1
|
Wang YH, Lin J, Wang J, Wu SG, Qiu K, Zhang HJ, Qi GH. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front Physiol 2022; 13:883134. [PMID: 35784883 PMCID: PMC9240787 DOI: 10.3389/fphys.2022.883134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle is the most abundant edible tissue in table poultry, which serves as an important source of high protein for humans. Poultry myofiber originates in the early embryogenic stage, and the overall muscle fiber number is almost determined before hatching. Muscle development in the embryonic stage is critical to the posthatch muscle growth and final meat yield and quality. Incubation conditions including temperature, humidity, oxygen density, ventilation and lighting may substantially affect the number, shape and structure of the muscle fiber, which may produce long-lasting effect on the postnatal muscle growth and meat quality. Suboptimal incubation conditions can induce the onset of myopathies. Early exposure to suitable hatching conditions may modify the muscle histomorphology posthatch and the final muscle mass of the birds by regulating embryonic hormone levels and benefit the muscle cell activity. The elucidation of the muscle development at the embryonic stage would facilitate the modulation of poultry muscle quantity and meat quality. This review starts from the physical and biochemical characteristics of poultry myofiber formation, and brings together recent advances of incubation conditions on satellite cell migration, fiber development and transformation, and subsequent muscle myopathies and other meat quality defects. The underlying molecular and cellular mechanisms for the induced muscle growth and meat quality traits are also discussed. The future studies on the effects of external incubation conditions on the regulation of muscle cell proliferation and meat quality are suggested. This review may broaden our knowledge on the regulation of incubation conditions on poultry muscle development, and provide more informative decisions for hatchery in the selection of hatching parameter for pursuit of more large muscle size and superior meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Research Institute of Feed, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Perry SM, Whitt JG, Reyna KS. The normal stages of development for the California valley quail. PLoS One 2022; 17:e0268524. [PMID: 35580090 PMCID: PMC9113606 DOI: 10.1371/journal.pone.0268524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
One challenge in avian embryology is establishing a standard developmental timetable, primarily because eggs incubated for identical durations can vary in developmental progress, even within the same species. For remedy, avian development is classified into distinct stages based on the formation of key morphological structures. Developmental stages exist for a few galliform species, but the literature is lacking a description of normal stages for California valley quail (Callipepla californica). Thus, the objective of this study was to stage and document the morphological and structural development of California valley quail. Over two laying seasons, 390 eggs were incubated at 37.8֯ C in 60% RH for ≤23 days. Eggs were opened every ≤6 hours to document embryonic development, including, blastoderm diameter, anterior angle of nostril to beak tip, and lengths of wing, tarsus, third toe, total beak, total foot, and embryo. California valley quail embryos were staged and compared to domestic chicken (Gallus gallus domesticus), the staging standard for galliformes, as well as Japanese quail (Coturnix japonica), blue-breasted quail (Synoicus chinensis) and northern bobwhite quail (Colinus virginianus). This study produced the first description of the 43 normal stages of development for California valley quail. Compared with other galliformes, the California valley quail has a different number of stages and displays developmental heterochrony in stages 1-24, and morphological and developmental differences in stages 25-hatch. The observed differences emphasize the importance of staging individual avian species instead of relying on poultry animal models or close relatives for developmental reference. This is extremely important in species-specific embryological studies that evaluate critical windows of development or evaluate the impacts of environmental change on avian development. This study also suggests that staging frequencies of ≤6 hours and egg transport protocols should be standardized for future staging studies.
Collapse
Affiliation(s)
- Shelby M. Perry
- The Quail Research Laboratory, Texas A&M University-Commerce, Commerce, Texas, United States of America
| | - Jeffrey G. Whitt
- The Quail Research Laboratory, Texas A&M University-Commerce, Commerce, Texas, United States of America
| | - Kelly S. Reyna
- The Quail Research Laboratory, Texas A&M University-Commerce, Commerce, Texas, United States of America
| |
Collapse
|
3
|
Bourne AR, Ridley AR, McKechnie AE, Spottiswoode CN, Cunningham SJ. Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor. CONSERVATION PHYSIOLOGY 2021; 9:coab043. [PMID: 34150211 PMCID: PMC8208672 DOI: 10.1093/conphys/coab043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/12/2023]
Abstract
High air temperatures have measurable negative impacts on reproduction in wild animal populations, including during incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers Turdoides bicolor, a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa. The proportion of time that clutches were incubated declined as air temperatures increased, a behavioural pattern traditionally interpreted as a benefit of ambient incubation. However, we show that (i) clutches had a <50% chance of hatching when exposed to daily maximum air temperatures of >35.3°C; (ii) pied babbler groups incubated their nests almost constantly (99% of daylight hours) except on hot days; (iii) operative temperatures in unattended nests frequently exceeded 40.5°C, above which bird embryos are at risk of death; (iv) pied babblers incubating for long periods of time failed to maintain water balance on hot days; and (v) pied babblers from incubating groups lost mass on hot days. These results suggest that pied babblers might leave their nests during hot periods to lower the risk of dehydration associated with prolonged incubation at high operative temperatures. As mean air temperatures increase and extreme heat events become more frequent under climate change, birds will likely incur ever greater thermoregulatory costs of incubation, leading to compromised nest attendance and increased potential for eggs to overheat, with implications for nest success and, ultimately, population persistence.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Corresponding author: FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley 6009, Australia
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0184, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0002, South Africa
| | - Claire N Spottiswoode
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
4
|
Abdel-Kareem Abuoghaba A, Ali F, Ismail II, Saleh M. Impact of acute short-term high thermal stress during early embryogenesis on hatchability, physiological body reaction, and ovarian follicles development of quails. Poult Sci 2020; 100:1213-1220. [PMID: 33518079 PMCID: PMC7858135 DOI: 10.1016/j.psj.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/02/2022] Open
Abstract
This experiment aimed to evaluate the impact of continuous and intermittent thermal stress during early embryogenesis on hatchability, physiological body reaction, ovary weight, and follicle development of quails. A total of 540 eggs were divided into 3 equal groups (3 groups × 6 replicates × 30 eggs). In the first group (control), eggs were incubated at normal incubation conditions (37.5°C and 50–55% relative humidity) from day 0 till hatching. In the second group (continuous thermal stress [CTS]), eggs were daily exposed to 39.5°C and 50 to 55% during the early embryogenesis for 3 successive days (E4–E6) for 3 h (12:00–15:00). In the third group (intermittent thermal stress [ITS]), eggs were daily exposed to 39.5°C and 50 to 55% during the early embryogenesis for 90 min (12:00–13:30) then temperature was returned to 37.5°C for 60 min (13:30–14:30) after that the temperature was raised again for 39.5°C for 90 min (14:30–16:00) daily for 3 successive days (E4–E6). The findings showed that the highest relative water loss form egg (RWL/%) at 6 d of incubation was obtained in the CTS group (P ≤ 0.05). The hatchability rate was significantly (P ≤ 0.05) decreased in the thermal-treated groups compared with the control group. The body surface temperature and cloacal temperature in the CTS and ITS groups significantly (P ≤ 0.001) increased compared with the control group. Chick weight (g) at 5 wk old, total weight gain, daily weight gain were significantly lower (P ≤ 0.05) in the CTS group compared with the control group. Triiodothyronine (T3) hormone concentration and globulin level were significantly (P ≤ 0.05) lower in the CTS and ITS groups compared with the control. The ovarian follicle weights (first, second, third, fourth, and fifth) and the diameter of the large follicle (fifth follicle) were significantly (P ≤ 0.01) decreased by increasing incubation temperature. From these findings, it could be concluded that the hatchability and body weight at sexual maturity for quails produced from eggs exposed to CTS and IST were significantly decreased by 8 and 2.1% as well as 2.98 and 2.1%, respectively, compared with the control group.
Collapse
Affiliation(s)
| | - Fatma Ali
- Physiology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Inas Ibrahim Ismail
- Poultry Breeding Department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Saleh
- Poultry Production Department, Faculty of Agriculture, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Reyna KS. Acute exposure to hyperthermic oscillating temperatures during pre-incubation influences northern bobwhite development, hatching, and survival. PLoS One 2019; 14:e0219368. [PMID: 31291310 PMCID: PMC6619763 DOI: 10.1371/journal.pone.0219368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/23/2019] [Indexed: 12/22/2022] Open
Abstract
Temperature extremes alter development, growth, hatching, and survival of eggs of ground-nesting birds, particularly during pre-incubation (egg laying) when eggs are left unattended and exposed to the environment for days or weeks before parental incubation begins. The northern bobwhite quail is a ground-nesting bird whose eggs experience high temperatures (≥45° C) during pre-incubation. It is known that chronic high temperatures during pre-incubation alter development and reduce hatching and survival of bobwhite eggs, but it is not known if acute doses of high temperatures during pre-incubation have the same effect. In this study, the 12-d pre-incubation period was divided into thirds. Fresh bobwhite eggs were exposed to either a commercial holding temperature for all 12 d (serving as a control), or a high oscillating temperature regimen for 4 d (one third of pre-incubation) either in the early, middle, or late third of pre-incubation, with a low oscillating temperature regimen during the remaining 8 d. The timing of acute exposure to high oscillating temperatures significantly affected bobwhite development. Eggs exposed in the first 2/3 of pre-incubation developed twice as much as eggs exposed late in pre-incubation, even though all eggs received the same amount of heating degree-hours. Thus, a critical window of thermal susceptibility exists for developing northern bobwhites. Acute exposure to high oscillating temperatures resulted in reduced hatchling mass, hatching success, survival, and compromised hatching synchrony. Thus, acute hyperthermic nest temperatures during pre-incubation could result in the observed reductions in the percentage of juveniles in natural populations during hot and droughty years.
Collapse
Affiliation(s)
- Kelly S. Reyna
- College of Agricultural Sciences and Natural Resources, Texas A&M University – Commerce, Commerce, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mortola JP. Behavioral thermoregulation in avian embryos: Spectrum analysis of calls in warm and cold conditions. Behav Processes 2019; 164:30-37. [DOI: 10.1016/j.beproc.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
|
7
|
Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures? Integr Comp Biol 2019; 59:1068-1080. [DOI: 10.1093/icb/icz083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development, and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes.
Collapse
|
8
|
Jarolimek J, Vierling K. Thermal environments within aspen (Populus tremuloides) tree cavities during summer: Implications for breeding and roosting cavity users. J Therm Biol 2019; 81:41-48. [DOI: 10.1016/j.jtherbio.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
|
9
|
Hematology from embryo to adult in the bobwhite quail (Colinus virginianus): Differential effects in the adult of clutch, sex and hypoxic incubation. Comp Biochem Physiol A Mol Integr Physiol 2018; 218:24-34. [DOI: 10.1016/j.cbpa.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/11/2023]
|
10
|
Raynor EJ, Powell LA, Schacht WH. Present and future thermal environments available to Sharp-tailed Grouse in an intact grassland. PLoS One 2018; 13:e0191233. [PMID: 29415080 PMCID: PMC5802491 DOI: 10.1371/journal.pone.0191233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Abstract
Better understanding animal ecology in terms of thermal habitat use has become a focus of ecological studies, in large part due to the predicted temperature increases associated with global climate change. To further our knowledge on how ground-nesting endotherms respond to thermal landscapes, we examined the thermal ecology of Sharp-tailed Grouse (Tympanuchus phasianellus) during the nesting period. We measured site-specific iButton temperatures (TiB) and vegetation characteristics at nest sites, nearby random sites, and landscape sites to assess thermal patterns at scales relevant to nesting birds. We asked if microhabitat vegetation characteristics at nest sites matched the characteristics that directed macrohabitat nest-site selection. Grouse selected sites sheltered by dense vegetation for nesting that moderated TiB on average up to 2.7°C more than available landscape sites. Successful nests were positioned in a way that reduced exposure to thermal extremes by as much as 4°C relative to failed nests with an overall mean daytime difference (±SE) of 0.4 ±0.03°C. We found that macrohabitat nest-site selection was guided by dense vegetation cover and minimal bare ground as also seen at the microhabitat scale. Global climate projections for 2080 suggest that TiB at nest sites may approach temperatures currently avoided on the landscape, emphasizing a need for future conservation plans that acknowledge fine-scale thermal space in climate change scenarios. These data show that features of grassland landscapes can buffer organisms from unfavorable microclimatic conditions and highlight how thermal heterogeneity at the individual-level can drive decisions guiding nest site selection.
Collapse
Affiliation(s)
- Edward J. Raynor
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail:
| | - Larkin A. Powell
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Walter H. Schacht
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| |
Collapse
|
11
|
Reyna KS, Burggren WW. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions. PLoS One 2017; 12:e0184670. [PMID: 28926597 PMCID: PMC5604979 DOI: 10.1371/journal.pone.0184670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
Global warming is likely to alter reproductive success of ground-nesting birds that lay eggs normally left unattended for days or even weeks before actual parental incubation, especially in already warm climates. The native North American bobwhite quail (Colinus virginianus) is such a species, and pre-incubation quail eggs may experience temperatures ≥45°C. Yet, almost nothing is known about embryonic survival after such high pre-incubation temperatures. Freshly laid bobwhite quail eggs were exposed during a 12 day pre-incubation period to one of five thermal regimes: low oscillating temperatures (25–40°C, mean = 28.9°C), high oscillating temperatures (30–45°C, mean = 33.9°C), low constant temperatures (28.85°C), high constant temperatures (mean = 33.9°C), or commercially employed pre-incubation temperatures (20°C). After treatment, eggs were then incubated at a standard 37.5°C to determine subsequent effects on embryonic development rate, survival, water loss, hatching, and embryonic oxygen consumption. Both quantity of heating degree hours during pre-incubation and specific thermal regime (oscillating vs. non-oscillating) profoundly affected important aspects of embryo survival and indices of development and growth Pre-incubation quail eggs showed a remarkable tolerance to constant high temperatures (up to 45°C), surviving for 4.5±0.3 days of subsequent incubation, but high oscillating pre-incubation temperature increased embryo survival (mean survival 12.2±1.8 days) and led to more rapid development than high constant temperature (maximum 38.5°C), even though both groups experienced the same total heating degree-hours. Oxygen consumption was ~200–300 μl O2.egg.min-1 at hatching in all groups, and was not affected by pre-incubation conditions. Oscillating temperatures, which are the norm for pre-incubation quail eggs in their natural habitat, thus enhanced survival at higher temperatures. However, a 5°C increase in pre-incubation temperature, which equates to the predicted long-term increases of 5°C or more, nonetheless reduced hatching rate by approximately 50%. Thus, while pre-incubation bobwhite eggs may be resiliant to moderate oscillating temperature increases, global warming will likely severely impact wild bobwhite quail populations, especially in their strongholds in southern latitudes.
Collapse
Affiliation(s)
- Kelly S. Reyna
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- * E-mail:
| | - Warren W. Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
12
|
Tanner EP, Papeş M, Elmore RD, Fuhlendorf SD, Davis CA. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. PLoS One 2017; 12:e0184316. [PMID: 28886075 PMCID: PMC5590900 DOI: 10.1371/journal.pone.0184316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species’ distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species’ distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel’s quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species’ distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.
Collapse
Affiliation(s)
- Evan P Tanner
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - R Dwayne Elmore
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Samuel D Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Craig A Davis
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
13
|
Tomecek JM, Pierce BL, Reyna KS, Peterson MJ. Inadequate thermal refuge constrains landscape habitability for a grassland bird species. PeerJ 2017; 5:e3709. [PMID: 28828282 PMCID: PMC5564388 DOI: 10.7717/peerj.3709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/28/2017] [Indexed: 11/24/2022] Open
Abstract
Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite (Colinus virginianus; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures) during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations (n = 126) using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE) compared to random locations (36.81 °C ± 0.07 SE); at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE) than random location (32.99 °C ± 0.06 SE). Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE) and ambient height (36.22% ± 0.10 SE) compared to random locations at nest (33.35% ± 0.12 SE) and ambient height (35.75% ± 0.10 SE). Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites and probably other species would experience lethal temperatures without these thermal refuges in the context of proper habitat condition, nesting vegetation is a critical component of niche space for bobwhites and other ground nesting birds in semi-arid regions. Many contemporary land uses, however, degrade or destroy bunch grasses and grassland systems, and thus decrease landscape inhabitability. Conservationists working with obligate grassland species that require bunch grasses in semi-arid regions should develop land management strategies that maximize the availability of these thermal refuges across space and time.
Collapse
Affiliation(s)
- John M Tomecek
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| | - Brian L Pierce
- Texas A&M Natural Resources Institute, Texas A&M University, College Station, TX, USA
| | - Kelly S Reyna
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Markus J Peterson
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
14
|
Ide ST, Ide R, Mortola JP. Aerobic scope in chicken embryos. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:81-87. [PMID: 28774753 DOI: 10.1016/j.cbpa.2017.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022]
Abstract
We investigated the aerobic scope of chicken embryos, that is, the margin of increase of oxygen consumption ( [Formula: see text] ) above its normal value. [Formula: see text] was measured by an open-flow methodology at embryonic ages E3, E7, E11, E15, E19 and at E20 at the internal (IP) and external pipping (EP) phases, at the normal incubation temperature (Ta=38°C), in hypothermia (Ta=30°C) and in hyperthermia (Ta=41 and 44°C). In the cold, Q10 averaged ~2 at all ages, except in IP and EP when lower values (~1.5) indicated some degree of thermogenesis. In hyperthermia (38-44°C) Q10 was between 1 and 1.4. Hyperthermia had no significant effects on [Formula: see text] whether the results combined all ages or considered individual age groups, except in IP (in which [Formula: see text] increased 8% with 44°C) and EP embryos (+13%). After opening the air cell, which exposed the embryo to a higher O2 pressure, hyperthermic [Formula: see text] was significantly higher than in normothermia in E19 (+13%), IP (+22%) and EP embryos (+22%). We conclude that in chicken embryos throughout most of incubation neither heat nor oxygen availability limits the normal (normoxic-normothermic) values of [Formula: see text] . Only close to hatching O2-diffusion represents a limiting factor to the embryo's [Formula: see text] . Hence, embryos differ from postnatal animals for a nearly absent aerobic scope, presumably because their major sources of energy expenditure (growth and tissue maintenance) are constantly maximized.
Collapse
Affiliation(s)
- Satoko T Ide
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, room 1121, Montreal, Quebec H3G 1Y6, Canada
| | - Ryoji Ide
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, room 1121, Montreal, Quebec H3G 1Y6, Canada
| | - Jacopo P Mortola
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, room 1121, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
15
|
Branum SR, Tazawa H, Burggren WW. Phenotypic developmental plasticity induced by preincubation egg storage in chicken embryos (Gallus gallus domesticus). Physiol Rep 2016; 4:4/4/e12712. [PMID: 26908714 PMCID: PMC4816897 DOI: 10.14814/phy2.12712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The developing chicken blastoderm can be temporarily maintained in dormancy below physiological zero temperature. However, prolonged preincubation egg storage impairs normal morphological and physiological development of embryos in a potential example of fetal programming (in this case, “embryonic programming”). We investigated how preincubation egg storage conditions (temperature, duration, hypoxia, and hypercapnia) affects viability, body mass, and physiological variables and functions in day 15 chicken embryos. Embryo viability was impaired in eggs stored for 2 and 3 weeks, with the effects greater at 22°C compared to 15°C. However, embryo size was reduced in eggs stored at 15°C compared with 22°C. Phenotypic change resulting from embryonic programming was evident in the fact that preincubation storage at 15°C diminished hematocrit (Hct), red blood cell concentration ([RBC]), and hemoglobin concentration ([Hb]). Storage duration at 15°C more severely affected the time course (2, 6, and 24 h) responses of Hct, [RBC], and [Hb] to progressive hypoxia and hypercapnia induced by submersion compared with storage duration at 22°C. The time‐specific regulation of acid–base balance was changed progressively with storage duration at both 22 and 15°C preincubation storages. Consequently, preincubation egg storage at 22°C resulted in poor viability compared with eggs stored at 15°C, but size and physiological functions of embryos in eggs stored for 1–2 weeks were worse in eggs stored in the cooler than stored under room conditions. Avian eggs thus prove to be useful for examining developmental consequences to physiology of altered preincubation thermal environment in very early stages of development (embryonic programming).
Collapse
Affiliation(s)
- Sylvia R Branum
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Hiroshi Tazawa
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
16
|
Abstract
The vibrant colors of many birds' eggs, particularly those that are blue to blue-green, are extraordinary in that they are striking traits present in hundreds of species that have nevertheless eluded evolutionary functional explanation. We propose that egg pigmentation mediates a trade-off between two routes by which solar radiation can harm bird embryos: transmittance through the eggshell and overheating through absorbance. We quantitatively test four components of this hypothesis on variably colored eggs of the village weaverbird (Ploceus cucullatus) in a controlled light environment: (1) damaging ultraviolet radiation can transmit through bird eggshells, (2) infrared radiation at natural intensities can heat the interior of eggs, (3) more intense egg coloration decreases light transmittance ("pigment as parasol"), and (4) more intense egg coloration increases absorbance of light by the eggshell and heats the egg interior ("dark car effect"). Results support all of these predictions. Thus, in sunlit nesting environments, less pigmentation will increase the detrimental effect of transmittance, but more pigmentation will increase the detrimental effect of absorbance. The optimal pigmentation level for a bird egg in a given light environment, all other things being equal, will depend on the balance between light transmittance and absorbance in relation to embryo fitness.
Collapse
|
17
|
Halley YA, Oldeschulte DL, Bhattarai EK, Hill J, Metz RP, Johnson CD, Presley SM, Ruzicka RE, Rollins D, Peterson MJ, Murphy WJ, Seabury CM. Northern Bobwhite (Colinus virginianus) Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy. PLoS One 2015; 10:e0144913. [PMID: 26713762 PMCID: PMC4699210 DOI: 10.1371/journal.pone.0144913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences) versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA). Median joining (MJ) haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete) mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop) versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs) distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05), thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants) almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT), frequency distribution tests (D, FS) and phylogenetic analyses (RAxML) provide no evidence for positive selection or hybridization with the sympatric scaled quail (Callipepla squamata) as being explanatory factors for the two bobwhite maternal lineages observed. Instead, our analyses support the supposition that two diverged maternal lineages have survived from pre-expansion to post-expansion population(s), with the segregation of some slightly deleterious nonsynonymous mutations.
Collapse
Affiliation(s)
- Yvette A. Halley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - David L. Oldeschulte
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Eric K. Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Joshua Hill
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Richard P. Metz
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Charles D. Johnson
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Steven M. Presley
- Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Rebekah E. Ruzicka
- Texas A&M AgriLife Extension Service, Dallas, Texas, United States of America
| | - Dale Rollins
- Rolling Plains Quail Research Ranch, 1262 U.S. Highway 180 W., Rotan, Texas, United States of America
| | - Markus J. Peterson
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Williford D, Deyoung RW, Honeycutt RL, Brennan LA, Hernández F. Phylogeography of the bobwhite (Colinus) quails. WILDLIFE MONOGRAPHS 2015. [DOI: 10.1002/wmon.1017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Damon Williford
- Caesar Kleberg Wildlife Research Institute; Texas A&M University-Kingsville; 700 University Boulevard MSC 218; Kingsville TX 78363 USA
| | - Randy W. Deyoung
- Caesar Kleberg Wildlife Research Institute; Texas A&M University-Kingsville; 700 University Boulevard MSC 218; Kingsville TX 78363 USA
| | - Rodney L. Honeycutt
- Natural Science Division; Pepperdine University, 24255 Pacific Coast Highway; Malibu CA 90263 USA
| | - Leonard A. Brennan
- Caesar Kleberg Wildlife Research Institute; Texas A&M University-Kingsville; 700 University Boulevard MSC 218; Kingsville TX 78363 USA
| | - Fidel Hernández
- Caesar Kleberg Wildlife Research Institute; Texas A&M University-Kingsville; 700 University Boulevard MSC 218; Kingsville TX 78363 USA
| |
Collapse
|
19
|
Carroll JM, Davis CA, Elmore RD, Fuhlendorf SD. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds. PLoS One 2015; 10:e0143676. [PMID: 26618845 PMCID: PMC4664423 DOI: 10.1371/journal.pone.0143676] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 12/23/2022] Open
Abstract
The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.
Collapse
Affiliation(s)
- J. Matthew Carroll
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, Oklahoma, United States of America
- * E-mail:
| | - Craig A. Davis
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, Oklahoma, United States of America
| | - R. Dwayne Elmore
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, Oklahoma, United States of America
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, Oklahoma, United States of America
| |
Collapse
|
20
|
Halley YA, Dowd SE, Decker JE, Seabury PM, Bhattarai E, Johnson CD, Rollins D, Tizard IR, Brightsmith DJ, Peterson MJ, Taylor JF, Seabury CM. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene. PLoS One 2014; 9:e90240. [PMID: 24621616 PMCID: PMC3951200 DOI: 10.1371/journal.pone.0090240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/27/2014] [Indexed: 11/20/2022] Open
Abstract
Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within <40,000 final scaffolds (N50 = 45.4 Kb) despite evidence for approximately 3.22 heterozygous polymorphisms per Kb, and three annotation analyses produced evidence for >14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.
Collapse
Affiliation(s)
- Yvette A. Halley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Scot E. Dowd
- Molecular Research LP, Shallowater, Texas, United States of America
| | - Jared E. Decker
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Paul M. Seabury
- ElanTech Inc., Greenbelt, Maryland, United States of America
| | - Eric Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Charles D. Johnson
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Dale Rollins
- Rolling Plains Quail Research Ranch, Rotan, Texas, United States of America
| | - Ian R. Tizard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Donald J. Brightsmith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Markus J. Peterson
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|