Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Yan Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| |
Collapse
|
12
|
Yin B, Di L, Tang S, Bao E. Vitamin CNa enhances the antioxidant ability of chicken myocardium cells and induces heat shock proteins to relieve heat stress injury. Res Vet Sci 2020; 133:124-130. [PMID: 32977120 DOI: 10.1016/j.rvsc.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
In order to explore the function of vitamin C (VC) and VC-Na in the relief of heat stress injury in chicken cardiomyocytes, 150 30-day-old specific-pathogen-free chickens were randomly divided into a control group (fed normal drinking water), a VC group (50 μg/mL VC in drinking water), and a VC-Na group (50 μg/mL VC-Na in drinking water). After 7 days of adaptation feeding, the chickens were subjected to heat stress at 40 ± 2 °C and 60%-70% humidity for 0, 1, 3, 5, and 10 h, respectively, and the sera and heart tissues of the chickens were collected immediately at the corresponding heat stress time points. The effects of VC and VC-Na supplementation on the relief of chicken myocardial cell injury following heat stress was studied by detecting the levels of LDH, CK, CK-MB, and total antioxidant capacity (T-AOC) in the sera, and through histopathological analysis and the expression of CRYAB, Hsp27, and Hsp70 in the myocardial cells. The results showed that supplementing with 50 μg/mL VC or VC-Na significantly reduced the levels of LDH, and CK-MB in serum as well as heat-stress-induced granular and vacuolar degeneration, myocardial fiber breakage, and cell necrosis, indicating effective resistance to heat-stress damage. Additionally, the levels of T-AOC in serum were increased in the VC and VC-Na groups, suggesting enhancing of antioxidant capacity. Furthermore, the expression of CRYAB were induced at 0, 3, 5, and 10 h (P < 0.01) in both VC and VC-Na group, and that of Hsp70 were induced at 0 h (P < 0.05) in VC group and at 0, 3, 5, 10 h (P < 0.01) in VC-Na group. Thus, supplementing chicken diets with VC or VC-Na presented heat-stress damage resistance by enhancing antioxidant capacity and inducing expression of CRYAB and Hsp70.
Collapse
Affiliation(s)
- Bin Yin
- Poultry Institue, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Liangjiao Di
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shu Tang
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Endong Bao
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
13
|
Scudiero R, Verderame M, Motta CM, Migliaccio V, Simoniello P. HSP70 localization in Podarcissiculus embryos under natural thermal regime and following a non-lethal cold shock. C R Biol 2019; 342:299-308. [PMID: 31734081 DOI: 10.1016/j.crvi.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 11/30/2022]
Abstract
The Heat Shock Proteins (HSPs) are a superfamily of molecular chaperones that maintain cellular homeostasis under stress. HSP70 represents the major stress-inducible family member, often activated in response to changes in thermal ranges of organisms, and therefore playing an important role enhancing thermal tolerance limits in ectothermic animals. The present study aimed to investigate the presence and the localization of HSP70 through the development of Podarcis siculus, an oviparous lizard inhabiting temperate Mediterranean regions, showing a limited potential to tolerate thermal changes during embryogenesis. Immunohistochemical analysis demonstrated that HSP70 protein is constitutively present in early embryonic stages, abundantly distributed in eye, in encephalic domains (predominantly in ventricular areas and in grey matter), in grey matter of spinal cord, in lung, gut mucosa, hepatic cords and kidney tubules. Interestingly, a severe drop in incubation temperature (5°C for 3 days) does not induce enhancements in HSP70 levels nor changes in tissues localization. These results suggest that the HSP70 found in P. siculus embryos represents a non-inducible, constitutive molecular chaperone that should be better called Heat Shock Cognate 70 (HSC70); the presence of stress-induced members of the HSP family in P. siculus has yet to be proven.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University Federico II, via Cintia, 80126 Napoli, Italy.
| | | | - Chiara Maria Motta
- Department of Biology, University Federico II, via Cintia, 80126 Napoli, Italy
| | - Vincenzo Migliaccio
- Department of Biology, University Federico II, via Cintia, 80126 Napoli, Italy
| | - Palma Simoniello
- Department of Science and Technologies, University of Naples Parthenope, 80143 Napoli, Italy
| |
Collapse
|