1
|
Trang NM, Vinh LB, Phong NV, Yang SY. Anti-Inflammatory Activity of Labdane and Norlabdane Diterpenoids from Leonurus sibiricus Related to Modulation of MAPKs Signaling Pathway. PLANTA MEDICA 2025; 91:29-39. [PMID: 39395406 DOI: 10.1055/a-2440-5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Leonurus sibiricus, a widely cultivated herbaceous plant in Asian countries, exhibits diverse medicinal applications. Recent studies emphasize its pharmacological properties and efficacy in promoting bone health. In addition to the known compounds and their pharmacological activities, in this study, we isolated and elucidated two new labdane-type diterpenoids, (3R,5R,6S,10S)-3,6-dihydroxy-15-ethoxy-7-oxolabden-8(9),13(14)-dien-15,16-olide (1: ) and (4R,5R,10S)-18-hydroxy-14,15-bisnorlabda-8-en-7,13-dione (2: ), a new natural phenolic compound, and a known compound from L. sibiricus using advanced spectroscopic techniques, including circular dichroism spectroscopy, high-resolution mass spectrometry, and 1- and 2-dimensional NMR. Among these, compound 1: demonstrated potent inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression levels, followed by compound 2: . Whereas compounds 3: and 4: did not exhibit effectiveness in RAW264.7 macrophages. Moreover, compound 1: suppressed pro-inflammatory markers induced by lipopolysaccharide (LPS) stimulation. Compound 1: also suppressed iNOS and cyclooxygenase-2 (COX-2) protein levels and downregulated pro-inflammatory cytokines. Additionally, compound 1: showed inhibition of the phosphorylation of p38, JNK, and ERK, key mediators of the MAPK signaling pathway. These findings indicate that a natural-derived product, compound 1,: might be a potential candidate as an anti-inflammation mediator.
Collapse
Affiliation(s)
- Nguyen Minh Trang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Fatemi SA, Levy AW, Peebles ED. The Expressions of the Immunity- and Muscle Development-Related Genes of 40-Day-Old Broilers Are Promoted in Response to the In Ovo and Dietary Supplemental Administration of Calcidiol in Conjunction with the In Ovo Administration of Marek's Disease Vaccine. Animals (Basel) 2024; 15:10. [PMID: 39794953 PMCID: PMC11718904 DOI: 10.3390/ani15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Effects of in ovo and dietary sources of calcidiol (25(OH)D3), combined with Marek's disease vaccine (MDV), on the expression of genes involved with the antioxidant activity, muscle deposition, and immunity in the pectoralis major (P. major) muscle and spleen of 40 d of age (doa) broilers were investigated. The in ovo treatments were as follows: (1) non-injected; (2) the injection of 50 μL of commercial MDV, (3) MDV + 1.2, or (4) 2.4 μg of 25(OH)D3. All birds received either a commercial diet containing no supplemental 25(OH)D3 (control) or the same diet supplemented with an additional 69 µg of 25(OH)D3 per kg of feed (Hy-D diet). At 40 doa, the pectoralis major (P. major) muscle and spleen of 48 birds (six replicates per diet x in ovo treatment combination) were collected. When compared to un-supplemented commercial diet-fed birds, in birds that were fed the Hy-D diet, the expression of the TGF-β4 gene in the spleen and P. major muscle, and the GSH-P1, GSH-P7, SOD2, MyoG, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, whereas the expression of the IL-1β, IL-8, and CYP24A1 genes in the spleen and P. major muscle were down-regulated. Nevertheless, birds that received any of the in ovo injection doses of 25(OH)D3 exhibited a higher expression of the IL-10, TGF-β4, and CYP27B1 genes in the spleen and P. major muscle. Furthermore, in comparison to the MDV-injected control group, the CAT, MyoD1, and Pax3 genes in the P. major muscle were up-regulated, and the expression of the INF-γ, IL-1β and CYP24A1 genes in the spleen and the IL-8, and IL-1β genes in the P. major muscle were down-regulated. In conclusion, a significant improvement in the expression of genes responsible for enzymatic antioxidant activity, protein synthesis, and inflammatory reactions in 40-day-old broilers occurred in response to in ovo and dietary supplemental 25(OH)D3, and supplemental 25OHD3 provided via either route was used to enhance the expression of genes linked to vitamin D activity (CYP27B1, CYP24A1).
Collapse
|
3
|
Wang Q, Li J, Li G, Zang Y, Fan Q, Ye J, Wang Y, Jiang S. Protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota in yellow-feathered broilers under lipopolysaccharide challenge. Poult Sci 2024; 104:104688. [PMID: 39721279 PMCID: PMC11732448 DOI: 10.1016/j.psj.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
This research was performed to investigate protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota of lipopolysaccharide-challenged broilers. Three hundred 1-day-old yellow-feathered broilers (male) were allocated randomly into 5 treatments, with 6 replicates per treatment, and 10 birds per replicate cage. Birds in both the control group (CON) and the lipopolysaccharide-challenged group were provided with a basal diet, while others were fed a basal diet supplemented with 20, 40, and 60 mg/kg carnosic acid (CA20, CA40, CA60), respectively. At 17, 19, and 21 days of age, birds were injected intraperitoneally with lipopolysaccharide (500 μg/kg body weight), except those in CON, which were injected with saline. Compared with challenged birds, the CA20, CA40, and CA60 increased (P < 0.05) the final body weight, average daily gain, and average daily feed intake, and the CA40 and CA60 also decreased diarrhea rate. Compared with challenged birds, carnosic acid reduced (P < 0.05) plasmal levels of D-lactic acid and endotoxin, increased (P < 0.05) the villus height to crypt depth ratio, and the number of goblet cells in duodenum. The CA40 and CA60 elevated (P < 0.05) relative expression of cell junction proteins (Claudin-1/-2 and ZO-1/-2/-3) and MUC-2 in duodenum, while decreased (P < 0.05) relative expression of TLR2, TLR4, and the concentrations of IL-6, IL-10, TNF-α, TGF-β1 in duodenum. CA40 also increased (P < 0.05) the α-diversity of the cecal microbiota and boosted (P < 0.05) the relative abundance of beneficial phyla and genera, particularly Firmicutes, Anaerofilum, and Papilibacter. In conclusion, dietary supplementation with carnosic acid showed protective effects on the growth performance and intestinal health in challenged broilers by down-regulating the expression of TLRs (TLR2/4) and inhibiting the production of inflammatory cytokines, strengthening the tight junction in intestinal epithelial cells, and enhancing the diversity of microbiota and the relative abundance of beneficial bacteria. When supplemented to diet of broilers, 40 mg/kg carnosic acid was recommended.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China; College of Veterinary Medicine, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, 430072, China
| | - Jiawei Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Guanhuo Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yingan Zang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qiuli Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Yibing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Shouqun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Sanjaya HL, Maharani BP, Baskara AP, Muhlisin, Martien R, Zuprizal. Effect of lipopolysaccharides from pathogenic bacteria on broiler chickens' productivity: a meta-analysis. Br Poult Sci 2024; 65:708-721. [PMID: 38940295 DOI: 10.1080/00071668.2024.2364331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
1. This meta-analysis investigated the impact of LPS and covariates (serotype, rearing period and administration route) on the productivity parameters of broiler chickens (average daily feed intake (ADFI), average daily gain (ADG) and feed conversion ratio (FCR)).2. Thirty-two eligible studies were included. Hedges' g effect size was determined using a random-effects model at 95% confidence interval.3. Results showed that LPS significantly decreased average daily feed intake (ADFI; p < 0.0001) and average daily gain (ADG; p < 0.0001) and increased FCR (p < 0.0001). The serotypes Escherichia coli 055: B5 (EC055: B5) and Escherichia coli 0127: B8 (EC 0127: B8) significantly reduced ADFI and ADG, and the serotype EC 055: B5 significantly increased the FCR (p < 0.05).4. The intraperitoneal administration of the LPS significantly reduced the productivity of broiler chickens (p < 0.05), but other administration routes did not show such effects. The reduction in ADFI and ADG was found in all rearing periods (p < 0.05), and the increase in FCR was observed in the starter (p = 0.0302) and grower periods (p = 0.0031).5. Exposure to LPS significantly reduced the productivity of broiler chickens (p < 0.05). However, no relationship was observed between LPS dosage and productivity as indicated by the meta-regression study.6. The findings indicated that LPS has detrimental effects on broiler chickens' ADFI, ADG and FCR across various LPS serotypes and rearing periods. These detrimental impacts of LPS remain consistent regardless of the administered dosage.
Collapse
Affiliation(s)
- H L Sanjaya
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - B P Maharani
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - A P Baskara
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhlisin
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - R Martien
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zuprizal
- Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Urtecho-Novelo R, Santos-Ricalde R, Sarmiento-Franco L, Torres-Acosta JF, Borges-Árgaez R. Effect of ethanol extract from Enterolobium cyclocarpum fruit on Leghorn chickens exposed to Eimeria. Trop Anim Health Prod 2024; 56:369. [PMID: 39476271 DOI: 10.1007/s11250-024-04209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
There are concerns about residues of drugs in meat that are used to prevent coccidiosis in chickens. Natural compounds are an alternative to drugs. Two studies investigated the effect of an extract of Enterolobium cyclocarpum fruits (EEC) in the feed of male Leghorn chickens exposed to Eimeria spp. In the first experiment, the administration of EEC after infection with Eimeria spp. was investigated over 16 days. One thousand chickens were randomly housed in 20 pens of 1 m2 each. The pens were randomly assigned to each treatment. Five treatments were administered, containing 150, 300 and 450 mg/kg of EEC in the feed, the fourth treatment (C) contained 0.5 g/kg of a commercial anticoccidial, and the fifth treatment provided no treatment (WA). The second experiment lasted 18 days. Administration of the EEC began five days before the chickens were infected with Eimeria spp. Four hundred and eighty chickens were randomly allocated to 24 pens of 1 m2. The pens were randomly assigned to each treatment. In the second experiment, the same five treatments were tested and one additional treatment containing 300 mg EEC plus 1 g of polyethylene glycol (PEG)/kg of feed (E300PEG). In the experiment one chickens in the EEC treatments had lower faecal oocyst excretion (OE) on day 14 post infection with Eimeria spp., than chickens in the WA treatment (P < 0.05). A reduction in live weight gain (LWG) was observed in the EEC treatments (P < 0.05). In the second experiment, the excretion of oocysts in chickens from the EEC and E300PEG treatments on day 13 post-infection with Eimeria spp. was the same as in the C treatment and lower than in the WA treatment (P < 0.05). LWG was lower in the EEC treatments than in the C treatment (P < 0.05). However, the Chickens in the E300PEG and C treatments had similar LWG (P > 0.05) suggesting that PEG inhibits the negative effect of EEC tannins on LWG. In conclusion, the addition of EEC to chicken feed reduced both OE and LWG. Treatment with EEC and PEG (E300PEG) reduced the excretion of oocysts without negative effects on LWG.
Collapse
Affiliation(s)
- Rosalinda Urtecho-Novelo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Ronald Santos-Ricalde
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Luis Sarmiento-Franco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico.
| | - Juan Felipe Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Rocío Borges-Árgaez
- Centro de Investigación Científica de Yucatán A. C. (CICY), Calle 43 n. 130 x 32 y 34 Chuburná de Hidalgo, Mérida, Yucatán, CP. 97205, Mexico
| |
Collapse
|
7
|
Zhang B, Yang Q, Liu N, Zhong Q, Sun Z. The Effects of Glutamine Supplementation on Liver Inflammatory Response and Protein Metabolism in Muscle of Lipopolysaccharide-Challenged Broilers. Animals (Basel) 2024; 14:480. [PMID: 38338123 PMCID: PMC10854980 DOI: 10.3390/ani14030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1β, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Chang Cheng Road, Cheng Yang District, Qingdao 266109, China
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China
| | - Qian Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Ning Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| |
Collapse
|
8
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
9
|
Hong W, Fu W, Zhao Q, Xue C, Cai W, Dong N, Shan A. Effects of oleanolic acid on acute liver injury triggered by lipopolysaccharide in broiler chickens. Br Poult Sci 2023; 64:697-709. [PMID: 37697900 DOI: 10.1080/00071668.2023.2251119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
1. Infectious injury caused by lipopolysaccharide (LPS), a metabolite of gram-negative bacteria, can induce stress responses in animals and is a significant cause of morbidity and mortality in young birds. The purpose of this study was to investigate the effects of dietary supplementation with oleanolic acid (OA) on acute liver injury in broiler chickens challenged with LPS.2. In total, 120 broiler chickens were randomly divided into six groups and fed a basal diet containing 0, 50, 100, or 200 mg/kg OA or 100 mg/kg aureomycin. On d 15, broiler chickens were injected with either LPS or an equivalent volume of normal saline. Six hours after LPS injection, two broiler chicks were randomly selected for sampling in each replicate.3. The results indicated that dietary aureomycin was ineffective in alleviating LSP-associated liver injury, but protected broiler chickens from LPS-induced liver damage. This promoted a significant reduction in the levels of malondialdehyde and an increase in the levels of superoxide dismutase in liver. In addition, OA was found to cause significant reductions in the relative expression of IL-1β, IL-6, and TNF-α in broiler liver tissues, whereas the relative expression of IL-10 was significantly increased.4. In conclusion, oleanolic acid can alleviate oxidative stress and injury in the livers of broiler chickens induced by lipopolysaccharide. Consequently, oleanolic acid has potential utility as a novel anti-inflammatory and antioxidant feed additive.
Collapse
Affiliation(s)
- W Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Fu
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Q Zhao
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - C Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Cai
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - N Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - A Shan
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
10
|
Hu W, He Z, Du L, Zhang L, Li J, Ma Y, Bi S. Biomarkers of oxidative stress in broiler chickens attacked by lipopolysaccharide: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115606. [PMID: 37866038 DOI: 10.1016/j.ecoenv.2023.115606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Oxidative stress (OS) constitutes a pivotal factor in the initiation and progression of lipopolysaccharide (LPS) challenges in broiler chickens. Increasing studies have demonstrated that Alleviation of oxidative stress seems to be a reasonable strategy to alleviate LPS-mediated afflictions in broilers. Nonetheless, the relationship between OS-related indicators and exposure to LPS remains a topic of debate. The aim of this investigation was to precisely and holistically evaluate the effect of LPS exposure on OS-associated markers. We conducted a systematic search of four electronic databases-PubMed, Web of Science, Scopus, and Cochrane for relevant studies, and a total of 31 studies were included. The overall results showed that the LPS treatment significantly increased the levels of oxygen radicals and their products, such as malondialdehydes (MDA), reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG), while significantly reduced the levels of antioxidants, such as total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH), in the chickens. Intriguingly, though the observed trends in alterations were not strictly correlated with LPS concentrations, the enzyme activity levels were indeed influenced by the concentration of LPS. This observation highlights the complex relationship between LPS exposure and the body's antioxidant response. Despite some limitations, all the included studies were deemed credible. Subgroup evaluations revealed that the jejunum and duodenum has demonstrated stronger antioxidant capability compared to other tissues. Overall, our study presents compelling evidence that exposure to LPS induces significant OS in chickens. And we also found that the extent of OS was related to LPS doses, target tissues, and dietary ingredients.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Lin Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Yue Ma
- Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China; Institute of Traditional Chinese Veterinary Medicine,Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
11
|
Liu J, Liang S, Qin K, Jia B, Ren Z, Yang X, Yang X. Acer truncatum leaves extract modulates gut microbiota, improves antioxidant capacity, and alleviates lipopolysaccharide-induced inflammation in broilers. Poult Sci 2023; 102:102951. [PMID: 37562124 PMCID: PMC10432845 DOI: 10.1016/j.psj.2023.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1β in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1β, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.
Collapse
Affiliation(s)
- Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bingzheng Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
12
|
Xing Y, Zheng Y, Yang S, Zhang L, Guo S, Shi L, Xu Y, Jin X, Yan S, Shi B. Artemisia ordosica polysaccharide ameliorated LPS-induced growth inhibition and intestinal injury in broilers through enhancing immune-regulation and antioxidant capacity. J Nutr Biochem 2023; 115:109284. [PMID: 36828238 DOI: 10.1016/j.jnutbio.2023.109284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
The study investigated the effects of dietary Artemisia ordosica polysaccharide (AOP) on growth, intestinal morphology, immune responses and antioxidant capacity of broilers challenged with lipopolysaccharide (LPS). A total of 192 1-d-old broilers were randomly allotted to four treatments with 6 replicates (n = 8): (1) CON group, non-challenged broilers fed basal diet; (2) LPS group, LPS-challenged broilers fed basal diet; (3) AOP group, non-challenged broilers fed basal diet supplemented with 750 mg/kg AOP; (4) LPS+AOP group, LPS-challenged broilers fed basal diet supplemented with 750 mg/kg AOP. The trial included starter phase (d 1 to 14), stress period Ⅰ (d 15 to 21), convalescence Ⅰ (d 22 to 28), stress period Ⅱ (d 29 to 35) and convalescence Ⅱ (d 36 to 42). During stress period Ⅰ and Ⅱ, broilers were injected intra-abdominally either with LPS solution or with equal sterile saline. The results showed that AOP alleviated LPS-induced growth inhibition by prompting protein digestibility, and decreasing serum stress hormones and pro-inflammatory cytokines content of broilers. Moreover, AOP decreased LPS-induced over-production of IL-1β and IL-6 through suppressing TLR4/NF-κB pathway, and alleviated LPS-induced decreasing of T-AOC, CAT and GPx activities by activating Nrf2/Keap1 pathway, which ultimately improved jejunum morphology. In conclusion, AOP alleviated LPS-induced growth inhibition and intestinal damage by enhancing anti-inflammatory and antioxidant capacities of broilers.
Collapse
Affiliation(s)
- Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Yankai Zheng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Shuo Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Linhui Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Lulu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot P.R. China.
| |
Collapse
|
13
|
Wickramasuriya SS, Park I, Lee Y, Richer LM, Przybyszewski C, Gay CG, van Oosterwijk JG, Lillehoj HS. Orally delivered Bacillus subtilis expressing chicken NK-2 peptide stabilizes gut microbiota and enhances intestinal health and local immunity in coccidiosis-infected broiler chickens. Poult Sci 2023; 102:102590. [PMID: 36940653 PMCID: PMC10033313 DOI: 10.1016/j.psj.2023.102590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
We recently reported a stable Bacillus subtilis-carrying chicken NK-lysin peptide (B. subtilis-cNK-2) as an effective oral delivery system of an antimicrobial peptide to the gut with therapeutic effect against Eimeria parasites in broiler chickens. To further investigate the effects of a higher dose of an oral B. subtilis-cNK-2 treatment on coccidiosis, intestinal health, and gut microbiota composition, 100 (14-day-old) broiler chickens were allocated into 4 treatment groups in a randomized design: 1) uninfected control (CON), 2) infected control without B. subtilis (NC), 3) B. subtilis with empty vector (EV), and 4) B. subtilis with cNK-2 (NK). All chickens, except the CON group, were infected with 5,000 sporulated Eimeria acervulina (E. acervulina) oocysts on d 15. Chickens given B. subtilis (EV and NK) were orally gavaged (1 × 1012 cfu/mL) daily from d 14 to 18. Growth performances were measured on d 6, 9, and 13 postinfection (dpi). Spleen and duodenal samples were collected on 6 dpi to assess the gut microbiota, and gene expressions of gut integrity and local inflammation makers. Fecal samples were collected from 6 to 9 dpi to enumerate oocyst shedding. Blood samples were collected on 13 dpi to measure the serum 3-1E antibody levels. Chickens in the NK group showed significantly improved (P < 0.05) growth performance, gut integrity, reduced fecal oocyst shedding and mucosal immunity compared to NC. Interestingly, there was a distinct shift in the gut microbiota profile in the NK group compared to that of NC and EV chickens. Upon challenge with E. acervulina, the percentage of Firmicutes was reduced and that of Cyanobacteria increased. In NK chickens, however, the ratio between Firmicutes and Cyanobacteria was not affected and was similar to that of CON chickens. Taken together, NK treatment restored dysbiosis incurred by E. acervulina infection and showed the general protective effects of orally delivered B. subtilis-cNK-2 on coccidiosis infection. This includes reduction of fecal oocyst shedding, enhancement of local protective immunity, and maintenance of gut microbiota homeostasis in broiler chickens.
Collapse
Affiliation(s)
- Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | | - Cyril G Gay
- Office of National Program-Animal Health, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
14
|
Zhang Q, Li J, Wang J, Nie K, Luo Z, Xu S, Lin Y, Feng B, Zhuo Y, Hua L, Che L. Effects of lysophospholipids and multi-enzymes on growth performance, antioxidant capacity, intestinal health, and cecal microflora of male cherry valley ducks. J Anim Sci 2023; 101:skad361. [PMID: 37870076 PMCID: PMC10629945 DOI: 10.1093/jas/skad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023] Open
Abstract
Improvement of nutrient utilization to promote growth performance is always pursued in poultry. In this study, a total of 360 1-d-old male ducklings was randomly assigned to 3 treatments in terms of diet treatment groups. Three treatments were as follows: basal diet (Con group) or basal diet supplemented with 300 mg/kg multi-enzymes (ENZ group) or 500 mg/kg lysophospholipids (LPL group). On day 42, ducks were slaughtered for samplings. The results revealed that supplementary LPL improved the body weight (BW) at day 14 and average daily gain (ADG) during days 1 to 14 and improved the feed conversion rate (FCR) for the overall period (P < 0.05) by improving nutrient utilization of dry matter and ether extract (P < 0.05) compared with the Con group. Dietary ENZ improved the FCR from days 15-42 and 1-42, and nitrogen utilization (P < 0.05) compared with the Con group. Jejunal villus height and villus height/crypt depth ratio were higher (P < 0.05) in the LPL group and tended to be higher (P < 0.1) in the ENZ group compared to the Con group. Supplementation with either LPL or ENZ reduced interleukin-1β concentration in jejunal mucus (P < 0.05). Both LPL and ENZ enhanced serum total superoxide dismutase activity (P < 0.05), whereas only supplementation with LPL elevated total antioxidant capacity (P < 0.05). In terms of cecal microbiota, microbial richness tended to be reduced by LPL, with low observed-OTUs and Chao1 (0.05 < P < 0.1). Supplementation with ENZ led to higher abundances of cellulolytic bacteria such as Fibrobacterota, [Eubacterium]_xylanophilum_group, and Bifidobacterium. Overall, both LPL and ENZ improved FCR, which may be relevant to ameliorative intestinal health, overall antioxidant ability, and cecal microbiome.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, South Korea
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Kangkang Nie
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Zheng Luo
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Dietary supplementation with anthocyanin attenuates lipopolysaccharide-induced intestinal damage through antioxidant effects in yellow-feathered broiler chicks. Poult Sci 2022; 102:102325. [PMID: 36566655 PMCID: PMC9801212 DOI: 10.1016/j.psj.2022.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the protective effects of anthocyanin (AC) supplementation on lipopolysaccharide (LPS)-challenged yellow-feathered broiler chicks. A total of 480 1-d female broiler chicks were randomly assigned to 4 treatment groups: basal diet (CON), basal diet + LPS-challenge (LPS), supplementation with 100 or 400 mg/kg AC + LPS-challenge (AC100, AC400). On d 17 and d 19, birds in LPS, AC100 and AC400 received an intramuscular dose of LPS, while birds in CON received saline. The result showed that (1) LPS injection significantly decreased (P < 0.05) body weight on d 21 and average daily gain of broiler chicks from 1 to 21 days of age, and supplementation with 100 mg/kg AC increased (P < 0.05) those of LPS-challenged broilers. (2) There were no differences among the treatments (P > 0.05) in relative weights of immune organs. (3) Supplementation with AC (AC100 and AC400) increased (P < 0.05) the jejunal villus height and villus height/crypt depth ratio (AC100) of LPS-challenged birds. Challenge with LPS decreased the relative expression of OCLN (Occludin), ZO-1, JAM2, and MUC2 in jejunal mucosa of broilers, and supplementation with AC offset the relative expression of ZO-1, JAM2 (AC100 and AC400), and OCLN (AC400) in LPS-injected broilers. (4) LPS-induced increase in the malondialdehyde (MDA) concentration and decreases in activity of total superoxide dismutase (T-SOD), and expression of SOD1, CAT and GPX in jejunal mucosa, were attenuated by dietary AC supplementation. In conclusion, in yellow-feathered broiler chicks, dietary supplementation with AC alleviated LPS-induced declined growth performance and mucosal damage of the intestine through antioxidant effects.
Collapse
|
16
|
Wang J, Wang J, Li Y, Han Q, Wang Y, Liu H, Bao J. Organic Selenium Alleviates Ammonia-Mediated Abnormal Autophagy by Regulating Inflammatory Pathways and the Keap1/Nrf2 Axis in the Hypothalamus of Finishing Pigs. Biol Trace Elem Res 2022:10.1007/s12011-022-03452-8. [PMID: 36284052 DOI: 10.1007/s12011-022-03452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Ammonia is a significant pollutant in the livestock houses and the atmospheric environment, and excessive ammonia would harm the health of livestock and breeders. Previous studies have shown that ammonia exposure could damage the tissue structure of the nervous system, but the molecular mechanism of ammonia-induced hypothalamus damage was still unclear. The purpose of this study was to determine the role of excessive ammonia in abnormal autophagy of pig hypothalamus and whether selenomethionine would have a mitigating effect on ammonia toxicity. Twenty-four 18-week pigs were randomly divided into four groups: the control group (C group), the selenium group (Se group), the ammonia + selenium group (A + Se group), and the ammonia group (A group). In our study, the expression levels of NF-κB, IL-1β, iNOS, TNF-α, IKK-α, p-IKK-α, Nrf2, ATG5, ATG 10, ATG 12, LC3 I/II, HSP60, HSP70, and HSP90 were increased after ammonia exposure; meanwhile, IFN-γ, IKB-α, p-IKB-α, Keap1, P62, mTOR, AKT, p-AKT, PI3K, SQSTM, and Beclin1 showed decreasing trends. The results indicated that excessive ammonia inhalation inhibited the AKT/mTOR pathway to acclerated autophagy through oxidative stress-mediated inflammation in the porcine hypothalamus. L-selenomethionine could alleviate hypothalamus injury induced by ammonia exposure.
Collapse
Affiliation(s)
- Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
17
|
Dietary Garlic Powder Alleviates Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress through Regulating the Immunity and Intestinal Barrier Function in Broilers. Animals (Basel) 2022; 12:ani12172281. [PMID: 36078001 PMCID: PMC9454656 DOI: 10.3390/ani12172281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary This research was performed to determine the positive effects of GP on growth and intestinal function in lipopolysaccharide (LPS) challenged broilers. Results show that LPS challenge enhanced the weight loss rate, decreased the immunity and antioxidant capability, increased the intestinal permeability in broilers. When compared with LPS group, broilers fed with GP exhibited improved weight loss rate and jejunum villus height, enhanced ileum antioxidant function, and ameliorated intestinal barrier function. The LPS-challenged broilers in GP group had higher immunity than that of broilers in antibiotics group. In conclusion, GP supplementation could act as a natural alternative to antibiotic additive to alleviate the LPS-induced weight loss rate, inflammatory responses, and oxidative stress in broilers by improving the immunity and intestinal function. Abstract Garlic powder (GP) has the outstanding antibacterial, antifungal, antiviral, anti-parasitic and antioxidant characteristics because of its various contained bioactive components, such as alliin, allicin, and polysaccharide, etc. It has been widely used as a native medicine and shown to prevent a variety of diseases. This research was performed to determine the positive effects of GP on growth and intestinal function in lipopolysaccharide (LPS) challenged broilers. A total of 480 one-day-old male Ross 308 broilers of similar initial body weight were randomly divided into four groups with 8 replicates per treatment and 15 chicks each replicate. LPS challenge enhanced the weight loss rate, decreased the immunity and antioxidant capability, increased the intestinal permeability in broilers. When compared with LPS group, broilers fed with GP exhibited improved weight loss rate and jejunum villus height, enhanced ileum antioxidant function, and ameliorated intestinal barrier function. The LPS-challenged broilers in GP group had higher immunity than that of broilers in antibiotics group. GP supplementation could act as a natural alternative to antibiotic additive to alleviate the LPS-induced weight loss rate, inflammatory responses, and oxidative stress in broilers by improving the immunity and intestinal function.
Collapse
|
18
|
Yang Z, Yang JJ, Zhu PJ, Han HM, Wan XL, Yang HM, Wang ZY. Effects of betaine on growth performance, intestinal health, and immune response of goslings challenged with lipopolysaccharide. Poult Sci 2022; 101:102153. [PMID: 36179650 PMCID: PMC9523388 DOI: 10.1016/j.psj.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this experiment was to investigate the effects of betaine on growth performance, serum parameters, intestinal health, and immune performance of goslings in response to lipopolysaccharide (LPS) challenge. A total of 168 healthy male 15-day-old Jiangnan White Goslings were randomly divided into 4 groups, with 6 replicates per treatment and seven goslings per replicate. A 2 × 2 factorial arrangement included 2 factors, that is, LPS challenge (injection of LPS or physiological saline) and betaine (added 0 or 0.06% betaine in diet). The results indicated that LPS challenge significantly reduced the average daily feed intake (ADFI), average daily gain (ADG), and body weight (BW) at 21 D of the goslings, while dietary betaine supplementation tended to increase the ADFI during the LPS stress period (P = 0.08) and BW at 21 D of the goslings (P = 0.09). The LPS-challenged goslings showed higher pro-inflammatory cytokines (interleukin-1 [IL-1β], interleukin-6 [IL-6], tumor necrosis factor-α (TNF-α), and Interferon-gamma [IFN-γ]) and lower anti-inflammatory cytokine (Interleukin-10 [IL-10]) (P < 0.05) at 21 D of age. Dietary betaine supplementation alleviated LPS-induced increase in pro-inflammatory cytokines. The LPS challenge significantly decreased duodenal and jejunal villus height (VH) and villus height and crypt depth ratio (VCR), while the addition of betaine significantly increased duodenal VH and VCR (P < 0.05). On the other hand, addition of betaine significantly alleviated decline of enzyme activity on lipase, amylase, trypsin, and chymotrypsin in the intestinal of goslings. The LPS challenge significantly increased the content of serum D-lactic acid (D-LA) and the activity of diamine oxidase (DAO) at 21 D of the goslings. The LPS challenge and betaine addition significantly increased the mRNA expression of Occcludin (OCLN) in jejunal mucosa at 28 D of the goslings (P < 0.05). In conclusion, our research demonstrated that betaine can alleviate the decline of growth performance and immune performance in goslings caused by LPS. The results also indicate betaine possesses anti-inflammation properties and improves intestinal barrier functions. We recommend that 0.06% betaine be added into the diet to improve the intestinal health and immune performance of goslings.
Collapse
Affiliation(s)
- Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - J J Yang
- Crown Bioscience (Taicang) Co., Ltd, Suzhou, Jiangsu Province, 225009, P. R. China
| | - P J Zhu
- Jiangsu Lihua Animal Husbandry Co,. Ltd, Chongqing, Jiangsu Province, 225009, P. R. China
| | - H M Han
- Jiangsu Lihua Animal Husbandry Co,. Ltd, Chongqing, Jiangsu Province, 225009, P. R. China
| | - X L Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Y Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China; College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| |
Collapse
|
19
|
Chen J, Wang H, Wu Z, Gu H, Li C, Wang S, Liu G. Effects of 5-aminolevulinic acid on the inflammatory responses and antioxidative capacity in broiler chickens challenged with lipopolysaccharide. Animal 2022; 16:100575. [DOI: 10.1016/j.animal.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/01/2022] Open
|
20
|
Effects of Solid-State Fermented Wheat Bran on Growth Performance, Immune Function, Intestinal Morphology and Microflora in Lipopolysaccharide-Challenged Broiler Chickens. Animals (Basel) 2022; 12:ani12091100. [PMID: 35565527 PMCID: PMC9104126 DOI: 10.3390/ani12091100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
The study evaluated the effects of dry and wet solid-state fermented wheat bran (FWB) on growth performance, immune function, intestinal morphology and microflora in lipopolysaccharide (LPS)-challenged broiler chickens. The experiment was designed as a 2 × 3 factorial arrangement. A total of 252 one-day-old Arbor Acres male broiler chickens were randomly allocated to 1 of 6 treatments: basal diet + sterile saline (negative control, NC), basal diet + LPS (positive control, PC), 7% dry FWB + sterile saline (FWB-I), 7% dry FWB + LPS (FWB-II), 7% wet FWB + sterile saline (FWB-III) and 7% wet FWB + LPS (FWB-IV), with containing 6 replicate cages/treatment and 7 broiler chickens/cage, and the experimental period lasted for 42 days. Broilers were intraperitoneally injected with either 0.5 mg LPS or sterile saline solution per kg body weight at 16, 18 and 20 d of age. Growth performance, serum immunological parameters and indicators related to intestinal health were analyzed on days 21 and 42. Compared with NC, dry and wet FWB significantly increased (p < 0.05) average daily feed intake of days 21 to 42, and increased (p < 0.05) the villus height and villus height to crypt depth ratio of ileum on day 21, decreased (p = 0.101) the jejunum crypt depth and decreased (p < 0.05) the Lactobacillus and Bifidobacterium counts of the cecum digesta on day 42. Compared with NC, FWB-II and FWB-IV significantly increased (p < 0.05) the levels of serum total protein and globulin on day 21; compared with the basal diet groups, dry and wet FWB groups significantly increased (p < 0.05) glucose levels on day 21, and wet FWB significantly decreased (p < 0.05) alanine aminotransferase levels on day 42. Compared with PC and FWB-II, FWB-IV significantly increased (p < 0.05) the level of serum immunoglobulin G on day 21. Compared with PC and FWB-II, FWB-IV significantly decreased (p < 0.05) the levels of serum pro-inflammatory cytokines interleukin (IL)-6, IL-8, IL-1β and acute C reactive protein (CRP) on day 21; compared with FWB-III, FWB-IV significantly decreased (p < 0.05) the levels of IL-6, IL-8, CRP and tumor necrosis factor alpha on day 42, but the levels of IL-4 and IL-10 were significantly increased (p < 0.05) on days 21 and 42. These results indicated that supplementing 7% dry or wet FWB can improve growth performance and serum immune functions of broilers, which effectively alleviate the LPS-challenged damage, and wet FWB had a better effect than dry FWB.
Collapse
|
21
|
Upregulation of Nrf2 signaling and suppression of ferroptosis and NF-κB pathway by leonurine attenuate iron overload-induced hepatotoxicity. Chem Biol Interact 2022; 356:109875. [PMID: 35247364 DOI: 10.1016/j.cbi.2022.109875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a major health concern that associates the iron overload diseases including hemochromatosis, sickle cell anemia, and thalassemia. Induction of ferroptosis, oxidative stress, and inflammation substantially mediates the iron-evoked hepatotoxicity. The current work investigated the potential protective effect of the natural alkaloid leonurine against the iron-induced hepatotoxicity and elucidated the underlining molecular mechanisms. Male Wistar rats were treated with iron only (30 mg/kg every other day over a ten-day period via intraperitoneal injection) or with iron and leonurine (leonurine: 100 mg/kg/day per oral via gastric gavage for 10 days) to establish the iron-overload model. Liver and blood specimens were then collected and subjected to molecular, biochemical, and histopathological investigations. The results revealed the ability of leonuirne to suppress the iron-induced ferroptosis as reflected by modulation of the ferroptotic biomarkers glutathione peroxidase 4, cyclooxygenase-2, liver iron content, lipid hydroperoxides, and the leakage of the liver intracellular enzymes. Leonurine alleviated the iron-induced oxidative damage and inflammatory response in the liver tissues as indicated by decreased levels of DNA oxidation, lipid peroxidation, and the pro-inflammatory cytokines. In the same context, it improved the antioxidant potential of the liver tissues and ameliorated the iorn-induced histopathological abnormalities. Mechanistically, leonurine enhanced nuclear translocation of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and increased protein levels of its downstream targets NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1. Additionally, it suppressed the nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NF-κB) and downregulated its downstream pro-inflammatory cytokines tumor necrosis factor-alpha and interleukin-1 beta. The study highlights the hepatoprotective activity of leonurine against the iron-evoked hepatotoxicity that is potentially mediated through modulation of Nrf2 and NF-κB signaling.
Collapse
|
22
|
Bi SJ, Huang YX, Feng LM, Yue SJ, Chen YY, Fu RJ, Xu DQ, Tang YP. Network pharmacology-based study on immunomodulatory mechanism of danggui-yimucao herb pair for the treatment of RU486-induced abortion. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114609. [PMID: 34508802 DOI: 10.1016/j.jep.2021.114609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Danggui-Yimucao herb pair (DY) is a classic combination in Chinese herbal formulas, consisting of the root of Angelica sinensis (Oliv.) Diels and the aerial parts of Leonurus japonicus Houtt. DY first appeared in "Zhulinsi fuke mifang" in the Jin Dynasty, and it has a long history as a drug for the treatment of abortion. However, its underlying immunomodulatory mechanisms involved are still unclear. AIM OF THE STUDY In this study, network pharmacology and pharmacological experiments were used to explore the role and mechanism of DY in the treatment of medical abortion. MATERIALS AND METHODS Network pharmacology was used to establish the relationship between the components of DY and abortion-related targets, and to enrich important pathways and biological process for verification. ELISA was used to assess progesterone levels. Flow cytometry was used to detect the degree of differentiation of Th1/Th2 cells. Immunohistochemical methods and qPCR were used to measure the expression levels of T-bet, GATA-3 and IL-4. RESULTS Through the prediction analysis of network pharmacology, we found that key pathway for DY treatment of abortion, such as anemia, pelvic infection, immune disorders, and coagulation disorders, was Th1/Th2 cell differentiation pathway. The pharmacological results revealed that DY greatly corrected the imbalance of Th cell subsets in abortion mice, significantly inhibited the differentiation of Th2 cells, and resulted in an increase in the Th1/Th2 ratio. In addition, the concentration of progesterone in the serum of mice after abortion was significantly reduced. We also found that DY upregulated spleen T-bet and downregulated IL-4 gene expression in mice. Besides, immunohistochemical results showed that DYE could up-regulate T-bet but inhibit GATA-3 expression. CONCLUSIONS Our results showed that after RU486-induced abortion, progesterone and Th1/Th2 paradigm were disordered in mice, but DY could make mice recover more quickly, which indicated that DY had great development value in immunoregulation.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Li-Mei Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
23
|
Yang S, Zhang J, Jiang Y, Xu Y, Jin X, Yan S, Shi B. Effects of dietary supplementation with Artemisia argyi alcohol extract on growth performance, blood biochemical properties and small intestinal immune markers of broilers challenged with lipopolysaccharide. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ContextBroilers are prone to immunological stress when subjected to unsuitable environmental conditions (such as virus attack, nutrient deficiency and high stocking density), lowering immunity and resulting in inflammatory bowel diseases. The herb-feed additive Artemisia argyi has been applied in poultry production, and its extract may improve small intestinal immune capacity.AimsThis study was conducted to investigate the effect of A. argyi alcohol extract (AAAE) on growth performance and blood biochemical and small intestinal immune markers of broilers challenged with a proinflammatory substance, lipopolysaccharide (LPS). The study also examined possible mechanisms of action, and aimed to clarify whether AAAE could be applied as a feed additive.MethodsIn total, 192 one-day-old Arbor Acres broilers were allocated to four groups following a 2×2 factorial arrangement (including six replicates with eight birds per replicate) with two dietary AAAE rates (0 or 750mg/kg) and two immune stress treatments (LPS or saline injection). Blood and small intestine were sampled on Days21 and 35.Key resultsDietary AAAE alleviated the LPS-induced decrease in bodyweight, average daily gain and average daily feed intake, and mitigated the elevated serum alanine aminotransferase, triglyceride, low-density lipoprotein cholesterol, adrenocorticotropic hormone and corticosterone concentrations at Day21 and/or Day35 in LPS-challenged broilers. AAAE significantly (P<0.05) attenuated LPS-induced increases in intestinal immunoglobulin (IgA, IgG and IgM) and interleukin (IL-1β and IL-6) concentrations. Moreover, the small intestinal mRNA abundances of the genes TLR4, MyD88, NF-κBp65, IL-1β and IL-6 in LPS-challenged broilers were decreased (P<0.05) in response to dietary AAAE treatment.ConclusionsThese results further demonstrated that AAAE at 750mg/kg enhanced small intestinal tissue immune capacity of broilers, thereby alleviating LPS-induced immune stress damage in broilers. Its mechanism of action may be related to the mediating of TLR4/NF-κB pathways.ImplicationsDietary AAAE can be used to improve the immune function of broilers, and to provide a new scientific theoretical basis for the development of new anti-stress feed additives.
Collapse
|
24
|
Zong F, Zhao Y. Alkaloid leonurine exerts anti-inflammatory effects via modulating MST1 expression in trophoblast cells. Immun Inflamm Dis 2021; 9:1439-1446. [PMID: 34318610 PMCID: PMC8589353 DOI: 10.1002/iid3.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is mainly attributed to the inflammation of trophoblast cells in pregnant women, which results in damage to the maternal organs and growth retardation of the fetus. Alkaloid leonurine (LNR) is a plant compound and has anti-inflammatory effects. Here we aimed to investigate the effects of LNR on human and mouse trophoblast cells and the underlying mechanisms. METHODS The levels of the inflammatory factors in trophoblast cells under lipopolysaccharides (LPS) stimulation were analyzed with ELISA. Western blot was employed to examine the protein expression. Trophoblast cells in Mammalian ste20-like kinase 1 (MST1-/- ) or wild type (WT) mice were isolated to examine the expression of signal molecules in the nuclear factor-κB (NF-κB) pathway. Concentration-dependent activity of NF-κB was examined. The regulation of LNR and MST1 in MST1-/- trophoblast cells was studied as well. RESULTS Our data showed that LNR exhibited anti-inflammatory effects and suppressed the NF-κB signaling by inhibiting LPS-induced inflammation in trophoblast cells. LNR upregulated the expression of MST1, and the anti-inflammatory role of LNR was greatly relieved in MST1-knockout trophoblast cells, although it displayed weak roles in NF-κB signaling. CONCLUSION LNR exhibits anti-inflammatory effects on human and mouse trophoblast cells by upregulating MST1 in the NF-κB signal pathway.
Collapse
Affiliation(s)
- Fang Zong
- Department 3 of ObstetricsCangzhou Central HospitalCangzhouChina
| | - Yingzi Zhao
- Department 3 of ObstetricsCangzhou Central HospitalCangzhouChina
| |
Collapse
|
25
|
Wang XJ, Li D, Jiao HC, Zhao JP, Lin H. Lipopolysaccharide inhibits hypothalamic Agouti-related protein gene expression via activating mechanistic target of rapamycin signaling in chicks. Gen Comp Endocrinol 2021; 313:113876. [PMID: 34371009 DOI: 10.1016/j.ygcen.2021.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Lipopolysaccharide (LPS) induces profound anorexia in birds. However, the neuronal regulatory network underlying LPS-provoked anorexia is unclear. To determine whether any cross talk occurs among hypothalamic mechanistic target of rapamycin (mTOR) and LPS in the regulation of appetite, we performed an intracerebroventricular injection of rapamycin (an mTOR inhibitor) on LPS-treated chicks. The results indicate that peripheral administrations of LPS decreased the agouti-related protein (AgRP) mRNA level, but increased the phosphorylated mTOR and nuclear factor-кB (NF-кB) protein level. Blocking mTOR significantly attenuated LPS-induced anorexia, AgRP suppression, and p-NF-кB increase. Thus, the results suggest that LPS causes anorexia via the mTOR-AgRP signaling pathway, and mTOR signaling is also associated with the regulation of LPS in p-NF-кB.
Collapse
Affiliation(s)
- X J Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - D Li
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - H C Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - J P Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - H Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China.
| |
Collapse
|
26
|
Effects of trans-anethole supplementation on serum lipid metabolism parameters, carcass characteristics, meat quality, fatty acid, and amino acid profiles of breast muscle in broiler chickens. Poult Sci 2021; 100:101484. [PMID: 34695629 PMCID: PMC8554266 DOI: 10.1016/j.psj.2021.101484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
This study investigated the effects of trans-anethole (TA) supplementation on the carcass characteristics, meat quality, fatty acid, and amino acid profiles of breast muscle in broilers. A total of 40 one-day-old male broiler chicks (Arbor Acres) were randomly allocated to 5 treatments, respectively, fed a corn-soybean basal diet supplemented with 0 (control), 200, 400, 600, and 800 mg TA/kg diet for 42 d. 600 mg/kg of TA supplementation decreased (P < 0.05) serum triglycerides (TG) on d 21 and d 42, and high density lipoprotein cholesterol (HDL-C) concentration on d 21, but increased (P < 0.01) serum HDL-C concentration on d 42. Dietary supplementation of TA increased (P < 0.01) the half chamber rate (HCR) and eviscerated rate (ER) of broilers. The drip loss (storing 24 and 48 h) and cooking loss of breast muscle in 600 mg/kg TA groups were lower (P < 0.05) than those in control group. The concentration of palmitoleic acid, daturic acid, oleic acid, linoleic acid, α-Linolenic acid, eicostrienoic acid, and pentosapentanoic acid (EPA), MUFA, and PUFA in the breast muscle were higher (P < 0.05) in the 600 mg/kg of TA group compared with other groups. Dietary inclusion of 600 mg/kg of TA also increased (P < 0.05) the concentration of Met, Thr, Asp, Ser, and Glu in breast muscle, tended to increase (P = 0.069) the Lys concentration. In conclusion, results indicated that TA inclusion improved the lipid metabolism, meat quality, fatty acid composition, and amino acid profile of breast muscle in broilers.
Collapse
|
27
|
Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, Yang X, Gao Y, Yang M. Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers. J Anim Sci Biotechnol 2021; 12:25. [PMID: 33593426 PMCID: PMC7888134 DOI: 10.1186/s40104-020-00532-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lactobacillus reuteri strains are widely used as probiotics to prevent and treat inflammatory bowel disease by modulating the host's immune system. However, the underlying mechanisms by which they communicate with the host have not been clearly understood. Bacterial extracellular vesicles (EVs) have been considered as important mediators of host-pathogen interactions, but their potential role in commensals-host crosstalk has not been widely studied. Here, we investigated the regulatory actions of EVs produced by L. reuteri BBC3, a gut-associated commensal bacterium of Black-Bone chicken, in the development of lipopolysaccharide (LPS)-induced intestinal inflammation in a chicken model using both in vivo and in vitro experiments. RESULTS L. reuteri BBC3 produced nano-scale membrane vesicles with the size range of 60-250 nm. Biochemical and proteomic analyses showed that L. reuteri BBC3-derived EVs (LrEVs) carried DNA, RNA and several bioactive proteins previously described as mediators of other probiotics' beneficial effects such as glucosyltransferase, serine protease and elongation factor Tu. In vivo broiler experiments showed that administration of LrEVs exerted similar effects as L. reuteri BBC3 in attenuating LPS-induced inflammation by improving growth performance, reducing mortality and decreasing intestinal injury. LrEVs suppressed the LPS-induced expression of pro-inflammatory genes (TNF-α, IL-1β, IL-6, IL-17 and IL-8), and improved the expression of anti-inflammatory genes (IL-10 and TGF-β) in the jejunum. LrEVs could be internalized by chicken macrophages. In vitro pretreatment with LrEVs reduced the gene expression of TNF-α, IL-1β and IL-6 by suppressing the NF-κB activity, and enhanced the gene expression of IL-10 and TGF-β in LPS-activated chicken macrophages. Additionally, LrEVs could inhibit Th1- and Th17-mediated inflammatory responses and enhance the immunoregulatory cells-mediated immunosuppression in splenic lymphocytes of LPS-challenged chickens through the activation of macrophages. Finally, we revealed that the reduced content of both vesicular proteins and nucleic acids attenuated the suppression of LrEVs on LPS-induced inflammatory responses in ex vivo experiments, suggesting that they are essential for the LrEVs-mediated immunoregulation. CONCLUSIONS We revealed that LrEVs participated in maintaining intestinal immune homeostasis against LPS-induced inflammatory responses in a chicken model. Our findings provide mechanistic insight into how commensal and probiotic Lactobacillus species modulate the host's immune system in pathogens-induced inflammation.
Collapse
Affiliation(s)
- Rujiu Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hua Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mimi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuezhen Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haojing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yupeng Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
28
|
Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB 1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins (Basel) 2021; 13:toxins13020156. [PMID: 33671260 PMCID: PMC7922626 DOI: 10.3390/toxins13020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of mycotoxin binders in reducing the adverse effects of co-occurring dietary aflatoxin B1 (AFB1), deoxynivalenol (DON) and ochratoxin A (OTA) on laying hens. Three hundred and sixty 26-week-old Roman laying hens were randomly allocated into four experimental groups with 10 replicates of nine birds each. The four groups received either a basal diet (BD; Control), a BD supplemented with 0.15 mg/kg AFB1 + 1.5 mg/kg DON + 0.12 mg/kg OTA (Toxins), a BD + Toxins with Toxo-HP binder (Toxins + HP), or a BD + Toxins with TOXO XL binder (Toxins + XL) for 12 weeks. Compared to the control, dietary supplementation of mycotoxins decreased (P < 0.10) total feed intake, total egg weight, and egg-laying rate, but increased feed/egg ratio by 2.5–6.1% and mortality during various experimental periods. These alterations induced by mycotoxins were alleviated by supplementation with both TOXO HP and XL binders (P < 0.10). Furthermore, dietary mycotoxins reduced (P < 0.05) eggshell strength by 12.3% and caused an accumulation of 249 μg/kg of DON in eggs at week 12, while dietary supplementation with TOXO HP or XL mitigated DON-induced changes on eggshell strength and prevented accumulation of DON in eggs (P < 0.05). Moreover, dietary mycotoxins increased relative liver weight, but decreased spleen and proventriculus relative weights by 11.6–22.4% (P < 0.05). Mycotoxin exposure also increased alanine aminotransferase activity and reduced immunoglobulin (Ig) A, IgM, and IgG concentrations in serum by 9.2–26.1% (P < 0.05). Additionally, mycotoxin exposure induced histopathological damage and reduced villus height, villus height/crypt depth, and crypt depth in duodenum, jejunum and (or) ileum (P < 0.05). Notably, most of these histological changes were mitigated by supplementation with both TOXO HP and XL (P < 0.05). In conclusion, the present study demonstrated that the mycotoxin binders TOXO HP and XL can help to mitigate the combined effects of AFB1, DON, and OTA on laying hen performance, egg quality, and health.
Collapse
|
29
|
Yang S, Zhang J, Jiang Y, Xu YQ, Jin X, Yan SM, Shi BL. Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide. Anim Biosci 2021; 34:1169-1180. [PMID: 33561921 PMCID: PMC8255877 DOI: 10.5713/ab.20.0656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This research aimed to study the effects of Artemisia argyi flavonoids (AAF) supplemented in diets on the growth performance and immune function of broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of one hundred and ninety-two 1-d-old broiler chicks were assigned into 4 treatment groups, which were, respectively, fed a basal diet (control), fed a diet with 750 mg/kg AAF, fed a basal diet, and challenged with LPS, fed a diet with 750 mg/kg AAF, and challenged with LPS. Each treatment had six pens with 8 chicks per pen. On days 14, 16, 18, 20 (stress phase I) and 28, 30, 32, 34 (stress phase II), broilers were injected with LPS (500 μg/kg body weight) or an equivalent amount of saline. Results The results demonstrated that dietary AAF significantly improved the body weight (d 21) and alleviated the decrease of average daily gain in broilers challenged with LPS on d 21 and d 35 (p<0.05). Dietary AAF increased bursa fabricius index, and dramatically attenuated the elevation of spleen index caused by LPS on d 35 (p<0.05). Furthermore, serum interleukin-6 (IL-6) concentration decreased with AAF supplementation on d 21 (p<0.05). Diet treatment and LPS challenge exhibited a significant interaction for the concentration of IL-1β (d 21) and IL-6 (d 35) in serum (p<0.05). Additionally, AAF supplementation mitigated the increase of IL-1β, IL-6 in liver and spleen induced by LPS on d 21 and 35 (p<0.05). This study also showed that AAF supplementation significantly reduced the expression of IL-1β (d 21) and nuclear transcription factor kappa-B p65 (d 21 and 35) in liver (p<0.05), and dietary AAF and LPS treatment exhibited significant interaction for the gene expression of IL-6 (d 21), toll like receptor 4 (d 35) and myeloid differentiation factor 88 (d 35) in spleen (p<0.05). Conclusion In conclusion, AAF could be used as a potential natural immunomodulator to improve growth performance and alleviate immune stress in broilers challenged with LPS.
Collapse
Affiliation(s)
- Shuo Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Qing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Su Mei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Lin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
30
|
Han H, Zhang J, Chen Y, Shen M, Yan E, Wei C, Yu C, Zhang L, Wang T. Dietary taurine supplementation attenuates lipopolysaccharide-induced inflammatory responses and oxidative stress of broiler chickens at an early age. J Anim Sci 2021; 98:5909276. [PMID: 32954422 DOI: 10.1093/jas/skaa311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effect of taurine as a prophylactic treatment on antioxidant function and inflammatory responses of broilers challenged with lipopolysaccharide (LPS). A total of 256 one-day-old male Arbor Acres broiler chicks were randomly assigned to four treatments with eight replicates of eight birds (eight birds per cage). Four treatment groups were designated as follows: 1) in the CON group, broilers fed a basal diet; 2) in the LPS group, LPS-challenged broilers fed a basal diet; 3) in the LPS + T1 group, LPS-challenged broilers fed a basal diet supplemented with 5.0 g/kg taurine; and 4) in the LPS + T2 group, LPS-challenged broilers fed a basal diet supplemented with 7.5 g/kg taurine. The LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 16, 18, and 20 d of age, whereas the CON group received an injection of sterile saline. The results showed that broilers injected with LPS exhibited decreased (P < 0.05) the average daily gain (ADG) and the 21-d BW (P < 0.05), while taurine supplementation alleviated the negative effects of LPS. Additionally, the LPS-induced increases (P < 0.05) in serum alanine transaminase and aspartate transaminase activities were reversed by taurine supplementation. The taurines could alleviate the hepatic oxidative stress, with the presence of lower content of malondialdehyde (P < 0.05), higher content of glutathione (P < 0.05), and an increased glutathione peroxidase (GSH-Px) activity (P < 0.05). The concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the liver were measured by ELISA kits, and the result showed that dietary taurine supplementation prevented these cytokines increases in the liver of LPS-induced broilers. Taurine reduced the genes expression of IL-1β, TNF-α, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, whereas it boosted the expression levels of antioxidant-related genes (nuclear factor erythroid 2-related factor 2, heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and GSH-Px) in the liver of LPS-induced broilers. In conclusion, dietary taurine supplementation in broilers mitigated LPS-induced defects in ADG, oxidative stress, and inflammatory responses.
Collapse
Affiliation(s)
- Hongli Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Enfa Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengheng Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Caiyun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
The antioxidant profile of two species belonging to the genus Leonurus. Potential applications in toxicity. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Zhang C, Li CX, Shao Q, Chen WB, Ma L, Xu WH, Li YX, Huang SC, Ma YB. Effects of Glycyrrhiza polysaccharide in diet on growth performance, serum antioxidant capacity, and biochemistry of broilers. Poult Sci 2020; 100:100927. [PMID: 33518321 PMCID: PMC7936193 DOI: 10.1016/j.psj.2020.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, we analyzed the effects of Glycyrrhiza polysaccharide (GCP) on growth performance, serum antioxidant capacity, and biochemistry of broilers. A total of 600, one-day-old AA broilers randomly divided into 5 treatment groups with 6 replicate pens of 20 birds per cage received dietary supplementation with GCP (0, 200, 500, 1,000, and 1,500 mg/kg) for 42 d. The supplementation of GCP linearly decreased (P < 0.05) feed conversion rate on day 22 to 42. Dietary supplementation with GCP reduced (P < 0.05) serum total cholesterol on day 21 and 42 and linearly improved (P < 0.05) albumin and high-density lipoprotein cholesterol. Dietary supplementation with 1,000 or 1,500 mg/kg GCP significantly increased (P < 0.05) serum total superoxide dismutase (T-SOD) activity on day 21 and 42 and reduced (P < 0.05) serum malondialdehyde content on 21 d. Dietary supplementation with 1,000 or 1,500 mg/kg GCP significantly improved (P < 0.05) interleukin-1β (IL-1β) and interferon-γ (IFN-γ) expressions in liver on day 21 and 42. At the end of the experiment, we randomly selected 20 broilers from 3 treatment groups (0, 1,000, and 1,500 mg/kg), respectively, to perform an lipopolysaccharide (LPS)-induced acute stress experiment. The 60 broilers were divided into 6 treatment groups with 10 birds per cage. The experiment was designed as a 3 × 2 factorial arrangement with GCP (0, 1,000, or 1,500 mg/kg) and LPS (injection of saline or 1 mg/kg body weight) levels as treatments. When the grouping was finished, the broilers were immediately intraperitoneally injected with LPS or normal saline. Six hours after challenged, serum antioxidant and liver immunity were analyzed. The results showed that dietary GCP prevented LPS-induced reductions in T-SOD activity and increases in malonaldehyde content (P < 0.05). Also, dietary GCP supplementation mitigated the LPS-induced increase in IL-1β and IFN-γ in the liver. Supplementation with 1,500 mg/kg GCP showed the most optimal effect in broilers. GCP has the potential to be used as feed additive in broilers.
Collapse
Affiliation(s)
- C Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - C X Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Q Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - W B Chen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - L Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - W H Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Y X Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| | - S C Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Y B Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
33
|
Scanes CG. Avian Physiology: Are Birds Simply Feathered Mammals? Front Physiol 2020; 11:542466. [PMID: 33240094 PMCID: PMC7680802 DOI: 10.3389/fphys.2020.542466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
There are marked differences between the physiology of birds and mammals. These reflect the evolutionary distance between the two classes with the last common ancestor estimated as existing 318 million years ago. There are analogous organ systems in birds and mammals. However, marked differences exist. For instance, in the avian gastro-intestinal tract, there is a crop at the lower end of the esophagus. This functions both to store feed and for microbial action. The avian immune system lacks lymph nodes and has a distinct organ producing B-lymphocytes, namely the bursa Fabricius. The important of spleen has been largely dismissed until recently. However, its importance in both innate and specific immunity is increasingly recognized. There is a major difference between birds and mammals is the female reproductive system as birds produce large yolk filled eggs. The precursors of the yolk are synthesized by the liver. Another difference is that there is a single ovary and oviduct in birds.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
34
|
Li X, Liu S, Wang J, Yi J, Yuan Z, Wu J, Wen L, Li R. Effects of ND vaccination combined LPS on growth performance, antioxidant performance and lipid metabolism of broiler. Res Vet Sci 2020; 135:317-323. [PMID: 33097279 DOI: 10.1016/j.rvsc.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Newcastle Disease Virus (NDV) is the important pathogen of Newcastle Disease (ND) attacking chicken, turkey and other birds. Therefore, the purpose of this study was to assess the effects of immune stress induced by ND vaccination and lipopolysaccharide (LPS) on growth performance, antioxidant ability, and lipid metabolism of broilers. In total, 128 one-day-old broilers were randomly assigned to the following four groups and were treated as indicated: normal control (NC); vaccinated with live LaSota ND vaccine (CV); administered ND vaccine and 0.25 mg/kg body weight (BW) LPS (L-LPS); and administered ND vaccine and 0.5 mg/kg BW LPS (H-LPS). The results demonstrated that broiler feed conversion ratio (FCR) was increased in the groups CV, L-LPS and H-LPS from d 0 to 42 days compared with the group NC. The antioxidant function of broilers was decreased as indicated by the malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) levels in the serum of the treated groups. ND vaccination combined LPS increased the concentration of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), but decreased the concentration of high-density lipoprotein cholesterol (HDLC) compared with the group NC. The reverse transcription (RT)-PCR results revealed that the mRNA expression of acetyl-CoA carboxylase gene (ACC) and 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) in the liver were downregulated, whereas the mRNA expression of carnitine palmitoyltransferase-1 (CPT-1) and peroxisome proliferator-activated receptor (PPAR)-α were upregulated compared with the group NC. These results suggest that ND vaccination combined LPS reduced broiler growth performance and antioxidant ability, whereas it activated AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Shuiping Liu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Jine Yi
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Zhihang Yuan
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Jing Wu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China
| | - Lixin Wen
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China.
| | - Rongfang Li
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China; Hunan Collaborative Innovation Center of Animal Production Safety, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, PR China.
| |
Collapse
|
35
|
Ding X, Yang C, Wang P, Yang Z, Ren X. Effects of star anise (Illicium verum Hook. f) and its extractions on carcass traits, relative organ weight, intestinal development, and meat quality of broiler chickens. Poult Sci 2020; 99:5673-5680. [PMID: 33142485 PMCID: PMC7647708 DOI: 10.1016/j.psj.2020.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
Star anise (Illicium verum Hook. f) has been used as spice and herbal medicine for many years with lacking researches on evaluating its application for improving relative organ weight, intestinal development, and quality of animal products. The experiment was conducted to investigate the effects of star anise, its essential oil and leavings on carcass traits, relative organ weight, intestinal development, and meat quality of broiler chickens. A total of 384 broilers were randomly assigned to 4 treatments with 8 replicates of 12 birds each. The 4 dietary treatments were basal diet (Control), basal diet supplemented with 5 g/kg star anise (Star anise), basal diet supplemented with 0.22 g/kg essential oil (Essential oil), and basal diet supplemented with 5 g/kg leavings (Leavings). The concentration of main active components in the experimental diets was 0.204 g trans-anethole/kg of diet. All birds were fed a starter diet (0-21 d) and a grower diet (22-42 d). Birds supplemented with star anise and essential oil had a greater (P < 0.05) final body weight (BW) than control birds and those supplemented with leavings. However, the carcass yield, half chamber rate, eviscerated rate, and percentages of breast muscle and thigh muscle in birds were similar (P > 0.05) among all treatments. Birds supplemented with star anise and essential oil had higher (P = 0.010) relative weight of thymus than those in control and leavings groups. Essential oil supplemented groups appeared to contain the highest (P < 0.05) villus height in ileum and villus height/crypt depth ratio in ileum and jejunum among all the groups. Meanwhile, among all the groups, breast muscles of essential oil-supplemented groups appeared to contain the lowest (P = 0.012) boiling loss but highest (P < 0.001) concentration of inosinic acid (inosine 5'-monophosphate, IMP). In conclusion, dietary supplementation of 5 g/kg star anise and 0.22 g/kg essential oil improved BW, relative organ weight, and intestinal development, and 0.22 g/kg essential oil can also increase the concentration of IMP but decrease the boiling loss in breast muscles of broilers; however, 5 g/kg leavings had no effect.
Collapse
Affiliation(s)
- Xiao Ding
- Department of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chongwu Yang
- Department of Animal Sciences, University of Manitoba, Canada
| | - Panpan Wang
- Department of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Xiaojie Ren
- Department of Animal Sciences and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
36
|
Dietary Stevioside Supplementation Alleviates Lipopolysaccharide-Induced Intestinal Mucosal Damage through Anti-Inflammatory and Antioxidant Effects in Broiler Chickens. Antioxidants (Basel) 2019; 8:antiox8120575. [PMID: 31766443 PMCID: PMC6943682 DOI: 10.3390/antiox8120575] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE); (3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.
Collapse
|
37
|
Chen C, Zhu Z, Hu N, Liang X, Huang W. Leonurine Hydrochloride Suppresses Inflammatory Responses and Ameliorates Cartilage Degradation in Osteoarthritis via NF-κB Signaling Pathway. Inflammation 2019; 43:146-154. [DOI: 10.1007/s10753-019-01104-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
An Y, Xing H, Zhang Y, Jia P, Gu X, Teng X. The evaluation of potential immunotoxicity induced by environmental pollutant ammonia in broilers. Poult Sci 2019; 98:3165-3175. [DOI: 10.3382/ps/pez135] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
|
39
|
Yang L, Liu G, Lian K, Qiao Y, Zhang B, Zhu X, Luo Y, Shang Y, Gu XL. Dietary leonurine hydrochloride supplementation attenuates lipopolysaccharide challenge-induced intestinal inflammation and barrier dysfunction by inhibiting the NF-κB/MAPK signaling pathway in broilers. J Anim Sci 2019; 97:1679-1692. [PMID: 30789669 DOI: 10.1093/jas/skz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
This study was performed to evaluate the beneficial effects of dietary leonurine hydrochloride (LH) supplementation on intestinal morphology and barrier integrity and further illuminate its underlying antioxidant and immunomodulatory mechanisms in lipopolysaccharide (LPS)-treated broilers. A total of 120 1-d-old male broilers (Ross 308) were assigned to 4 treatment groups with 6 replicates of 5 birds per cage. The experiment was designed in a 2 × 2 factorial arrangement with LH (0 or 120 mg/kg) and LPS (injection of saline or 1.5 mg/kg body weight) as treatments. On days 14, 16, 18, and 20 of the trial, broilers were intraperitoneally injected with LPS or physiological saline. Compared with the control group, LPS-challenged broilers showed impaired growth performance (P < 0.05) from day 15 to day 21 of the trial, increased serum diamine oxidase (DAO) and D-lactic acid (D-LA) levels coupled with reduced glutathione (GSH) content and total superoxide dismutase (T-SOD) activity (duodenal and jejunal mucosa), reduced malondialdehyde (MDA) content (duodenal, jejunal, and ileal mucosa), and compromised morphological structure of the duodenum and jejunum. Additionally, LPS challenge increased (P < 0.05) the mRNA expression of proinflammatory cytokine genes and reduced tight junction (TJ) protein expression in the jejunum. However, dietary LH prevented LPS-induced reductions in average daily gain (ADG) and average daily feed intake (ADFI) in broilers. It also alleviated LPS challenge-induced increases in serum DAO levels, MDA content (duodenal and jejunal mucosa), and jejunal crypt depth (P < 0.05) but reduced villus height, GSH content (jejunal mucosa), and T-SOD activity (duodenal and jejunal mucosa) (P < 0.05). Additionally, LH supplementation significantly downregulated the mRNA expression of nuclear factor (NF)-κB, cyclooxygenase-2 (COX-2), and proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and upregulated the mRNA expression of zonula occludens-1 (ZO-1) and Occludin in the jejunal mucosa induced by LPS (P < 0.05). On the other hand, LH administration prevented LPS-induced activation of the p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) and attenuated IkB alpha (IκBα) phosphorylation and nuclear translocation of NF-κB (p65) in the jejunal mucosa. In conclusion, dietary LH supplementation attenuates intestinal mucosal disruption mainly by accelerating the expression of TJ proteins and inhibiting activation of the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Gang Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Kexun Lian
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yanjie Qiao
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Baojun Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xiaoqing Zhu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yan Luo
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| | - Xin-Li Gu
- College of Animal Science and Technology, Shihezi University, Xinjiang, People's Republic of China
| |
Collapse
|