1
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
2
|
Li W, Li J, He N, Dai X, Wang Z, Wang Y, Ni X, Zeng D, Zhang D, Zeng Y, Pan K. Molecular mechanism of enhancing the immune effect of the Newcastle disease virus vaccine in broilers fed with Bacillus cereus PAS38. Food Funct 2021; 12:10903-10916. [PMID: 34647113 DOI: 10.1039/d1fo01777b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.
Collapse
Affiliation(s)
- Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Chengdu Agricultural College, Chengdu, 611130, China
| | - Nianjia He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Zhenhua Wang
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Li X, Du H, Liu L, You X, Wu M, Liao Z. MHC class II alpha, beta and MHC class II-associated invariant chains from Chinese sturgeon (Acipenser sinensis) and their response to immune stimulation. FISH & SHELLFISH IMMUNOLOGY 2017; 70:1-12. [PMID: 28866275 DOI: 10.1016/j.fsi.2017.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
The major histocompatibility complex class II (MHC II) molecules play a vital role in adaptive immune response through presenting antigenic peptides to CD4+ T lymphocytes. To accomplish this physiologic function, the MHC class II-associated invariant chain interacts with the MHC II α/β subunits and promotes their correct assembly and efficient traffic. Here, we isolated the cDNAs of MHC II α, β and MHC II-associated invariant chains (designated as CsMHC II α, CsMHC II β, and CsMHC II γ) from Chinese sturgeon (Acipenser sinensis). The CsMHC II α, β, and γ mRNAs were widely expressed in Chinese sturgeon, and the highest expression was found in spleen for CsMHC II α and β chains, while in head kidney for CsMHC II γ chain. Stimulation to Chinese sturgeon with inactivated trivalent bacterial vaccine or polyinosinic polycytidylic acid (poly(I:C)) up-regulated the expressions of CsMHC II α, and β mRNAs, and their transcripts were overall more quickly up-regulated by poly(I:C) than by bacterial vaccine. Poly(I:C) induced higher CsMHC II γ expression than bacterial vaccine in intestine and spleen, while lower than bacterial vaccine in head kidney and liver. When co-expressed in mouse dendritic cells, the CsMHC II γ chain bound to both the MHC II α and β chains. Furthermore, the over-expressed CsMHC II γ chain, not CsMHC II α or CsMHC II β chain, activated NF-κB and STAT3 in mouse dendritic cells, and induced TNF-α and IL-6 expressions as well. This activity was nearly abolished by mutation of the Ser29/Ser34 to Ala29/Ala34 in CsMHC II γ. These results suggested that CsMHC II α, β, and γ chains might play important role in immune response to pathogen microbial infection of Chinese sturgeon possibly via a conserved functional mechanism throughout vertebrate evolution, which might contribute to our understanding the immune biology of sturgeons.
Collapse
Affiliation(s)
- Xiuyu Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang 443100, China
| | - Liu Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiuling You
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Kim S, Cox CM, Jenkins MC, Fetterer RH, Miska KB, Dalloul RA. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:319-326. [PMID: 25086294 DOI: 10.1016/j.dci.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line
- Cells, Cultured
- Chickens/genetics
- Chickens/immunology
- Chickens/parasitology
- Coccidiosis/genetics
- Coccidiosis/immunology
- Coccidiosis/parasitology
- Eimeria/immunology
- Eimeria/metabolism
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/parasitology
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Host-Parasite Interactions
- Immunity, Innate
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/parasitology
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Protein Binding
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chasity M Cox
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ray H Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
5
|
Chen F, Wu C, Pan L, Xu F, Liu X, Yu W. Cross-species association of quail invariant chain with chicken and mouse MHC II molecules. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:20-27. [PMID: 23370168 DOI: 10.1016/j.dci.2013.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 06/01/2023]
Abstract
There are different degrees of similarity among vertebrate invariant chains (Ii). The aim of this study was to determine the relationship between quail and other vertebrate Ii MHC class II molecules. The two quail Ii isoforms (qIi-1, qIi-2) were cloned by RACE, and qRT-PCR analysis of different organs showed that their expression levels were positively correlated with MHC II gene (B-LB) transcription levels. Confocal microscopy indicated that quail full-length Ii co-localized with MHC II of quail, chicken or mouse in 293FT cells co-transfected with both genes. Immunoprecipitation and western blotting further indicated that these aggregates corresponded to polymers of Ii and MHC class II molecules. This cross-species molecular association of quail Ii with chicken and mouse MHC II suggests that Ii molecules have a high structural and functional similarity and may thereby be used as potential immune carriers across species.
Collapse
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Changjiang West Road 130, Hefei 230036, China
| | | | | | | | | | | |
Collapse
|