1
|
Mason AS, Lund AR, Hocking PM, Fulton JE, Burt DW. Identification and characterisation of endogenous Avian Leukosis Virus subgroup E (ALVE) insertions in chicken whole genome sequencing data. Mob DNA 2020; 11:22. [PMID: 32617122 PMCID: PMC7325683 DOI: 10.1186/s13100-020-00216-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Endogenous retroviruses (ERVs) are the remnants of retroviral infections which can elicit prolonged genomic and immunological stress on their host organism. In chickens, endogenous Avian Leukosis Virus subgroup E (ALVE) expression has been associated with reductions in muscle growth rate and egg production, as well as providing the potential for novel recombinant viruses. However, ALVEs can remain in commercial stock due to their incomplete identification and association with desirable traits, such as ALVE21 and slow feathering. The availability of whole genome sequencing (WGS) data facilitates high-throughput identification and characterisation of these retroviral remnants. Results We have developed obsERVer, a new bioinformatic ERV identification pipeline which can identify ALVEs in WGS data without further sequencing. With this pipeline, 20 ALVEs were identified across eight elite layer lines from Hy-Line International, including four novel integrations and characterisation of a fast feathered phenotypic revertant that still contained ALVE21. These bioinformatically detected sites were subsequently validated using new high-throughput KASP assays, which showed that obsERVer was highly precise and exhibited a 0% false discovery rate. A further fifty-seven diverse chicken WGS datasets were analysed for their ALVE content, identifying a total of 322 integration sites, over 80% of which were novel. Like exogenous ALV, ALVEs show site preference for proximity to protein-coding genes, but also exhibit signs of selection against deleterious integrations within genes. Conclusions obsERVer is a highly precise and broadly applicable pipeline for identifying retroviral integrations in WGS data. ALVE identification in commercial layers has aided development of high-throughput diagnostic assays which will aid ALVE management, with the aim to eventually eradicate ALVEs from high performance lines. Analysis of non-commercial chicken datasets with obsERVer has revealed broad ALVE diversity and facilitates the study of the biological effects of these ERVs in wild and domesticated populations.
Collapse
Affiliation(s)
- Andrew S Mason
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK.,York Biomedical Research Institute, The Department of Biology, The University of York, York, YO10 5DD UK
| | - Ashlee R Lund
- Hy-Line International, 2583 240th Street, Dallas Center, Iowa, 50063 USA
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Janet E Fulton
- Hy-Line International, 2583 240th Street, Dallas Center, Iowa, 50063 USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK.,The University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
2
|
Endogenous Avian Leukosis Virus in Combination with Serotype 2 Marek's Disease Virus Significantly Boosted the Incidence of Lymphoid Leukosis-Like Bursal Lymphomas in Susceptible Chickens. J Virol 2019; 93:JVI.00861-19. [PMID: 31554689 PMCID: PMC6854487 DOI: 10.1128/jvi.00861-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023] Open
Abstract
Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation. In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek’s disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes. IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.
Collapse
|
3
|
Bacon LD, Fulton JE, Kulkarni GB. Methods for evaluating and developing commercial chicken strains free of endogenous subgroup E avian leukosis virus. Avian Pathol 2010; 33:233-43. [PMID: 15276994 DOI: 10.1080/0307943042000195731] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of nearly all chickens contains various DNA proviral insertions of retroviruses of subgroup E avian leukosis virus (ALVE). However, the elimination or control of ALVE gene expression is desirable to improve productivity, to improve resistance to avian leukosis virus (ALV)-induced tumours, and to develop safer live virus vaccines in chick embryos and cultured chick cells. Restriction fragment length polymorphism and polymerase chain reaction methods are used to define the presence of ALVE genes; and the expression of ALVE in chicken plasma or on cells, and the susceptibility of cells to ALVE is determined by flow cytometry using a specific (R2) antibody. ADOL line 0 chickens have been selected to be free of ALVE genes, while being resistant (i.e. lack receptors to ALVE), but susceptible to exogenous ALV (i.e. ALVA, ALVB, ALVC and ALVJ). To develop improved line 0-type chickens, ADOL line 0 was outcrossed to a commercial line that had one ALVE gene and evidence for ALVE resistance. Rous sarcoma virus (RSV) challenge was used to confirm resistance of F1 chickens to ALVE, and susceptibility of F2 breeders to ALVA and ALVB using test chicks produced by matings to line 7(2). Selected F2 breeders were resistant to ALVE, but susceptible to exogenous ALVA, ALVB, ALVC and ALVJ, based on challenge tests of progeny chick cells using an enzyme-linked immunosorbent assay. The new line, 0(1), has evidence for improved egg size, productivity, fertility and hatchability. Similar procedures may be used for development of productive ALVE free chicken lines with preferred ALV susceptibility traits.
Collapse
Affiliation(s)
- L D Bacon
- US Department of Agriculture Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| | | | | |
Collapse
|
4
|
Bacon LD. Detection of endogenous avian leukosis virus envelope in chicken plasma using R2 antiserum. Avian Pathol 2010; 29:153-64. [DOI: 10.1080/03079450094180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Bacon LD, Smith EJ, Fadly AM, Crittenden LB. Development of an alloantiserum (R2) that detects susceptibility of chickens to subgroup E endogenous avian leukosis virus. Avian Pathol 2009; 25:551-68. [PMID: 18645878 DOI: 10.1080/03079459608419161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An alloantiserum, termed R2, specifically agglutinates red blood cells (RBC) from line 100B chickens that are susceptible to avian leukosis viruses (ALV) belonging to subgroups B and E, but does not agglutinate RBC from congenic inbred line 7(2) chickens that are resistant to ALV B and E. The R2 antigen was also detected on lymphocytes and thrombocytes. Using chickens from a special cross, it was found that R2 reactivity requires that the chickens must: (1) be susceptible to infection by ALV-E; and (2) express a viral envelope gene with subgroup E specificity. With R2 antiserum, a nearly perfect association was observed between agglutination and susceptibility to ALV-B in F2 chickens containing endogenous viral genes ev2 and/or ev3. These results support earlier evidence that ALV-B and ALV-E share receptors. Moreover, the R2 antiserum was shown to neutralize ALV-E. The R2 antigen showed Mendelian segregation in chickens of a commercial White Leghorn strain-cross containing ev3, ev6 and ev9. However, commercial chickens with or without the R2 antigen did not differ in susceptibility to lymphoid leukosis induction or immune response on infection with ALV of subgroup A for complex reasons we discuss.
Collapse
Affiliation(s)
- L D Bacon
- US Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|
6
|
Zhang H, Bacon LD, Fadly AM. Development of an Endogenous Virus–Free Line of Chickens Susceptible to All Subgroups of Avian Leukosis Virus. Avian Dis 2008; 52:412-8. [DOI: 10.1637/8180-112707-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Pandiri AR, Gimeno IM, Reed WM, Lee LF, Silva RF, Fadly AM. Distribution of viral antigen gp85 and provirus in various tissues from commercial meat-type and experimental White Leghorn Line 0 chickens with different subgroup J avian leukosis virus infection profiles. Avian Pathol 2008; 37:7-13. [PMID: 18202944 DOI: 10.1080/03079450701774843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Immunohistochemistry and polymerase chain reaction (PCR) were used to test for the presence of avian leukosis virus (ALV) J viral antigen gp85 and proviral DNA, respectively, in various tissues (adrenal gland, bone marrow, gonad, heart, kidney, liver, lung, pancreas, proventriculus, sciatic nerve, spleen, and thymus). Tissues were collected from 32-week-old commercial meat-type and Avian Disease and Oncology Laboratory experimental White Leghorn Line 0 chickens with the following different infection profiles: tV + A-, included in ovo-tolerized viraemic chickens with no neutralizing antibodies (NAbs) on any sampling; ntV + A-, included chickens that were viraemic and NAb-negative at the time of termination at 32 weeks post hatch, but had NAbs on up to two occasions; V+ A+, included chickens that were viraemic and NAb-positive at the time of termination at 32 weeks post hatch, and had NAbs on more than two occasions; V - A+, included chickens that were negative for viraemia and NAb-positive at the time of termination at 32 weeks post hatch, and had antibody on more than two occasions; V - A-, included chickens that were never exposed to ALV J virus. There was a direct correlation between viraemia and tissue distribution of gp85, regardless of the NAb status and strain of chickens, as expression of ALV J gp85 was noted in only viraemic chickens (tV + A-, ntV + A-, V+ A+), but not in non-viraemic seroconverted chickens (V - A+). Of the four oligonucleotide primers pairs used in PCR to identify ALV J provirus, only one primer set termed H5/H7 was useful in demonstrating ALV J proviral DNA in the majority of the tissues tested from non-viraemic, antibody-positive chickens (V - A+). The results suggest that PCR using primer pair H5/H7 is more sensitive than immunohistochemistry in identifying ALV J in chickens that have been exposed to virus, but are not actively viraemic.
Collapse
Affiliation(s)
- A R Pandiri
- USDA ARS Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yu Y, Zhang H, Tian F, Bacon L, Zhang Y, Zhang W, Song J. Quantitative evaluation of DNA methylation patterns for ALVE and TVB genes in a neoplastic disease susceptible and resistant chicken model. PLoS One 2008; 3:e1731. [PMID: 18320050 PMCID: PMC2254315 DOI: 10.1371/journal.pone.0001731] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/28/2008] [Indexed: 01/03/2023] Open
Abstract
Chicken endogenous viruses, ALVE (Avian Leukosis Virus subgroup E), are inherited as LTR (long terminal repeat) retrotransposons, which are negatively correlated with disease resistance, and any changes in DNA methylation may contribute to the susceptibility to neoplastic disease. The relationship between ALVE methylation status and neoplastic disease in the chicken is undefined. White Leghorn inbred lines 7(2) and 6(3) at the ADOL have been respectively selected for resistance and susceptibility to tumors that are induced by avian viruses. In this study, the DNA methylation patterns of 3 approximately 6 CpG sites of four conserved regions in ALVE, including one unique region in ALVE1, the promoter region in the TVB (tumor virus receptor of ALV subgroup B, D and E) locus, were analyzed in the two lines using pyrosequencing methods in four tissues, i.e., liver, spleen, blood and hypothalamus. A significant CpG hypermethylation level was seen in line 7(2) in all four tissues, e.g., 91.86 +/- 1.63% for ALVE region2 in blood, whereas the same region was hemimethylated (46.16 +/- 2.56%) in line 6(3). CpG methylation contents of the ALVE regions were significantly lower in line 6(3) than in line 7(2) in all tissues (P < 0.01) except the ALVE region 3/4 in liver. RNA expressions of ALVE regions 2 and 3 (PPT-U3) were significantly higher in line 6(3) than in line 7(2) (P < 0.01). The methylation levels of six recombinant congenic strains (RCSs) closely resembled to the background line 6(3) in ALVE-region 2, which imply the methylation pattern of ALVE-region 2 may be a biomarker in resistant disease breeding. The methylation level of the promoter region in the TVB was significantly different in blood (P < 0.05) and hypothalamus (P < 0.0001), respectively. Our data disclosed a hypermethylation pattern of ALVE that may be relevant for resistance against ALV induced tumors in chickens.
Collapse
Affiliation(s)
- Ying Yu
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Fei Tian
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Larry Bacon
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Yuan Zhang
- College of Animal Sciences, China Agricultural University, Haidian, Beijing, China
| | - Wensheng Zhang
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
9
|
Bacon LD, Hunt HD, Cheng HH. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult Sci 2000; 79:1082-93. [PMID: 10947175 DOI: 10.1093/ps/79.8.1082] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resolution of genes that determine resistance to disease is described using chicken lines maintained at the Avian Disease and Oncology Laboratory (ADOL). This description includes a summary 1) of existing selected and inbred lines differing for resistance to viral-induced tumors, i.e., Marek's disease (MD) and lymphoid leukosis (LL), and of the use of inbred and line crosses to define relevant disease-resistant genes, e.g., TV, ALVE, B, R, LY4, TH1, BU1, and IGG1; 2) of the development of TVB*/ALVE congenic lines to establish the affects of endogenous virus (EV) expression on resistance to avian leukosis virus (ALV), and methods to detect ALVE expression; 3) of the development of B congenic lines to define the influence of the MHC on MD resistance and vaccinal immunity, for producing B antisera, and for evaluating DNA sequences of Class I and II genes; and 4) of the current development of 6C.7 recombinant congenic strains (RCS) to define the role of non-MHC genes influencing susceptibility to MD and LL tumors, immune competence, and epistatic effects of genes. The procedures of pedigree mating, to avoid or maintain inbreeding, and of blood-typing, to ensure genetic purity of the lines, are also described.
Collapse
Affiliation(s)
- L D Bacon
- US Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823, USA.
| | | | | |
Collapse
|
10
|
Fadly AM, Smith EJ. Role of contact and genetic transmission of endogenous virus-21 in the susceptibility of chickens to avian leukosis virus infection and tumors. Poult Sci 1997; 76:968-73. [PMID: 9200232 DOI: 10.1093/ps/76.7.968] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of contact and genetic transmission of endogenous virus-21 (EV21) on response of chickens to avian leukosis virus (ALV) infection and tumors was studied. F1 progeny of a cross between RPRL late-feathering (LF) line EV21+ males and RPRL early feathering (EF) line 15B1 females harboring or lacking EV21 were used. The EF chicks lacking EV21 were inoculated with a field strain of subgroup A ALV at hatch and contact exposed to LF, EV21+ hatchmates for various time intervals. In a second experiment, EV21 contact-exposed and unexposed EF chicks as well as LF, EV21+ hatchmates were inoculated with ALV at various ages. Chickens were tested for ALV-induced viremia and antibody and were observed for tumors until 24 wk of age. Antibody to EV21 in EF chickens contact-exposed to LF, EV21+ hatchmates varied from 10 to 65%, and was detected by 10 wk of age. By 24 wk of age, ALV-induced viremia and tumors in EF chickens varied from 5 to 30%, and from 15 to 32%, respectively, regardless of exposure to EV21. The incidence of ALV-induced tumors was significantly higher in LF chickens genetically infected with EV21 than in EV21 contact-exposed or unexposed EF chickens, but only in chickens inoculated with ALV at hatch. The data suggest that contact infection with EV21 has no influence on ALV infection and tumors. The data also suggest that genetic transmission of EV21 may increase susceptibility of chickens to ALV infection and tumors following infection with ALV at hatch, but not at 4 wk of age or older.
Collapse
Affiliation(s)
- A M Fadly
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823, USA
| | | |
Collapse
|
11
|
Thacker EL, Fulton JE, Hunt HD. In vitro analysis of a primary, major histocompatibility complex (MHC)-restricted, cytotoxic T-lymphocyte response to avian leukosis virus (ALV), using target cells expressing MHC class I cDNA inserted into a recombinant ALV vector. J Virol 1995; 69:6439-44. [PMID: 7666545 PMCID: PMC189544 DOI: 10.1128/jvi.69.10.6439-6444.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interaction between the major histocompatibility complex (MHC) and cytotoxic T lymphocytes (CTLs) is an important component of the host's resistance to viral infections and tumor formation. In this study, an avian leukosis virus (ALV) vector system, RCASBP, expressing MHC chicken class I (B-F) cDNA was used to develop target cells expressing the chicken class I glycoproteins complexed with ALV antigens on the cell surface. Peripheral blood from chickens inoculated with ALV was shown to contain antigen-specific, MHC-restricted, CD8+ effector CTLs, using a 51Cr release assay utilizing the RCASBP B-F target cells. The stimulated effector cells were also predominantly alpha beta T-cell receptor-positive (TCR2) T cells. The CTL response varied between two haplotypes of chickens which differed in their response to Rous sarcoma virus (RSV)-induced tumors. Chickens with the B21 haplotype which regress RSV-induced tumors showed maximal cytolytic activity, while chickens with the B13 haplotype which do not regress RSV-induced tumors had minimal to no cytolytic activity. In addition to assessing the CTL response to ALV, the creation of MHC-specific immortal target cell lines will be extremely useful in evaluating CTL responses to other viral disease in chickens.
Collapse
Affiliation(s)
- E L Thacker
- U.S. Department of Agriculture, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823, USA
| | | | | |
Collapse
|
12
|
Bai J, Payne LN, Skinner MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol 1995; 69:779-84. [PMID: 7815543 PMCID: PMC188642 DOI: 10.1128/jvi.69.2.779-784.1995] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).
Collapse
Affiliation(s)
- J Bai
- Division of Molecular Biology, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | |
Collapse
|
13
|
Pulaski JT, Tieber VL, Coussens PM. Marek's disease virus-mediated enhancement of avian leukosis virus gene expression and virus production. Virology 1992; 186:113-21. [PMID: 1370125 DOI: 10.1016/0042-6822(92)90065-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Direct interaction between two viruses in coinfected cells may promote replication and pathogenesis of one or both virus types. Synergism between herpesviruses and retroviruses is an important factor in diagnosis, treatment, and prevention of animal and human diseases. In birds, Marek's disease virus (MDV) may be an important cofactor in avian leukosis virus induced disease. Infection of susceptible cells with non-oncogenic serotype 2 MDV, an avian herpesvirus, and Rous-associated virus type 2 (RAV-2 ALV), a leukemogenic avian retrovirus, results in enhanced (greater than 3-fold) transcription of retroviral genes, relative to infection with ALV alone. A direct relationship between concentrations of retroviral gene expression and amount of input MDV suggests that MDV-encoded or -induced factors are responsible for enhanced ALV gene expression, ultimately leading to increased accumulation of ALV-specific RNA (greater than 5-fold) and protein (greater than 10-fold). At lower doses of input MDV, ALV virus production increased over 3-fold, relative to cells infected with ALV alone. Interactive laser cytometry was used to detect accumulation of both MDV and ALV antigens within single cells from coinfected cultures. These results suggest a direct role for MDV-encoded or -induced factors in enhancement of ALV gene expression and demonstrate the importance of herpesviruses as cofactors in retrovirus replication and pathogenesis in coinfected cells.
Collapse
Affiliation(s)
- J T Pulaski
- Department of Animal Science, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
14
|
Chebloune Y, Rulka J, Cosset FL, Valsesia S, Ronfort C, Legras C, Drynda A, Kuzmak J, Nigon VM, Verdier G. Immune response and resistance to Rous sarcoma virus challenge of chickens immunized with cell-associated glycoproteins provided with a recombinant avian leukosis virus. J Virol 1991; 65:5374-80. [PMID: 1654445 PMCID: PMC249018 DOI: 10.1128/jvi.65.10.5374-5380.1991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Rous-associated virus 1 env gene, which encodes the envelope gp85 and gp37 glycoproteins, was isolated and inserted in place of the v-erbB oncogene into an avian erythroblastosis virus-based vector, carrying the neo resistance gene substituted for the v-erbA oncogene, to generate the pNEA recombinant vector. A helper-free virus stock of the pNEA vector was produced on an avian transcomplementing cell line and used to infect primary chicken embryo fibroblasts (CEFs) or quail QT6 cells. These infected cells, selected with G418 (CEF/NEA and QT6/NEA, respectively) were found to be resistant to superinfections with subgroup A retroviruses. The CEF/NEA preparations were used as a cell-associated antigen to inoculate adult chickens by the intravenous route compared with direct inoculations of NEA recombinant helper-free virus used as a cell-free antigen. Chickens injected with the cell-associated antigen (CEF/NEA) exhibited an immune response demonstrated by induction of high titers of neutralizing antibodies and were found to be protected against tumor production after Rous sarcoma virus A challenge. Conversely, no immune response and no protection against Rous sarcoma virus A challenge were observed in chickens directly inoculated with cell-free NEA recombinant virus or in sham-inoculated chickens.
Collapse
Affiliation(s)
- Y Chebloune
- Laboratoire de Biologie Cellulaire, Centre National de la Recherche Scientifique UMR106, Université Claude Bernard Lyon-I, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Heidrich JE, Adcock MA, Bolin C, Cheville NF, Smith RE. Effect of Rous associated virus number 7 on lymphoid cells and tissues of the chicken. Vet Immunol Immunopathol 1987; 15:267-83. [PMID: 2820114 DOI: 10.1016/0165-2427(87)90088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infection of chicks or chick embryos with Rous associated virus number 7 (RAV-7) led to a decreased blastogenic response to Concanavalin A (Con A) by lymphocytes isolated from the spleen and thymus. Chicks infected with RAV-7 8 days after hatch manifested decreased Con A blastogenesis 5 weeks postinfection, while chicks infected in ovo at 10 days of incubation showed an unusual pattern of cell density dependent decreased blastogenesis two weeks post-hatch (three weeks post-infection). Histopathological examination of tissues from RAV-7 infected chicks revealed evidence of lymphoid organ involution and widespread lymphoproliferative lesions by 3 weeks of age. The combination of decreased in vitro lymphoid blastogenesis and in vivo lymphoproliferation suggests that RAV-7 interacts with lymphocytes in a fashion that has not previously been described in the chicken.
Collapse
|