1
|
Zimmerman SJ, Aldridge CL, Schroeder MA, Fike JA, Cornman RS, Oyler-McCance SJ. The potential influence of genome-wide adaptive divergence on conservation translocation outcome in an isolated greater sage-grouse population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14254. [PMID: 38563102 DOI: 10.1111/cobi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Conservation translocations are an important conservation tool commonly employed to augment declining or reestablish extirpated populations. One goal of augmentation is to increase genetic diversity and reduce the risk of inbreeding depression (i.e., genetic rescue). However, introducing individuals from significantly diverged populations risks disrupting coadapted traits and reducing local fitness (i.e., outbreeding depression). Genetic data are increasingly more accessible for wildlife species and can provide unique insight regarding the presence and retention of introduced genetic variation from augmentation as an indicator of effectiveness and adaptive similarity as an indicator of source and recipient population suitability. We used 2 genetic data sets to evaluate augmentation of isolated populations of greater sage-grouse (Centrocercus urophasianus) in the northwestern region of the species range (Washington, USA) and to retrospectively evaluate adaptive divergence among source and recipient populations. We developed 2 statistical models for microsatellite data to evaluate augmentation outcomes. We used one model to predict genetic diversity after augmentation and compared these predictions with observations of genetic change. We used the second model to quantify the amount of observed reproduction attributed to transplants (proof of population integration). We also characterized genome-wide adaptive divergence among source and recipient populations. Observed genetic diversity (HO = 0.65) was higher in the recipient population than predicted had no augmentation occurred (HO = 0.58) but less than what was predicted by our model (HO = 0.75). The amount of shared genetic variation between the 2 geographically isolated resident populations increased, which is evidence of periodic gene flow previously assumed to be rare. Among candidate adaptive genes associated with elevated fixation index (FST) (143 genes) or local environmental variables (97 and 157 genes for each genotype-environment association method, respectively), we found clusters of genes with related functions that may influence the ability of transplants to use local resources and navigate unfamiliar environments and their reproductive potential, all possible reasons for low genetic retention from augmentation.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | | | - Jennifer A Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Robert Scott Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Sara J Oyler-McCance
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Meng J, Ma N, Liu H, Liu J, Liu J, Wang J, He X, Zhao X. Untargeted and targeted metabolomics profiling reveals the underlying pathogenesis and abnormal arachidonic acid metabolism in laying hens with fatty liver hemorrhagic syndrome. Poult Sci 2021; 100:101320. [PMID: 34274572 PMCID: PMC8319003 DOI: 10.1016/j.psj.2021.101320] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has become the major factor responsible for the noninfectious cause of mortality in laying hens, which lead to huge economic losses to poultry industry. However, the pathogenesis of FLHS remains unclear. The aim of present study was to identify novel liver metabolites associated with FLHS. Twenty healthy Chinese commercial Jing Fen laying hens aged 90 d were used in present study. After acclimatization for 2 wk, the hens were divided into 2 treatments (n = 10): control group (normal diet) and FLHS group (high-energy low-protein diet). The experiment lasted for 48 d, and the laying hens were killed for blood and liver sampling at the end of the experiment. Blood biochemical indicators and liver pathological changes were examined. Meanwhile, the changes in liver metabolic profile were investigated with the application of metabolomics approach. Significant increased levels of alanine aminotransferase, aspartate aminotransferase, low density lipoprotein, total cholesterol and triglycerides, decreased high density lipoprotein (P < 0.01), and hepatic steatosis were observed in hens of FLHS group, which suggested FLHS was successfully established in this study. Distinct changes in metabolite patterns in liver between control and FLHS group were observed by partial least-squares discriminant analysis. In total, 42 liver metabolites including tyrosine, glutathione, carnitine, linoleic acid, uric acid, arachidonic acid (ARA), lactate and lysophosphatidylcholine (14: 0) were identified and considered to be related with pathogenesis of FLHS. Pathway analysis revealed that these metabolites were mainly involved in amino acid metabolism, fatty acid metabolism, ARA metabolism, glucose metabolism and glycerophospholipid metabolism. Furthermore, targeted metabolomics found that ARA metabolites such as prostaglandins and hydroxyeicosatetraenoic acids were significantly increased in FLHS group (P < 0.05). In conclusion, our data showed that liver metabolites and ARA metabolism were linked to the pathophysiology of FLHS, which provided a basis for understanding the pathogenesis of FLHS in laying hens.
Collapse
Affiliation(s)
- Jiacheng Meng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China; Hebei Veterinary Biotechnology Innovation Center, Baoding 071001, Hebei, China
| | - Hailong Liu
- Hainan Academy of Agricultural Sciences, Haikou 571100, Hainan, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jianping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
3
|
GC-TOF-MS-Based Metabolomics Analyses of Liver and Intestinal Contents in the Overfed vs. Normally-Fed Geese. Animals (Basel) 2020; 10:ani10122375. [PMID: 33322323 PMCID: PMC7763799 DOI: 10.3390/ani10122375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-alcoholic fatty liver disease has been considered as one of the most important causes of liver disease, and it is a threat to human and animal health worldwide. Interestingly, goose fatty liver can reach 8–10 times the weight of normal liver with no overt pathological symptoms, suggesting that there are some protective mechanisms. Scientists have indicated that gut microbiota participate in the formation of non-alcoholic fatty liver disease in human and mammalian animals. However, it is unclear whether gut microbiota and their metabolites contribute to goose fatty liver. The aim of the present study was to investigate the metabolomic analyses of liver and intestinal contents in overfed vs. normally fed geese. The results showed that the formation of goose fatty liver is accompanied by obvious changes in the metabolic profiles of liver and intestinal contents. The intestinal metabolites can affect the formation of goose fatty liver by affecting the metabolisms of glucose and fatty acid, oxidative stress, and inflammatory reactions. These findings provide a basis for future work addressing the relationship between intestinal metabolites and the development of non-alcoholic fatty liver disease. Abstract No overt pathological symptoms are observed in the goose liver with severe steatosis, suggesting that geese may host unique protective mechanisms. Gas chromatography time-of-flight mass spectrometry-based metabolomics analyses of liver and intestinal contents in overfed vs. normally fed geese (26 geese in each treatment) were investigated. We found that overfeeding significantly changed the metabolic profiles of liver and intestinal contents. The differential metabolites mainly belong to fatty acids, amino acids, organic acids, and amines. The differential metabolites were involved in glycolysis/gluconeogenesis, glycerolipid metabolism, the pentose phosphate pathway, fatty acid degradation, the sphingolipid signaling pathway, and the biosynthesis of unsaturated fatty acids. Moreover, we determined the biological effects of arachidonic acid (ARA) and tetrahydrocorticosterone (TD) in goose primary hepatocytes and intestinal cells. Data showed that the mRNA expression of arachidonate 5-lipoxygenase (ALOX5) in goose primary intestinal cells was significantly induced by 0.50 mM ARA treatment. Cytochrome P-450 27A1 (CYP27A1) mRNA expression was significantly inhibited in goose primary hepatocytes by 1 µM TD treatment. In conclusion, the formation of goose fatty liver is accompanied by significant changes in the metabolic profiles of liver and intestinal contents, and the changes are closely related to the metabolisms of glucose and fatty acids, oxidative stress, and inflammatory reactions.
Collapse
|
4
|
Yan C, Zhao M, Li S, Liu T, Xu C, Liu L, Geng T, Gong D. Increase of E3 ubiquitin ligase NEDD4 expression leads to degradation of its target proteins PTEN/IGF1R during the formation of goose fatty liver. J Anim Sci 2020; 98:5897041. [PMID: 32841331 DOI: 10.1093/jas/skaa270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/22/2020] [Indexed: 11/12/2022] Open
Abstract
Goose fatty liver may have a unique protective mechanism as it does not show a pathological injury even in the case of severe steatosis. Although neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) participates in repair and regeneration of injured liver through its target proteins, its role in nonalcoholic fatty liver disease remains unknown. Using quantitative polymerase chain reaction (PCR) and immunoblot analyses, here, we found that the messenger RNA (mRNA) and protein expressions of NEDD4 were induced in goose fatty liver compared with normal liver. The mRNA expression of the gene of phosphate and tension homology deleted on chromosome ten (PTEN) and insulin-like growth factor 1 receptor (IGF1R) was also induced in goose fatty liver; however, their protein expression was or tended to be suppressed. Moreover, the co-immunoprecipitation analysis indicated that there was a physical association between NEDD4 and PTEN in goose liver, which was consistent with the ubiquitination of PTEN in goose fatty liver. Furthermore, NEDD4 overexpression in goose primary hepatocytes suppressed the PTEN and IGF1R protein levels without a significant effect on their mRNA expression. In conclusion, the increased expression of NEDD4 leads to the degradation of PTEN and IGF1R proteins through ubiquitination in goose fatty liver, suggesting that NEDD4 may protect goose fatty liver from severe steatosis-associated injury via its target proteins during the development of goose fatty liver.
Collapse
Affiliation(s)
- Chunchi Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Shuo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| |
Collapse
|