1
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Ivarsson E, Wall H, Boyner M, Cervin G, Pavia H, Wattrang E. Effects of algal supplementation in feed to broiler breeders on transfer of nutrients and antibodies to chicks and quality of hatchlings. Animal 2023; 17:101020. [PMID: 37988995 DOI: 10.1016/j.animal.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
Breeder nutrition is an important factor for chick quality since the chick embryo relies on nutrients available in the egg for growth and development. In addition, the egg is providing the chick with important antibodies that are vital during the first weeks of life. Brown algae contains several bioactive compounds, and dietary supplementation with algal extracts have shown improved gut health and immune responses in both pigs and poultry. The aim of this study was to investigate if feeding the brown algae Saccharina latissima, intact or as an extract, to broiler breeders can affect breeder hens' antibody responses to vaccination, egg quality and transfer of antibodies and nutrients to the egg and thereby improve the quality of newly hatched chicks. Forty-five hens and nine roosters of the parent lines of the fast-growing broiler Ross 308 were included in the experiment where hens were 31 weeks at the start. The hens were housed individually and fed one of three dietary treatments for seven weeks; (a) control, (b) addition of 0.6% algal meal or (c) addition of 0.08% algal extract. The hens were given a booster vaccination against infectious bronchitis virus (IBV) 21 days after the start of experiment. During experimental days 32-42, hens were naturally mated every 5th day and hatching eggs were collected. A total of 255 chicks were hatched, and chick quality was assessed. Moreover, on chick day three, blood was collected from 48 focal chickens and total immunoglobulin Y levels and specific titres to IBV in serum were determined. The results showed that feeding the brown algae Saccharina latissima, intact or as an extract to broiler breeders did not affect egg production, egg quality, antibody responses to vaccination or transfer of antibodies from hen to chick. However, feeding intact algae significantly increased the levels of iodine and decreased the level of selenium in the eggs and resulted in a lower proportion of chicks with maximum quality score. Interestingly, algal feeding, both intact and as an extract, increased the abdominal fat pad in broiler breeders by about 17% without affecting BW. In conclusion, supplementation of broiler breeder diets with algal extract from Saccharina latissima, but not intact algal meal is a promising dietary strategy to increase the abdominal fat pad without causing any adverse effects on nutrient level in eggs or chick quality.
Collapse
Affiliation(s)
- E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden.
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden
| | - M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden
| | - G Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - H Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - E Wattrang
- Department of Microbiology, National Veterinary Institute, SE 751 89 Uppsala, Sweden
| |
Collapse
|
3
|
Huang Y, He Y, Peng Z, Hu H, Yang M, Pan H, Zhao S, Li Y. Effect of Pu-erh tea pomace on the composition and diversity of cecum microflora in Chahua chicken No. 2. Front Vet Sci 2023; 10:1289546. [PMID: 38099001 PMCID: PMC10720613 DOI: 10.3389/fvets.2023.1289546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p < 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p < 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p < 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p < 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p < 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p < 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry.
Collapse
Affiliation(s)
- Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zeqin Peng
- College of Biotechnology and Engineering, West Yunnan University, Lincang, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongneng Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Zhang Y, Liu M, Ding Y, Wang T, Ma Y, Huang J, He S, Qu Q, Sun F, Lv W, Guo S. Effects of Perilla Seed Meal on Productive Performance, Egg Quality, Antioxidant Capacity and Hepatic Lipid Metabolism of Wenchang Breeder Hens. Animals (Basel) 2023; 13:3587. [PMID: 38003204 PMCID: PMC10668772 DOI: 10.3390/ani13223587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the effects of adding perilla seed meal (PSM) to the diet on reproductive performance, egg quality, yolk fatty acids, antioxidant capacity and liver lipid metabolism in breeding hens. A total of 192 31-week-old yellow-feathered hens were randomly divided into 4 treatments with 6 replicates of 8 birds for 8 weeks. The chickens were fed a typical corn-soybean meal diet containing 0% (control), 0.3%, 0.6%, and 1% PSM. The results showed that PSM can change the productivity of laying hens. Adding 0.6% PSM to the feed reduced the mortality rate of chickens. Adding 1% PSM improved the fertilization rate and hatching rate of chickens. Regarding egg quality, the albumen height and Haugh unit were improved in the 0.6% PSM group. The content of MUFAs and PUFAs in the egg yolk was increased in all the PSM groups, while SFAs were only increased in the 0.6% PSM group. Among the indicators related to lipid metabolism, serum GLU decreased in all the PSM groups. The 0.6% PSM group had a reduction in serum and liver TG, as well as reductions in serum LDL-C and ALT. The same results were observed for the abdominal fat percentage in the 0.6% PSM group. Liver lipid metabolism-associated gene expression of FAS and LXRα was decreased in all the PSM groups, and the mRNA expression of ACC and SREBP-1c was significantly reduced in the 0.6% PSM group. HE staining showed that the vacuoles in the liver tissue gradually decreased with increasing PSM doses, especially the 1% PSM dose. Lipid droplets with a similar trend were observed using Oil Red O staining. In the results of the antioxidant capacity test, the serum T-AOC was increased in the 0.6% and 1% PSM groups, and the SOD in both the serum and liver was significantly increased in all the PSM groups. The expression of antioxidant-related genes such as Nrf2, NQO-1, HO-1, CAT and GSH-Px was significantly upregulated in the 1% PSM group. In conclusion, the PSM diet improved the lipid metabolism and antioxidant capacity of breeding hens. PSM reduces mortality and improves fertilization and hatchability in the late laying period of chickens, resulting in greater benefits. We recommend adding 0.6% PSM to layer feed, which improves the physical condition of the hens and brings higher economic benefits.
Collapse
Affiliation(s)
- Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Fenggang Sun
- Guangdong Weilai Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| |
Collapse
|
5
|
Qiang T, Wang J, Ding X, Zeng Q, Bai S, Lv L, Xuan Y, Peng H, Zhang K. The improving effect of soybean isoflavones on ovarian function in older laying hens. Poult Sci 2023; 102:102944. [PMID: 37531725 PMCID: PMC10407823 DOI: 10.1016/j.psj.2023.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence suggests an association between estrogen levels and reduced egg-laying performance as the layer became old. Since soy isoflavones (SF) have estrogen-mimic effects, whether it can enhance production performance and ovarian function of older layers is still not known. A total of 160 Lohmann pink layers (66-wk-old) were used in a 2 × 2 factorial design, which included 2 egg-laying levels [low (76.89 ± 1.65%; LOW) and normal (84.96 ± 1.01%; NOR)] and 2 different dietary groups [0 mg/kg SF, 20 mg/kg SF] were used. The results showed the NOR group had higher egg-laying rate, egg mass, and feed efficiency during the all phases (P(laying) < 0.05). The unqualified egg rate was lower in NOR group (9-12 wk, 1-12 wk) (P(laying) < 0.05). Dietary supplementation with SF increased the egg-laying rate and feed efficiency (5-8 wk, 9-12 wk, 1-12 wk), increased egg mass (9-12 wk, 1-12 wk) (P(SF) < 0.05). The NOR layers presented higher eggshell quality (redness, yellowness, brightness, eggshell ratio) at 12 wk (P(laying) < 0.05). Eggshell quality was found to be improved by SF (eggshell strength and eggshell thickness), egg albumen quality (higher albumen height and Haugh unit) at 12 wk (P(SF) < 0.05). Supplementing with SF led to an increase in eggshell strength in LOW group (P(laying*SF) < 0.05). The higher serum lever of glucose (GLU) and lower serum lever of follicle stimulating hormone (FSH) were in NOR group (P(laying) < 0.05). Supplementing SF in diets increased serum of estradiol (E2) and insulin-like growth factors-1 (IGF-1), decreased serum of FSH (P(SF) < 0.05). The NOR layers presented lower estrogen receptor α (ERα), estrogen receptor β (ERβ), B lymphoma 2 associated X protein (Bax), cytochrome c (Cytc), interleukin 6 (IL-6), caspase3, caspase9, IKKα, P50, and P65 expression in the ovary (P(laying) < 0.05). Dietary SF supplementation decreased the anti-Müllerian hormone receptor (AMHR), Bax, caspase3, caspase9, Cytc, IL-6, IKKα, P50, P65 expression in the ovary (P(SF) < 0.05). These findings indicated that layers with NOR group had higher production performance, egg quality, and ovarian function, while dietary supplementation with SF improved production performance and ovarian function by reducing inflammation and apoptosis-related genes expression in ovary.
Collapse
Affiliation(s)
- Taoyan Qiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Lv
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Zhang H, Li M, Zhang K, Ding X, Bai S, Zeng Q, Chu L, Hou D, Xuan Y, Yin H, Wang J. Effect of benzoic acid, Enterococcus faecium, and essential oil complex on intestinal microbiota of laying hens under coccidia and Clostridium perfringens challenge. Poult Sci 2023; 102:102490. [PMID: 36736140 PMCID: PMC9898449 DOI: 10.1016/j.psj.2023.102490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The objective of this study was to investigate whether dietary supplementation with benzoic acid, Enterococcus faecium, and essential oil complex (BEC) could help laying hens recover from coccidia and Clostridium perfringens type A challenge. A total of 60 (35-wk-old) Lohmann-laying hens were randomly assigned to 3 experimental groups (10 replicates with 2 hens per replicate): I) control group (CON), II) challenge group (CC), and III) BEC group (2,000 mg/kg BEC). The total experimental period was 8 wk. The results shown that the challenge layers had lower egg-laying rate and average daily feed intake (ADFI) (P < 0.05), and addition of BEC after challenge increased egg-laying rate (P < 0.05). The content of propionic acid (PA) and butyric acid (BA) in short-chain fatty acid (SCFA) was significantly decreased by challenge (P < 0.05). CC and BEC groups had lower villus height to crypt depth ratio (V/C) and higher pathological scores in duodenum (P < 0.05), whereas the BEC group had lower pathological scores in jejunum when compared with the CC group (P < 0.05). The challenge increased the concentration of proinflammatory cytokines (IL-1β and IL-6) (P < 0.05). An increase in the abundance of Bacteroidoes (genus), Bacteroidaceae (family), Bacteroidoes sp. Marseille P3166 (species), Bacteroidoes caecicola (species) was observed in the CC group, whereas the BEC group had higher abundance of Bacteroides caecigallinarum (species). The genera Faecalibacterium and Asterolplasma were positively correlated with egg-laying rate (r = 0.57, 0.60; P < 0.01); and the genera Bacteroides and Romboutsia were negatively correlated with egg-laying rate (r = -0.58, -0.74; P < 0.01). The genera Bacteroides, Lactobacillus, and Rombutzia were positively correlated with jejunal mucosa proinflammatory factor IL-1β level (r = 0.61, 0.60, 0.59; P < 0.01), which were negatively correlated with genera Rikenbacteriaceae RC9, Faecalibacterium, and Olsenlla (r = -0.56, -0.57, -0.61; P < 0.01). There genera UCG.005 was positively correlated with proinflammatory factor IL-6 level in jejunal mucosa (r = 0.58; P < 0.01), which was negatively correlated with Rikenbacteriaceae RC9 (r = -0.62; P < 0.01). The experiment results revealed that the addition of BEC to the diet restored the production performance of the laying hens. In addition, supplementation of 2,000 mg/kg BEC modulated gut health by reducing gut damage scores and modulating microbial composition, thereby promoting recovery of laying hens after coccidia and Clostridium perfringens challenge.
Collapse
Affiliation(s)
- Hongye Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyu Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Licui Chu
- DSM (China), Co. Ltd., Shanghai, China
| | - Danxi Hou
- DSM (China), Co. Ltd., Shanghai, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China,Corresponding author:
| |
Collapse
|
7
|
Cao S, Guo D, Yin H, Ding X, Bai S, Zeng Q, Liu J, Zhang K, Mao X, Wang J. Improvement in ovarian function following fecal microbiota transplantation from high-laying rate breeders. Poult Sci 2022; 102:102467. [PMID: 36682132 PMCID: PMC9876952 DOI: 10.1016/j.psj.2022.102467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The underlying mechanism between the gut microbiota and reproductive function is not yet well-known. This study was conducted to investigate the effect of the administration of fecal microbiota transplantation (FMT) from highly laying rate donors on the cecal microbiota, intestinal health and ovarian function in broiler breeders. A total of 60 broiler breeders (53 wk of age) were selected by their laying rate [high (HP, 90.67 ± 0.69%; n = 10) and low (LP, 70.23 ± 0.87%; n = 20)]. The LP breeders were then be transplanted with fecal microbiota from HP hens (FMTHP; n = 10) or the same dosage of PBS (FMTCON; n = 10) for 28 d. The results revealed that FMT from HP donors increased egg-laying rate and serum hormone levels [17β-estradiol (E2), anti-Müller hormone], also decreased proinflammatory cytokine levels (interleukin-6, interleukin-8, tumor necrosis factor-α) of LP breeders (P < 0.05). The FMTHP group breeders had higher villus height, villus height/crypt depth ratio, and upregulated mRNA expression of jejunum barrier-related gene (ZO-2 and mucin-2) and estrogen, follicle-stimulating hormone (FSH) and anti-Müller hormone (AMH) receptor genes (ESR1, ESR2, FSHR, AMHR) (P < 0.05) than FMTCON group. FMT from HP donors led to higher mRNA expression of Bcl2 and sirtuin1 (SIRT1), while it downregulated the proapoptotic genes (Bax, caspase-3, caspase-8, and caspase-9) mRNA expressions in ovary compared with the FMTCON breeders (P < 0.05), and this pattern was also observed in HP donors. Also, HP breeder had higher observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group, while FMTHP can increase observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group (P < 0.05). The bacteria enrichment of Firmicutes (phylum), Bacteroidetes (phylum), Lactobacillus (genus), Enterococcus (genus), and Bacteroides (genus) were increased by FMTHP treatment. The genera Butyricicoccus, Enterococcus, and Lactobacillus were positively correlated with egg-laying rate. Therefore, cecal microbiomes of breeders with high egg-laying performance have more diverse activities, which may be related to the metabolism and health of the host; and FMT from high-yield donors can increase the hormone secretion, intestinal health, and ovarian function to improve egg-laying performance and the SIRT1-related apoptosis and cytokine signaling pathway were involved in this process.
Collapse
Affiliation(s)
- Shanchuan Cao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China,Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - Dan Guo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Zhang H, Ding X, Bai S, Zeng Q, Zhang K, Mao X, Chu L, Hou D, Xuan Y, Wang J. Alleviating effect of dietary supplementation of benzoic acid, Enterococcus faecium and essential oil complex on coccidia and Clostridium perfringens challenge in laying hens. Poult Sci 2022; 101:101720. [PMID: 35231770 PMCID: PMC8886132 DOI: 10.1016/j.psj.2022.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The purpose of this experiment is to explore the effects of dietary supplementation of benzoic acid, Enterococcus faecium, and essential oil complex (BEC) on coccidia and Clostridium perfringens challenge in laying hens. A total of 80 Lohmann gray laying hens (35 wk old) were allocated to 4 treatments in a 2 × 2 factorial arrangement with the main effects of Clostridium perfringens type A (CP) and coccidia challenge (with or without challenge) and 2 BEC levels (0 and 1,000 mg/kg). The total experimental period was 6 wk. The results showed that: the challenge group significantly decreased the laying rate and average daily feed intake (ADFI) of laying hens (PChallenge < 0.01). The BEC + challenge group significantly increased the laying rate and decreased the feed conversion ratio (FCR) of laying hens (PBEC < 0.05). The challenge significantly decreased the thickness, strength, and relative weight of eggshell (PChallenge < 0.05). The BCE + challenge group significantly increased the relative weight and strength of the eggshell (PBEC < 0.05). The challenge significantly increased the crypt depth of the duodenum, jejunum and ileum, and decreased the villus-to-crypt ratio (V/C) (PChallenge < 0.01). The BEC + challenge group decreased the crypt depth of the duodenum and jejunum, and increased the V/C of the duodenum (PBEC < 0.01). The pathological scores of duodenum and jejunum of the challenge group were significantly higher than other groups (PChallenge < 0.01), while the BEC + challenge group had lower pathological scores of jejunum (PBEC < 0.01). The challenge significantly decreased the mRNA expression of Occludin, Mucin-2, Zonula occluden-1 (ZO-1) (Pchallenge < 0.05); whereas the BEC group significantly increased the expression of Occludin, Mucin-2, and Claudin-1 mRNA (PBEC < 0.05). The challenge significantly increased the level of interleukin 1β (IL-1β) in the jejunum (PChallenge < 0.05). Taken together, adding BEC to the diet can improved production performance and egg quality of layers, by protecting intestinal health against Clostridium perfringens type A (CP) and coccidia challenge.
Collapse
|
9
|
Feng T, Liu Y. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput Struct Biotechnol J 2022; 20:1541-1553. [PMID: 35465162 PMCID: PMC9010680 DOI: 10.1016/j.csbj.2022.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The presence of microbial communities in the reproductive tract has been revealed, and this resident microbiota is involved in the maintenance of health. Intentional modulation via probiotics has been proposed as a possible strategy to enhance reproductive health and reduce the risk of diseases. The male seminal microbiota has been suggested as an important factor that influences a couple’s health, pregnancy outcomes, and offspring health. Probiotics have been reported to play a role in male fertility and to affect the health of mothers and offspring. While the female reproductive microbiota is more complicated and has been identified in both the upper and lower reproductive systems, they together contribute to health maintenance. Probiotics have shown regulatory effects on the female reproductive tract, thereby contributing to homeostasis of the tract and influencing the health of offspring. Further, through transmission of bacteria or through other indirect mechanisms, the parent’s reproductive microbiota and probiotic intervention influence infant gut colonization and immunity development, with potential health consequences. In vitro and in vivo studies have explored the mechanisms underlying the benefits of probiotic administration and intervention, and an array of positive results, such as modulation of microbiota composition, regulation of metabolism, promotion of the epithelial barrier, and improvement of immune function, have been observed. Herein, we review the state of the art in reproductive system microbiota and its role in health and reproduction, as well as the beneficial effects of probiotics on reproductive health and their contributions to the prevention of associated diseases.
Collapse
|
10
|
Effects of Dietary Tributyrin on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers. Animals (Basel) 2021; 11:ani11123425. [PMID: 34944202 PMCID: PMC8697914 DOI: 10.3390/ani11123425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the effects of tributyrin on growth performance, biochemical indices and intestinal microbiota of yellow-feathered broilers. 360 one-day-old chicks were randomly allocated to three treatments with six replicates of 20 chicks each, including a normal control group (NC), an antibiotic group (PC), and a tributyrin (250 mg/kg) group (TB) for 63 days. The results showed that compared with the control, the feed conversion ratio (FCR) in the TB group decreased during the d22 to d42 (p < 0.05) and overall, the final weight and FCR of broilers tended to increase and decrease, respectively. Moreover, the TB group showed the highest creatine concentrations at the entire period (p < 0.05). TB treatment increased the Bacteroidetes relative abundance and decreased Firmicutes. Principal coordinates analysis yielded clear clustering of the three groups. Linear discriminant analysis effect size analysis found seven differentially abundant taxa in the TB group, including several members of Bacteroidedetes. The relative abundance of Eisenbergiella, Phascolarctobacterium, Megasphaera and Intestinimonas increased in tributyrin-treated broilers. Spearman correlation analysis identified a correlation between Eisenbergiella abundance and overall feed efficiency. These results demonstrated that tributyrin could improve the growth performance by modulating blood biochemical indices and the cecal microflora composition of broilers.
Collapse
|
11
|
Wan Z, Sun N, Luo M, Gan B, Yao Z, Cao X, Wang H, Pan K, Shu G, Zeng Y, Zeng D, Ni X. Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance. Probiotics Antimicrob Proteins 2021; 15:535-547. [PMID: 34697775 DOI: 10.1007/s12602-021-09856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 02/08/2023]
Abstract
In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.
Collapse
Affiliation(s)
- Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhipeng Yao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
12
|
Wang J, Zhang H, Bai S, Zeng Q, Su Z, Zhuo Y, Mao X, Yin H, Feng B, Liu J, Zhang K, Ding X. Dietary tributyrin improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci 2021; 100:101429. [PMID: 34555757 PMCID: PMC8458981 DOI: 10.1016/j.psj.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this experiment was to investigate the influence of dietary tributyrin on reproduction performance and ovary function of broiler breeders with different egg laying rate. Two hundred fifty-six AA broiler breeders (48-wk-old) were allocated to 4 treatment in a 2 × 2 factorial arrangement with the main effects of tributyrin supplementation (0 and 1,000 mg/kg tributyrin [TRI]) and 2 egg laying rate levels (average [AR, 81.01 ± 0.79%] and low [LR, 70.98 ± 0.95%]). The results shown that the LR breeders presented higher egg weight, but lower egg laying rate, qualified egg rate and feed efficiency than the AR breeders (P(laying) < 0.05). Also, the superoxidase dismutase (SOD) activity in magnum was lower while malondialdehyde (MDA) was higher in ovary and magnum of LR breeders than that in the AR breeders (P(laying) < 0.05). Dietary supplementation with tributyrin significantly enhanced egg weight (P(TRI) < 0.05), increased albumen height as well as Haugh unit (HU) in AR breeders (P(interaction) < 0.05), and also had higher total antioxidant capacity (T-AOC) and lower MDA in ovary (P(TRI) < 0.05). The cell apoptosis rate and proapoptosis related gene expression (caspase 8, 9 and Bax) in the ovary of LR breeders was higher, while anti-apoptosis related gene (Bcl-2) expression were lower in LR breeders when compared with the AR breeders (P(laying) < 0.05). Dietary supplementation with tributyrin decreased the cell apoptosis rate and downregulated caspase 9 expression in LR breeders (P(Interaction) < 0.05), up-regulated the Bcl-2 expression in both 2 breeders (P(TRI) < 0.05). These findings suggest that the breeders with lower egg laying rate also characterized by deteriorate ovary function indicated by lower antioxidant capacity and higher cell apoptosis rate. Dietary supplementation with tributyrin increased egg albumen quality, decreased ovarian proapoptosis related gene expression to improve reproductive tract function; and the positive effect on egg albumen quality is more pronounced in average reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongye Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuowei Su
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huadong Yin
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Wang J, Zhang C, Zhao S, Ding X, Bai S, Zeng Q, Zhang K, Zhuo Y, Xu S, Mao X, Peng H, Shan Z. Dietary apple pectic oligosaccharide improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci 2021; 100:100976. [PMID: 33607317 PMCID: PMC7900577 DOI: 10.1016/j.psj.2020.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Reproduction performance is one of the most important economic traits for the poultry industry. Intriguingly, apple pectic oligosaccharide (APO) could promote gastrointestinal function and immune function to improve performance; however, literature about APO on reproduction performance in breeders is limited. This study aimed to determine whether APO administration can improve reproduction performance and ovary function of broiler breeders with different egg laying rates. Two hundred and fifty six Arbor Acres broiler breeders (48-week-old) were used in a 2 × 2 factorial design with 2 egg laying rates (average [AR] and low [LR]) and 2 dietary levels of APO (0 and 200 mg/kg APO). Results showed that the LR breeders presented higher egg weight but lower egg laying rate, qualified egg rate, and feed efficiency than the AR breeders (P(laying) < 0.05). Also, the LR breeders had decreased serum Anti-Müllerian hormone, leptin, and antioxidant enzyme (superoxide dismutase, total antioxidant capacity) levels than the AR breeders (P(laying) ≤ 0.05). Dietary supplementation with APO improved egg weight, feed efficiency, as well as egg albumen quality (higher albumen height and Haugh unit) (P(APO) < 0.05), and decreased the concentration of pro-inflammatory cytokine levels (interleukin [IL]-1β, IL-8) in serum (P(APO) ≤ 0.05). The apoptosis rate and pro-apoptosis-related gene expression (caspase 9 and Bax) in the ovary of LR breeders were higher, while the anti-apoptosis-related gene expression (Bcl-2, PCNA) was lower in LR compared with the AR breeders (P(laying) < 0.05). Dietary supplementation with APO decreased the caspase 9 and Bax expression in LR breeders (P(interaction) < 0.05), and increased the Bcl-2 and PCNA expression in the 2 breeders (P(APO) < 0.05). These findings indicate that breeders with a lower egg laying rate exhibit lower antioxidant capacity and high cell apoptosis in the ovary. Dietary supplementation with APO might improve albumen quality and antioxidant capacity, and decrease the inflammatory factors and ovary apoptosis-related genes expression to improve ovary function. Moreover, the effect of APO on decreasing ovarian pro-apoptosis-related gene expression was more pronounced in lower reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| | - Shuju Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er Unviersity, Pu'er City 665000, China
| |
Collapse
|
14
|
Wang J, Wan C, Shuju Z, Yang Z, Celi P, Ding X, Bai S, Zeng Q, Mao X, Xu S, Zhang K, Li M. Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poult Sci 2021; 100:1109-1119. [PMID: 33518070 PMCID: PMC7858034 DOI: 10.1016/j.psj.2020.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The difference in microbiota was examined for breeders with different egg-laying rates, and the impact of dietary Enterococcus faecium (EF) was also determined in the present study. A total of 256 Arbor Acres broiler breeders (48-wk-old) were used in a 2 × 2 factorial design, which encompassed 2 egg-laying rate levels [average (average egg laying: AP, 80.45 ± 0.91%) and low (lower egg laying: LP, 70.61 ± 1.16%)] and 2 different dietary groups [control (no additive), 6 × 108 cfu/kg EF]. The results showed that the AP breeders presented a lower egg weight, feed conversion ratio, abdominal fat rate, and serum leptin level (P(laying) ≤ 0.05) as well as a higher egg-laying rate (P(laying) < 0.01) than the LP breeders. Dietary supplementation with EF improved the egg weight (P(EF) = 0.03) and had a higher concentration of follicle-stimulating hormone (FSH) in the serum (P(EF) = 0.04). The relative expression of Caspase 9, Bax, AMHR, BMP15, and GATA4 in the ovary of AP breeders was lower, whereas the FSHR and BMPR1B expression was higher than that measured in LP breeders (P(laying) ≤ 0.05). LP increased the abundance of Bacteroidetes (phylum), Firmicutes (phylum), Bacteroidia (class), Clostridia (class), Bacteroidales (order), Clostridiales (order), and Lachnospiraceae (family), whereas the AP promoted the enrichment of Proteobacteria (phylum) and Gammaproteobacteria (class) (P(laying) < 0.05). The genera Bacillus, Rhodanobacter, and Streptomyces were positively correlated with the egg-laying rate and BMPR1B expression (P < 0.05) but negatively correlated with the abdominal fat rate (P < 0.05) and Caspase 9 (P < 0.05). These findings indicate that the low reproductive performance breeders had lower microbiota diversity and higher Firmicutes, which triggers the energy storage that led to higher fat deposition. Besides, increases in the abdominal fat rate, leptin level, and apoptosis (Caspase 9, Bax) and reproduction-related gene (BMP15, AMHR, BMPR1B, and GATA4) expression would possibly be the potential mechanisms under which breeders have different reproductive performance. Dietary EF increased the egg weight and serum FSH level and decreased the Bacteroidetes (phylum) in low reproductive breeders.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural, University, Nanchang, 330045, P.R. China
| | - Zhao Shuju
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zengqiao Yang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural, University, Nanchang, 330045, P.R. China.
| |
Collapse
|
15
|
Mao X, Ding X, Zeng Q, Bai S, Zhang K, Chen D, Yu B, He J, Yu J, Yan H, Luo J, Luo Y, Wang J. The effect of dietary pectic oligosaccharide supplementation on intestinal health of broiler breeders with different egg-laying rates. Poult Sci 2021; 100:100938. [PMID: 33518299 PMCID: PMC7936170 DOI: 10.1016/j.psj.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
This study was conducted to explore whether dietary pectic oligosaccharide (POS) supplementation could improve gut health of broiler breeders with different egg-laying rates. A 2 × 2 factorial design was used in this study. Two hundred fifty-six Arbor Acres broiler breeders (48 wk of age), including 128 average egg-laying rate and 128 low egg-laying rate (LELR) birds, were randomly fed with the diets supplemented with or without 200 mg kg−1 of POS (n = 8). The trial lasted for 8 wk. Compared with average egg-laying rate broiler breeders, LELR broiler breeders had lower laying rate and qualified egg rate (P < 0.05), higher egg weight and feed conversion ratio (P < 0.05), higher malondialdehyde (MDA) levels in the jejunum (P < 0.05), higher IL-6 (P < 0.05) and tumor necrosis factor α (TNF-α) (P = 0.07) mRNA expressions in the jejunal mucosa, and lower microflora diversity in cecal digesta. Dietary POS supplementation increased egg weight of broiler breeders (P < 0.05), enhanced superoxide dismutase activity in the jejunum (P < 0.05), decreased MDA level in the jejunum (P < 0.05), upregulated zonula occluden 1 mRNA expression in the jejunal mucosa (P < 0.05), downregulated IL-6 and TNF-α mRNA expressions in the jejunal mucosa (P < 0.05), and regulated relative abundance of some microbiota (including the phylum and genus, P < 0.05). In addition, in LELR broiler breeders, POS administration enhanced villus height (P = 0.08) and ZO-2 mRNA expression (P = 0.09) in the jejunal mucosa, alleviated the increasing MDA level in the jejunum (P < 0.05) and IL-6 and TNF-α mRNA expressions in the jejunal mucosa (P < 0.05), and regulated relative abundance of some microbiota (including the phylum and genus, P < 0.05). These results suggest that supplementing POS in diets may elevate gut health via improvement of intestinal barrier function, antioxidant capacity, and microbiota composition in broiler breeders with different egg-laying rates.
Collapse
Affiliation(s)
- Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
16
|
Yang Z, Zhang C, Wang J, Celi P, Ding X, Bai S, Zeng Q, Mao X, Zhuo Y, Xu S, Yan H, Zhang K, Shan Z. Characterization of the Intestinal Microbiota of Broiler Breeders With Different Egg Laying Rate. Front Vet Sci 2020; 7:599337. [PMID: 33330722 PMCID: PMC7732610 DOI: 10.3389/fvets.2020.599337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 11/24/2022] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in maintaining animal health, immunity and reproductive performances. However, literature about the relationship between microbiota and reproductive performance is limited. The aim of the present study was to determine differences in the intestinal microbiota of broiler breeders with different egg laying rate. A total of 200 AA+ parent broiler breeders (41-week-old) were separated into two groups according to their different egg laying rate [average egg laying rate group (AR: 78.57 ± 0.20%) and high egg laying rate group (HR: 90.79 ± 0.43%). Feed conversion ratio (FCR), ovary cell apoptosis rate (ApoCR) and relative abdominal fat weight were lower (p = 0.01), while the hatchability rate of qualified egg was higher (p = 0.04) in HR group than that in AR group. Phascolarctobacterium abundance were lower (p = 0.012) in ileum of HR birds. Romboutsia (genus) in ileum was negatively related to the feed efficiency (r = -0.58, p < 0.05), Firmicutes (phylum) and Lactobacillus (genus) abundances in cecum were positively related to the egg laying rate (ELR) (r = 0.35 and 0.48, p < 0.05), feed efficiency (r = 0.42 and 0.43, p < 0.05), while Spirochaetes (phylum) and Sphaerochaeta (genus) abundances in cecum were negatively related to the ELR (r = -0.43 and -0.70, p < 0.05), feed efficiency (r = 0.54 and 0.48, p < 0.05), and positively related to ApoCR (r = 0.46 and 0.47, p < 0.05). Our results suggested that microbiota, such as Firmicutes (phylum) and Lactobacillus (genus) have positive relationship, while Spirochaetes (phylum) and Romboutsia (genus) abundances exert negative relationship with broiler breeders' reproductive performances.
Collapse
Affiliation(s)
- Zengqiao Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| |
Collapse
|
17
|
Bouassi T, Libanio D, Mesa MD, Oke OE, Gil AH, Tona K, Ameyapoh Y. Supplementation with liquid whey and ACIDAL® ML in drinking water affect gut pH and microflora and productive performance in laying hens. Br Poult Sci 2020; 62:138-146. [PMID: 32972211 DOI: 10.1080/00071668.2020.1824291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. As the use of antibiotics as growth promoters has been banned in many regions, there has been an on-going search for possible alternative compounds, such as prebiotics and organic acids. 2. This study was conducted to investigate the influence of liquid whey (LW) and organic acid (ACIDAL® ML) supplementation on performance, eggs characteristics, gut pH and health status in laying hens. 3. Seven hundred and fifty, Isa Brown chicks were randomly assigned to five treatments groups (n = 150) and each treatment had five replicates of 30 birds each. The birds were reared for 48 weeks. The treatments were administered in the drinking water at doses of: 250 ml/l of LW (Lacto25), 500 ml/l of LW (Lacto50) or 1 ml/l of ACIDAL® ML (Aci). A positive control group (T+) was treated with 500 mg/l of Tetracolivit (an antibiotic). The negative control group (T-) did not receive any treatment in the drinking water. 4. Administration of LW or ACIDAL® ML in the drinking water reduced (P < 0.05) the pH in the crop, proventriculus, ileum and caeca, as well as total coliform bacteria and E. coli, but increased Lactobacillus spp. in the ileum and caecum, compared to the negative control. 5. Oviposition was earlier in the birds in both the Lacto50 and Aci groups. The weight of birds at first lay and point of lay in the four treated groups was higher than those in negative control group. Furthermore, egg production was increased by 10.44% in birds receiving Lacto25, but the weight and quality traits were unaffected, while the egg shell ratio was higher in the Aci group compared to the other treatments. 6. The data indicated that addition of LW or ACIDAL® ML improved hens' performance by modifying gut pH and microflora.
Collapse
Affiliation(s)
- T Bouassi
- Centre d'Excellence Régional Sur Les Sciences Aviaires, University of Lomé , Lomé, Togo
| | - D Libanio
- Centre d'Excellence Régional Sur Les Sciences Aviaires, University of Lomé , Lomé, Togo
| | - M D Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology (Biomedical Research Center, CIBM), University of Granada, Armilla , Granada, Spain
| | - O E Oke
- Centre d'Excellence Régional Sur Les Sciences Aviaires, University of Lomé , Lomé, Togo
| | - A H Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology (Biomedical Research Center, CIBM), University of Granada, Armilla , Granada, Spain
| | - K Tona
- Centre d'Excellence Régional Sur Les Sciences Aviaires, University of Lomé , Lomé, Togo.,Department of Animal and Veterinary Sciences, School of Agriculture, University of Lomé , Lomé, Togo
| | - Y Ameyapoh
- Centre d'Excellence Régional Sur Les Sciences Aviaires, University of Lomé , Lomé, Togo.,Laboratoire De Microbiologie Et De Contrôle De Qualité Des Denrées Alimentaires, Ecole Supérieure Des Techniques Biologiques Et Alimentaires, University of Lomé , Lomé, Togo
| |
Collapse
|