1
|
Keshtkaran M, Hassanpour S, Asadollahi KP, Zendehdel M. Effects of in ovo injection of the L-carnosine on physiological indexes of neonatal broiler chicken. Poult Sci 2024; 103:103380. [PMID: 38198911 PMCID: PMC10825529 DOI: 10.1016/j.psj.2023.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of the present investigation was to ascertain the impact of in ovo administration of L-carnosine on physiological indicators in neonatal broiler chickens. A total of 280 viable broiler eggs were allocated to 7 distinct groups: control, Sham in ovo injection of sterile water on d 7 of incubation. Groups 3 and 4 were subjected to in ovo injections of L-carnosine (25 and 50 µg) on d 7 of incubation. Group 5, functioning as a sham in ovo, received an injection of sterile water on d 18 of incubation. Groups 6 and 7 were in ovo injected with L-carnosine (25 and 50 µg) on d 18 of incubation. All eggs were subjected to incubation, and the hatching rate and body weight were measured post-hatch. Subsequently, blood samples were collected, and the levels of biochemical constituents in the serum were determined. Based on the outcomes, the administration of L-carnosine (50 µg) on d 7 of incubation led to a significant increase in post-hatch body weight compared to the control group (P < 0.05). The in ovo injection of L-carnosine (25 and 50 µg) on d 7 and 18 of incubation resulted in a significant decrease in the levels of serum glucose, triglyceride (TG), low-density lipoprotein (LDL), phosphorus (P), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transaminase (ALT) in the newly hatched chickens (P < 0.05). Furthermore, the in-ovo injection of L-carnosine (25 and 50 µg) on d 7 and 18 of incubation led to a significant increase in the levels of serum high-density lipoprotein (HDL), calcium, and total protein (TP) in the newly hatched chickens (P < 0.05). Nonetheless, L-carnosine did not have a significant effect on the levels of serum IgY and IgA in the newly hatched chickens (P > 0.05). These findings indicate that the in ovo administration of L-carnosine yielded favorable outcomes in neonatal broiler chickens.
Collapse
Affiliation(s)
- Mahta Keshtkaran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Kaveh Parvandar Asadollahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
2
|
Farias TM, Cruz FGG, Rufino JPF, Oliveira Filho PAD, Santos ANDA, Bezerra NDS, Chaves FADL, Moda RF. Effect of in ovo injection of DL-methionine on hatchability, embryo mortality, hatching weight, blood biochemical parameters and gastrointestinal tract development of breeder chicks. Anim Biotechnol 2023; 34:3671-3680. [PMID: 37051917 DOI: 10.1080/10495398.2023.2199501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of DL-methionine (MET) on hatchability, embryonic mortality, hatching weight, blood biochemical parameters and development of heart and gastrointestinal (GIT) of breeder chick embryos. 224 Rhode Island Red fertile eggs were randomly distributed into seven experimental treatments: untreated egg (control), buffered saline (0.5% NaCl), and five solutions containing increased levels of MET (0.5, 1.0, 1.5, 2.0 and 2.5%) + 0.5% NaCl, being separated into four groups/replicates (each one with 8 eggs), totaling 32 eggs/treatment. All embryos submitted to in ovo injection with MET presented a decrease in the hatchability results and an increase in the results of intermediary embryonic mortality. Chicks hatched from eggs injected with until to 1.0% MET were heavier and presented better development of the heart and GIT, especially important organs and regions for digestion and nutrient absorption. Conclusively, the in ovo feeding using MET showed positive impacts on hatching weight and GIT development of breeder chicks. However, caused negative impacts on hatchability when used at high levels.
Collapse
|
3
|
Oliveira GDS, McManus C, Salgado CB, Dos Santos VM. Bibliographical Mapping of Research into the Relationship between In Ovo Injection Practice and Hatchability in Poultry. Vet Sci 2023; 10:vetsci10040296. [PMID: 37104451 PMCID: PMC10143566 DOI: 10.3390/vetsci10040296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Recent advances in poultry practice have produced new tools enabling the poultry industry to increase productivity. Aiming at increasing production quality, varying protocols of in ovo injection facilitate the introduction of exogenous substances into the egg to complement the nutrients that support embryonic development up to hatching, which are already available in the internal and external compartments. Due to embryonic sensitivity, adding any substance into the egg can be either advantageous or disadvantageous for embryonic survival and can influence hatch rates. Thus, understanding the relationship between poultry practices and production rates is the first step towards successful commercial application. This review aims to assess the influence on hatch rates of injecting different substances in ovo, including effects on embryo and chick health parameters where these are reported. Bibliographic mappings of co-authorship of citations, co-occurrence of keywords, and bibliographic coupling based on the in ovo injection technique and hatchability parameters were also performed. Using the Scopus database, 242 papers were retrieved, reviewed, and submitted for bibliographic mapping using the VOSviewer® software. This review provides a broad overview of just over 38 years' research on the subject, revealing that studies have significantly increased and peaked in 2020, being produced primarily by US researchers and published primarily in the journal Poultry Science. It also reveals that despite negative reports relating to some substances in the embryo, in ovo delivery of substances may possibly change the poultry industry for the better in terms of production rates (hatchability) and/or poultry health.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Cristiane Batista Salgado
- Laboratory of Geosciences and Human Sciences, Federal Institute of Brasília-Campus Brasília, Brasília 70830-450, Brazil
| | | |
Collapse
|
4
|
Kpodo KR, Proszkowiec-Weglarz M. Physiological effects of in ovo delivery of bioactive substances in broiler chickens. Front Vet Sci 2023; 10:1124007. [PMID: 37008350 PMCID: PMC10060894 DOI: 10.3389/fvets.2023.1124007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The poultry industry has improved genetics, nutrition, and management practices, resulting in fast-growing chickens; however, disturbances during embryonic development may affect the entire production cycle and cause irreversible losses to broiler chicken producers. The most crucial time in the chicks' development appears to be the perinatal period, which encompasses the last few days of pre-hatch and the first few days of post-hatch. During this critical period, intestinal development occurs rapidly, and the chicks undergo a metabolic and physiological shift from the utilization of egg nutrients to exogenous feed. However, the nutrient reserve of the egg yolk may not be enough to sustain the late stage of embryonic development and provide energy for the hatching process. In addition, modern hatchery practices cause a delay in access to feed immediately post-hatch, and this can potentially affect the intestinal microbiome, health, development, and growth of the chickens. Development of the in ovo technology allowing for the delivery of bioactive substances into chicken embryos during their development represents a way to accommodate the perinatal period, late embryo development, and post-hatch growth. Many bioactive substances have been delivered through the in ovo technology, including carbohydrates, amino acids, hormones, prebiotics, probiotics and synbiotics, antibodies, immunostimulants, minerals, and microorganisms with a variety of physiological effects. In this review, we focused on the physiological effects of the in ovo delivery of these substances, including their effects on embryo development, gastrointestinal tract function and health, nutrient digestion, immune system development and function, bone development, overall growth performance, muscle development and meat quality, gastrointestinal tract microbiota development, heat stress response, pathogens exclusion, and birds metabolism, as well as transcriptome and proteome. We believe that this method is widely underestimated and underused by the poultry industry.
Collapse
|
5
|
Sun X, Wang Z, Li X, Du S, Lin D, Shao Y. Effects of Yucca schidigera extract on serum biochemical parameters, humoral immune response, and intestinal health in young pigeons. Front Vet Sci 2023; 9:1077555. [PMID: 36713856 PMCID: PMC9878700 DOI: 10.3389/fvets.2022.1077555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction It is of great importance to find antibiotic alternatives that can improve poultry performance and enhance immunity. Plant-derived extracts and their concentrates are natural bioactive compounds that are widely and effectively applied as the antibiotic alternatives in animal industries. This study was conducted to investigate the effects of Yucca schidigera extract (YSE) on growth performance, serum biochemical parameters, immune function, intestinal morphology, and microbiota diversity of young pigeons. Methods A total of 120 healthy White King pigeons (28 days old) with similar weight were randomly assigned to 4 treatments with six replicate cages. Each of the pigeons from 4 treatments was orally administrated with 0 (control), 5, 10, and 15 mg YSE per day, respectively. Results The results showed that orally supplemental YSE had no significant effects (P > 0.05) on the growth performance and immune organ index of pigeons. The serum total protein and IgM contents in the 10 mg YSE group were significantly higher (P < 0.05) than those in the control group. Supplemental 10 and 15 mg YSE significantly lowered the level of serum total cholesterol (P < 0.05) and increased (P < 0.05) the villi height in the jejunum compared with the control group. Supplemental 5 and 10 mg YSE significantly decreased (P < 0.05) the level of serum alanine aminotransferase and the crypt depth in the ileum compared with the control group. The beta diversity showed a distinct difference in the ileum microbial composition between the control and the 10 mg YES group. YSE supplementation enriched the bacterial genera Sulfurospirillum, Solobacterium, Desulfovibrio, Desulfobulbus, Lactococcus, Parabacteroides, Acidaminococcus, Acetobacter, and Streptococcus. Additionally, Enterococcus genus showed a significantly negative correlation with serum alanine aminotransferase (R = -0.618, P = 0.043). Actinomyces genus showed a significantly negative correlation with cholesterol (R = -0.633, P = 0.036). Turicibacter genus showed a significantly positive correlation with villi height in the jejunum (R = 0.751, P = 0.008). Discussion In conclusion, orally supplemental YSE could improve serum biochemistry, immunoglobulin contents, and intestinal morphology by regulating the composition of microbial community in the ileum of young pigeons.
Collapse
Affiliation(s)
- Xiaoshan Sun
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zheng Wang
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xing Li
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shaohua Du
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongmei Lin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China,*Correspondence: Dongmei Lin ✉
| | - Yuxin Shao
- Pigeon Breeding Laboratory, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,Yuxin Shao ✉
| |
Collapse
|
6
|
Wen JS, Xu QQ, Zhao WY, Hu CH, Zou XT, Dong XY. Effects of early weaning on intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia). Poult Sci 2021; 101:101613. [PMID: 34936957 PMCID: PMC8703073 DOI: 10.1016/j.psj.2021.101613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to explore the effects of early weaning on growth performance, intestinal morphology, digestive enzyme activity, antioxidant status, and cytokine status in domestic pigeon squabs (Columba livia). The conclusion is based on body weight (BW) and average daily gain (ADG), length index and weight index of small intestine, small intestinal morphology, activity of digestive enzymes in duodenum content, the concentrations of jejunal antioxidant status and cytokines. A completely randomized design with 2 treatments, the control group (CON) and early weaning (EW) group, was utilized. Eight squabs per treatment were sampled at the age of 25 d. The results showed that early weaning reduced BW (P < 0.05), ADG (P < 0.05), ileac length index (P < 0.05), and weight index (P < 0.01). Compared with the CON group, small intestinal morphology was altered in the EW group. Ileac crypt depth (CD) increased significantly (P < 0.01). The villus area was decreased in the duodenum (P < 0.05), jejunum (P < 0.01), and ileum (P < 0.05). The ileac ratio of villus height to crypt depth (VCR) in the EW group was lower than the ileac ratio of villus height to VCR in the CON group (P < 0.01). The activity of trypsin (P < 0.05), sucrase (P < 0.01) and aminopeptidase-N (APN) (P < 0.01) in the duodenum was reduced. Jejunal malondialdehyde (MDA) (P < 0.01) was increased and total superoxide dismutase (T-SOD) (P < 0.01) was reduced significantly. Early weaning decreased the concentrations of interferon-γ (IFN-γ) (P < 0.01), interleukin-4 (IL-4) (P < 0.05) and interleukin-10 (IL-10) (P < 0.01) but induced significant upregulation of interleukin-2 (IL-2) (P < 0.05). In conclusion, our results suggested that early weaning did harm the BW and ADG, intestinal length index and weight index, intestinal morphology, activity of digestive enzymes, and antioxidant and cytokine status.
Collapse
Affiliation(s)
- J S Wen
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - Q Q Xu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - W Y Zhao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - C H Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - X T Zou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China
| | - X Y Dong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China; Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, People's Republic of China.
| |
Collapse
|
7
|
Xu Q, Wang X, Liu Y, Dong X, Zou X. Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Anim Sci J 2021; 92:e13616. [PMID: 34462998 DOI: 10.1111/asj.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to explore the effects of dietary arachidonic acid on serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in pigeon squabs by supplementing arachidonic acid in their parental diets. A completely randomized design was conducted consisting of control group, 0.05% dietary arachidonic acid supplementation group, 0.1% dietary arachidonic acid supplementation group, and 0.2% dietary arachidonic acid supplementation group. Six randomly selected squabs from each group were sampled on Day 21 post-hatch. Results indicated that moderate level (0.05%) of arachidonic acid in parental diets for pigeon squabs improved lipid metabolism via regulation on serum lipid profile and fatty acid composition and tended to reduce hepatic lipid accumulation in the premise of negligible damage to antioxidant status. Unfortunately, excessive parental supplementation of dietary arachidonic acid might be harmful to squab health. The regulatory effects of arachidonic acid were sensitive to the arachidonic acid doses. In conclusion, parental dietary arachidonic acid at 0.05% could be beneficial for squabs to maintain health as reflective aspects in ameliorative serum lipid profile, fatty acid composition, and reduced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xiaoming Wang
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Yating Liu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| |
Collapse
|
8
|
Xu Q, Li H, Zhou W, Zou X, Dong X. Age-Related Changes in Serum Lipid Levels, Hepatic Morphology, Antioxidant Status, Lipid Metabolism Related Gene Expression and Enzyme Activities of Domestic Pigeon Squabs ( Columba livia). Animals (Basel) 2020; 10:E1121. [PMID: 32630261 PMCID: PMC7401562 DOI: 10.3390/ani10071121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in antioxidant status and the lipid metabolism of pigeon squabs (Columba livia), by determining the BW, antioxidant indices, serum lipid levels, lipid metabolism-related enzyme activities, lipid metabolism-related gene expression, and liver morphology in squabs. Ten squabs were randomly selected and sampled on the day of hatching (DOH), days 7 (D7), 14 (D14) and 21 (D21) post-hatch, respectively. The results showed that BW of squabs increased linearly from DOH to D21. The minimum fold of BW gain was observed in the phase from D14 to D21. Serum triglyceride and free fatty acid levels displayed linear and quadratic trends as age increased, with these maximum responses in D14. Serum low-density lipoprotein cholesterol level responded to age linearly and quadratically with the minimum in D14. Serum high-density lipoprotein cholesterol level and the ratio of high-density lipoprotein cholesterol to low-density lipoprotein cholesterol increased linearly with age, whereas the very low-density lipoprotein cholesterol level decreased linearly. The activities of glutathione peroxidase, catalase, and superoxide dismutase in liver displayed linear and quadratic trends as age increased, with these minimum responses in D14. Hepatic malondialdehyde concentration responded to age linearly and quadratically, with the maximum in D14. Activities of lipoprotein lipase, hepatic lipase, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase in liver responded to age linearly and quadratically, with these minimum responses in D14. Hepatic hormone-sensitive lipase activity displayed linear and quadratic trends as age increased with the maximum in D14. Hepatic acetyl CoA carboxylase activity on D14 was significantly lower than squabs on DOH and D7. Hepatic carnitine palmitoyltransferase 1 mRNA expression responded to age linearly and quadratically, with minimum response in D14. Hepatic mRNA expression of acetyl CoA carboxylase and fatty acid synthetase increased linearly with age. Hepatic Oil-Red-O staining area displayed a quadratic trend as age increased, with the maximum response in D14. In conclusion, the phase from DOH to D14 was a crucial development stage for growth, antioxidant status and lipid metabolism in pigeon squabs. The results suggest it is better to take nutritional manipulation in squabs before D14.
Collapse
Affiliation(s)
| | | | | | | | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (Q.X.); (H.L.); (W.Z.); (X.Z.)
| |
Collapse
|
9
|
Wang XZ, Zhang ZQ, Guo R, Zhang YY, Zhu NJ, Wang K, Sun PP, Mao XY, Liu JJ, Huo JZ, Wang XR, Ding B. Dual-emission CdTe quantum dot@ZIF-365 ratiometric fluorescent sensor and application for highly sensitive detection of l-histidine and Cu 2. Talanta 2020; 217:121010. [PMID: 32498848 DOI: 10.1016/j.talanta.2020.121010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/13/2022]
Abstract
l-histidine acts as a semi-essential amino acid, which is medically used in the treatment of gastric ulcer, anemia, allergies. However, the overuse of l-histidine will result in terrible damage to heart disease, slow growth of animals and water pollution in the environment. In addition, Cu2+ pollution is common environmental pollution in the industry. It has the characteristics of high accumulation, migration, and persistence. Given this, through the post-synthesis strategy, CdTe quantum dots (QDs) were the first time to introduce into zeolitic imidazolate framework-ZIF-365 to synthesis dual-emission hybrid material CdTe@ZIF-365 with high quantum yield. TEM mappings and N2 absorption tests are applied to confirm the combination mode between CdTe quantum dots and ZIF-365. It should be noted that CdTe@ZIF-365 can be successfully utilized as a bi-functional ratiometric sensor for highly sensitive discrimination of l-histidine and Cu2+. Firstly, CdTe@ZIF-365 is applied to a fluorescent ratiometric sensor for Cu2+ with high sensitivity (the Ksv value is 2.7417✕107 [M-1]) and selectivity in the mixed cation ions' solution. On the other hand, CdTe@ZIF-365 also behaved as the first example for an excellent ratiometric fluorescent senor for l-histidine with high sensitivity (the Ksv value is 6.0507✕108 [M-1]) and selectivity in the mixed amino acids' solutions.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Zi Qing Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Rui Guo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Yi Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Na Jia Zhu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Kuo Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Ping Ping Sun
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Xin Yu Mao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jun Jie Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China
| | - Jian Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Xin Rui Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
10
|
Xu QQ, Ma XW, Dong XY, Tao ZR, Lu LZ, Zou XT. Effects of parental dietary linoleic acid on growth performance, antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Poult Sci 2020; 99:1471-1482. [PMID: 32111316 PMCID: PMC7587642 DOI: 10.1016/j.psj.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary linoleic acid (LA) on growth performance, antioxidant capacity, and lipid metabolism in pigeon squabs by supplementing LA in their parental diets. A completely randomized design that consisted of a control group, 1% dietary LA addition group (LA1%), 2% dietary LA addition group (LA2%), and 4% dietary LA addition group (LA4%) was used. Six squabs from each treatment were randomly sampled at the day of hatch and days 7, 14, and 21 after hatch. The results showed that parental dietary LA had no significant influence (P > 0.05) on body weight (BW) gain or relative organ weights (% of BW) in squabs. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the LA1% were significantly increased (P < 0.05) compared with those in the control group. The malondialdehyde content in the LA1% was significantly lower (P < 0.05) than that in the control group. The levels of serum triglyceride in the LA1% and LA2% were significantly decreased (P < 0.05) compared with those in the control group, whereas the serum high-density lipoprotein cholesterol level in the LA1% and LA2% and the free fatty acid level in the LA4% were significantly higher (P < 0.05) than those of the control group. The activities of lipoprotein lipase, hepatic lipase, and hormone-sensitive lipase in the LA1% were significantly higher (P < 0.05) than those in the control group. The 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in the LA1% and the hormone-sensitive lipase activity in the LA4% were significantly decreased (P < 0.05) compared with those in the control group. The mRNA expression of carnitine palmitoyltransferase 1, acyl-CoA 1, and peroxisome proliferator-activated receptor α was significantly upregulated (P < 0.05) in the LA1% compared with that in the control group. The Oil Red O staining area in the LA1% and LA2% was significantly reduced compared with that in the control group. The results indicated that although supplemental LA had negligible effects on growth and development in pigeon squabs, parental dietary LA at a concentration of 1% could have beneficial effects on maintaining squabs healthy as reflected by improved antioxidant capacity and lipid metabolism.
Collapse
Affiliation(s)
- Q Q Xu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - X W Ma
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - X Y Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Z R Tao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - L Z Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China.
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China.
| |
Collapse
|