1
|
van Dijk MAM, Buil JB, Tehupeiory-Kooreman M, Broekhuizen MJ, Broens EM, Wagenaar JA, Verweij PE. Azole Resistance in Veterinary Clinical Aspergillus fumigatus Isolates in the Netherlands. Mycopathologia 2024; 189:50. [PMID: 38864903 PMCID: PMC11169034 DOI: 10.1007/s11046-024-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that causes opportunistic infections in animals and humans. Azole resistance has been reported globally in human A. fumigatus isolates, but the prevalence of resistance in isolates from animals is largely unknown. A retrospective resistance surveillance study was performed using a collection of clinical A. fumigatus isolates from various animal species collected between 2015 and 2020. Agar-based azole resistance screening of all isolates was followed by in vitro antifungal susceptibility testing and cyp51A gene sequencing of the azole-resistant isolates. Over the 5 year period 16 (11.3%) of 142 A. fumigatus culture-positive animals harbored an azole-resistant isolate. Resistant isolates were found in birds (15%; 2/13), cats (21%; 6/28), dogs (8%; 6/75) and free-ranging harbor porpoise (33%; 2/6). Azole-resistance was cyp51A mediated in all isolates: 81.3% (T-67G/)TR34/L98H, 12.5% TR46/Y121F/T289A. In one azole-resistant A. fumigatus isolate a combination of C(-70)T/F46Y/C(intron7)T/C(intron66)T/M172V/E427K single-nucleotide polymorphisms in the cyp51A gene was found. Of the animals with an azole-resistant isolate and known azole exposure status 71.4% (10/14) were azole naive. Azole resistance in A. fumigatus isolates from animals in the Netherlands is present and predominantly cyp51A TR-mediated, supporting an environmental route of resistance selection. Our data supports the need to include veterinary isolates in resistance surveillance programs. Veterinarians should consider azole resistance as a reason for therapy failure when treating aspergillosis and consider resistance testing of relevant isolates.
Collapse
Affiliation(s)
- Marloes A M van Dijk
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands.
| | - Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Marian J Broekhuizen
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Els M Broens
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
3
|
Cateau E, Leclerc A, Cartier N, Valsechi I, Bailly É, Senechal RL, Becerra M, Gallou BL, Lavergne RA, Chesnay A, Robin JP, Cray C, Goddard N, Thorel M, Guillot J, Mulot B, Desoubeaux G. pAspergillosis in a colony of Humboldt penguins (Spheniscus humboldti) under managed care: a clinical and environmental investigation in a French zoological park. Med Mycol 2022; 60:6609783. [PMID: 35713494 DOI: 10.1093/mmy/myac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillosis is pervasive in bird populations, especially those under human care. Its management can be critically impacted by exposure to high levels of conidia and by resistance to azole drugs. The fungal contamination in the environment of a Humboldt penguin (Spheniscus humboldti) group, housed in a French zoological park next to numerous large crop fields, was assessed through three serial sessions of surface sampling in nests, in 2018-20: all isolates were counted and characterized by sequencing. When identified as A. fumigatus, they were systematically screened for resistance mutations in the cyp51A gene and tested for MICs determination. In the same time, the clinical incidence of aspergillosis was evaluated in the penguin population by the means of systematic necropsy and mycological investigations. A microsatellite-based analysis tracked the circulation of A. fumigatus strains. Environmental investigations highlighted substantial increase of the fungal load during the summer season (>12-fold vs. the other timepoints) and large overrepresentation of species belonging to the Aspergillus section Fumigati, ranging from 22.7 to 94.6% relative prevalence. Only one cryptic species was detected (A. nishimurae), and one isolate exhibited G138S resistance mutation with elevated MICs. The overall incidence of aspergillosis was measured at ∼3.4% case-years, and mostly in juveniles. The analysis of microsatellite polymorphism revealed a high level of genetic diversity among A. fumigatus clinical isolates. In contrast, one environmental strain appeared largely overrepresented during the summer sampling session. In all, the rural location of the zoo did not influence the emergence of resistant strains.
Collapse
Affiliation(s)
- Estelle Cateau
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Parasitologie - Mycologie, Hôpital de la Milétrie, 86021 CHU Poitiers, France
| | - Antoine Leclerc
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Noémie Cartier
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Isabel Valsechi
- Dynamyc - Université Paris-Est Créteil-Val de Marne (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), USC Anses, 94000 Créteil, France
| | - Éric Bailly
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Ronan Le Senechal
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Margaux Becerra
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Brice Le Gallou
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France
| | - Rose-Anne Lavergne
- Parasitologie - Mycologie, Hôtel Dieu, 44093 CHU Nantes, France.,Institute de Recherche en Santé 2, EA1155-IICiMed, 44200 Université de Nantes Atlantique, France
| | - Adélaïde Chesnay
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Centre d'Etude des Pathologies Respiratoires - Inserm U100, Faculté de médecine, 37032 Université de Tours, France
| | - Jean-Patrice Robin
- Institut pluridisciplinaire Hubert Curien, CNRS - UMR 7178, 67037 Université de Strasbourg, France
| | - Carolyn Cray
- Miami University, Comparative pathology, Miller school of medicien, 33136 Miami - Florida, U.S.A
| | - Nicolas Goddard
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Milan Thorel
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Jacques Guillot
- Dynamyc - Université Paris-Est Créteil-Val de Marne (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), USC Anses, 94000 Créteil, France.,Oniris, Ecole nationale vétérinaire de Nantes, 44307 Nantes, France
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, 41110 Saint-Aignan-sur-Cher, France
| | - Guillaume Desoubeaux
- Parasitologie - Mycologie - Médecine tropicale, Hôpital Bretonneau, 37044 CHRU Tours, France.,Centre d'Etude des Pathologies Respiratoires - Inserm U100, Faculté de médecine, 37032 Université de Tours, France
| |
Collapse
|
4
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Barber AE, Scheufen S, Walther G, Kurzai O, Schmidt V. Low rate of azole resistance in cases of avian aspergillosis in Germany. Med Mycol 2021; 58:1187-1190. [PMID: 32497229 DOI: 10.1093/mmy/myaa045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Aspergillosis is the most common fungal disease of the avian respiratory tract. Due to delayed diagnosis and treatment failure, the outcome of these infections is often poor. We investigate 159 cases of avian aspergillosis among captive birds in Germany to define clinical features as well as the frequency of in vitro triazole resistance. Adult birds were more likely to present with clinical signs compared to juvenile birds, and dyspnoea was the most common clinical sign, present in 53% of birds. Molecular species identification indicated that all infections were caused by Aspergillus fumigatus. Only one of 159 independent isolates was azole resistant.
Collapse
Affiliation(s)
- Amelia E Barber
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Sandra Scheufen
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.,National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, University of Leipzig, Germany
| |
Collapse
|
6
|
Potency of olorofim (F901318) compared to contemporary antifungal agents against clinical Aspergillus fumigatus isolates, and review of azole resistance phenotype and genotype epidemiology in China. Antimicrob Agents Chemother 2021; 65:AAC.02546-20. [PMID: 33685896 PMCID: PMC8092882 DOI: 10.1128/aac.02546-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triazole resistance in A. fumigatus is an increasing worldwide problem that causes major challenges in the management of aspergillosis. New antifungal drugs are needed with novel targets, that are effective in triazole-resistant infection. In this study, we retrospectively evaluated potency of the novel drug olorofim compared to contemporary antifungal agents against 111 clinical A. fumigatus isolates collected from Huashan Hospital, Shanghai, China, using EUCAST methodology, and reviewed the literature on triazole resistant A. fumigatus published between 1966 and 2020 in China. Olorofim was active in vitro against all tested A. fumigatus isolates with MIC90 of 0.031mg/L (range 0.008-0.062 mg/L). For 4 triazole-resistant A. fumigatus (TRAF) isolates, the olorofim MIC ranged between 0.016-0.062mg/L. The reported rates of TRAF in China is 2.5% - 5.56% for clinical isolates, and 0-1.4% for environmental isolates.TR34/L98H/S297T/F495I is the predominant resistance mechanism, followed by TR34/L98H. Non TR-mediated TRAF isolates, mostly harboring a cyp51A single point mutation, showed greater genetic diversity than TR-mediated resistant isolates. Resistance due toTR34/L98H and TR34/L98H/S297T/F495I mutations among TRAF isolates might have evolved from separate local isolates in China. Continuous isolation of TRAF in China underscores the need for systematic resistance surveillance as well as the need for novel drug targets such as olorofim.
Collapse
|
7
|
Cao D, Wang F, Yu S, Dong S, Wu R, Cui N, Ren J, Xu T, Wang S, Wang M, Fang H, Yu Y. Prevalence of Azole-Resistant Aspergillus fumigatus is Highly Associated with Azole Fungicide Residues in the Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3041-3049. [PMID: 33544588 DOI: 10.1021/acs.est.0c03958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Triazole resistance in Aspergillus fumigatus is a growing public health concern. In addition to its emergence in the therapy of invasive aspergillosis by triazole medicines, it has been frequently detected in agricultural fields all over the world. Here, we explore the potential link between residues of azole fungicides with similar chemical structure to triazole medicines in soil and the emergence of resistant A. fumigatus (RAF) through 855 500 km2 monitoring survey in Eastern China covering 6 provinces. In total, 67.3%, 15.2%, 12.3%, 2.9%, 1.5%, 0.4%, and 0.3% of the soil samples contained these five fungicides (tebuconazole, difenoconazole, propiconazole, hexaconazole, and prochloraz) of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. The fractions of samples containing RAF isolates were 2.4%, 5.2%, 6.4%, 7.7%, 7.4%, 14.3%, and 20.0% of the samples with total azole fungicide residues of 0-100, 100-200, 200-400, 400-600, 600-800, 800-1000, and >1000 ng/g, respectively. We find that the prevalence of RAFs is positively (P < 0.0001) correlated with residual levels of azole fungicides in soils. Our results suggest that the use of azole fungicides in agriculture should be minimized and the intervals between treatments expanded to reduce the selective pressure toward the development of resistance in A. fumigatus in agricultural fields.
Collapse
|
8
|
Aspergillosis, Avian Species and the One Health Perspective: The Possible Importance of Birds in Azole Resistance. Microorganisms 2020; 8:microorganisms8122037. [PMID: 33352774 PMCID: PMC7767009 DOI: 10.3390/microorganisms8122037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
The One Health context considers health based on three pillars: humans, animals, and environment. This approach is a strong ally in the surveillance of infectious diseases and in the development of prevention strategies. Aspergillus spp. are fungi that fit substantially in this context, in view of their ubiquity, as well as their importance as plant pathogens, and potentially fatal pathogens for, particularly, humans and avian species. In addition, the emergence of azole resistance, mainly in Aspergillus fumigatus sensu stricto, and the proven role of fungicides widely used on crops, reinforces the need for a multidisciplinary approach to this problem. Avian species are involved in short and long distance travel between different types of landscapes, such as agricultural fields, natural environments and urban environments. Thus, birds can play an important role in the dispersion of Aspergillus, and of special concern, azole-resistant strains. In addition, some bird species are particularly susceptible to aspergillosis. Therefore, avian aspergillosis could be considered as an environmental health indicator. In this review, aspergillosis in humans and birds will be discussed, with focus on the presence of Aspergillus in the environment. We will relate these issues with the emergence of azole resistance on Aspergillus. These topics will be therefore considered and reviewed from the “One Health” perspective.
Collapse
|
9
|
Aspergillosis, poultry farming and antifungal resistance. Rev Iberoam Micol 2020; 38:109-110. [PMID: 32505522 DOI: 10.1016/j.riam.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 11/23/2022] Open
|
10
|
Insight into the Significance of Aspergillus fumigatus cyp51A Polymorphisms. Antimicrob Agents Chemother 2018; 62:AAC.00241-18. [PMID: 29632011 DOI: 10.1128/aac.00241-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
Triazole antifungal compounds are the first treatment choice for invasive aspergillosis. However, in the last decade the rate of azole resistance among Aspergillus fumigatus strains has increased notoriously. The main resistance mechanisms are well defined and mostly related to point mutations of the azole target, 14-α sterol demethylase (cyp51A), with or without tandem repeat integrations in the cyp51A promoter. Furthermore, different combinations of five Cyp51A mutations (F46Y, M172V, N248T, D255E, and E427K) have been reported worldwide in about 10% of all A. fumigatus isolates tested. The azole susceptibility profile of these strains shows elevated azole MICs, although on the basis of the azole susceptibility breakpoints, these strains are not considered azole resistant. The purpose of the study was to determine whether these cyp51A polymorphisms (single nucleotide polymorphisms [SNPs]) are responsible for the azole susceptibility profile and whether they are reflected in a poorer azole treatment response in vivo that could compromise patient treatment and outcome. A mutant with a cyp51A deletion was generated and became fully susceptible to all azoles tested. Also, three cyp51A gene constructions with different combinations of SNPs were generated and reintroduced into an azole-susceptible wild-type (WT) strain (the ΔakuBKU80 strain). The alternative model host Galleria mellonella was used to compare the virulence and voriconazole response of G. mellonella larvae infected with A. fumigatus strains with WT cyp51A or cyp51A with SNPs. All strains were pathogenic in G. mellonella larvae, although they did not respond similarly to voriconazole therapeutic doses. Finally, the full genomes of these strains were sequenced and analyzed in comparison with those of A. fumigatus WT strains, revealing that they belong to different strain clusters or lineages.
Collapse
|
11
|
Tangwattanachuleeporn M, Minarin N, Saichan S, Sermsri P, Mitkornburee R, Groß U, Chindamporn A, Bader O. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med Mycol 2018; 55:429-435. [PMID: 27664994 DOI: 10.1093/mmy/myw090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/07/2016] [Indexed: 12/18/2022] Open
Abstract
Occurrence of azole-resistant Aspergillus fumigatus (ARAF) in the environment is an emerging problem worldwide, likely impacting on patient treatment. Several resistance mutations are thought to have initially arisen through triazole-based fungicide use in agriculture and subsequently being propagated in a similar manner. Here we investigated the prevalence of ARAF in the environment of Thailand and characterized their susceptibility profiles toward clinically used azole compounds along with underlying resistance mutations. Three hundred and eight soil samples were collected and analyzed, out of which 3.25% (n = 10) were positive for ARAF. All isolates obtained were resistant to itraconazole (MIC ≥ 8 μg/ml), two showed additional increased MIC values toward posaconazole (MIC = 0.5 μg/ml), and one other toward voriconazole (MIC = 2 μg/ml). Sequencing of the respective cyp51A genes revealed that eight of the isolates carried the TR34/L98H allele and those two with elevated MIC values to posaconazole the G54R substitution. Although a clear correlation between the use of triazole-based fungicides and isolation of ARAF strains from agricultural lands could not be established for Thailand, but this study clearly demonstrates the spread of globally observed ARAF strains to the environment of South East Asia.
Collapse
Affiliation(s)
| | - Nanthakan Minarin
- Medical Technology Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Saranya Saichan
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Pornsuda Sermsri
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Ruthairat Mitkornburee
- Biomedical Sciences Unit, Faculty of Allied Health Sciences, Burapha University, Chon Buri, Thailand
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Ariya Chindamporn
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Epidemiology and Molecular Characterizations of Azole Resistance in Clinical and Environmental Aspergillus fumigatus Isolates from China. Antimicrob Agents Chemother 2016; 60:5878-84. [PMID: 27431231 DOI: 10.1128/aac.01005-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
Azole resistance in Aspergillus fumigatus has emerged as a worldwide public health problem. We sought here to demonstrate the occurrence and characteristics of azole resistance in A. fumigatus from different parts of China. A total of 317 clinical and 144 environmental A. fumigatus isolates from 12 provinces were collected and subjected to screening for azole resistance. Antifungal susceptibility, cyp51A gene sequencing, and genotyping were carried out for all suspected azole-resistant isolates and a subset of azole-susceptible isolates. As a result, 8 (2.5%) clinical and 2 (1.4%) environmental A. fumigatus isolates were identified as azole resistant. Five azole-resistant strains exhibit the TR34/L98H mutation, whereas four carry the TR34/L98H/S297T/F495I mutation in the cyp51A gene. Genetic typing and phylogenetic analysis showed that there was a worldwide clonal expansion of the TR34/L98H isolates, while the TR34/L98H/S297T/F495I isolates from China harbored a distinct genetic background with resistant isolates from other countries. High polymorphisms existed in the cyp51A gene that produced amino acid changes among azole-susceptible A. fumigatus isolates, with N248K being the most common mutation. These data suggest that the wide distribution of azole-resistant A. fumigatus might be attributed to the environmental resistance mechanisms in China.
Collapse
|
13
|
Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers WJG, Verweij PE. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol 2015; 53:765-97. [PMID: 26316211 DOI: 10.1093/mmy/myv067] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
The importance of aspergillosis in humans and various animal species has increased over the last decades. Aspergillus species are found worldwide in humans and in almost all domestic animals and birds as well as in many wild species, causing a wide range of diseases from localized infections to fatal disseminated diseases, as well as allergic responses to inhaled conidia. Some prevalent forms of animal aspergillosis are invasive fatal infections in sea fan corals, stonebrood mummification in honey bees, pulmonary and air sac infection in birds, mycotic abortion and mammary gland infections in cattle, guttural pouch mycoses in horses, sinonasal infections in dogs and cats, and invasive pulmonary and cerebral infections in marine mammals and nonhuman primates. This article represents a comprehensive overview of the most common infections reported by Aspergillus species and the corresponding diseases in various types of animals.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jacques Guillot
- Department of Parasitology-Mycology, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pascal Arné
- Department of Animal Production, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands, Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, and King Abdullaziz University, Jeddah, Saudi Arabia
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front Microbiol 2015; 6:428. [PMID: 26005442 PMCID: PMC4424976 DOI: 10.3389/fmicb.2015.00428] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Aspergillus fumigatus causes varied clinical syndromes ranging from colonization to deep infections. The mainstay of therapy of Aspergillus diseases is triazoles but several studies globally highlighted variable prevalence of triazole resistance, which hampers the management of aspergillosis. We studied the prevalence of resistance in clinical A. fumigatus isolates during 4 years in a referral Chest Hospital in Delhi, India and reviewed the scenario in Asia and the Middle East. Aspergillus species (n = 2117) were screened with selective plates for azole resistance. The isolates included 45.4% A. flavus, followed by 32.4% A. fumigatus, 15.6% Aspergillus species and 6.6% A. terreus. Azole resistance was found in only 12 (1.7%) A. fumigatus isolates. These triazole resistant A. fumigatus (TRAF) isolates were subjected to (a) calmodulin and β tubulin gene sequencing (b) in vitro antifungal susceptibility testing against triazoles using CLSI M38-A2 (c) sequencing of cyp51A gene and real-time PCR assay for detection of mutations and (d) microsatellite typing of the resistant isolates. TRAF harbored TR34/L98H mutation in 10 (83.3%) isolates with a pan-azole resistant phenotype. Among the remaining two TRAF isolates, one had G54E and the other had three non-synonymous point mutations. The majority of patients were diagnosed as invasive aspergillosis followed by allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. The Indian TR34/L98H isolates had a unique genotype and were distinct from the Chinese, Middle East, and European TR34/L98H strains. This resistance mechanism has been linked to the use of fungicide azoles in agricultural practices in Europe as it has been mainly reported from azole naïve patients. Reports published from Asia demonstrate the same environmental resistance mechanism in A. fumigatus isolates from two highly populated countries in Asia, i.e., China and India and also from the neighboring Middle East.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Shallu Kathuria
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital Nijmegen, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital Nijmegen, Netherlands ; Department of Medical Microbiology, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
15
|
The molecular mechanism of azole resistance in Aspergillus fumigatus: from bedside to bench and back. J Microbiol 2015; 53:91-9. [PMID: 25626363 DOI: 10.1007/s12275-015-5014-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The growing use of immunosuppressive therapies has resulted in a dramatic increased incidence of invasive fungal infections (IFIs) caused by Aspergillus fumigatus, a common pathogen, and is also associated with a high mortality rate. Azoles are the primary guideline-recommended therapy agents for first-line treatment and prevention of IFIs. However, increased azole usage in medicinal and agricultural settings has caused azole-resistant isolates to repeatedly emerge in the environment, resulting in a significant threat to human health. In this review, we present and summarize current research on the resistance mechanisms of azoles in A. fumigatus as well as efficient susceptibility testing methods. Moreover, we analyze and discuss the putative clinical (bedside) indication of these findings from bench work.
Collapse
|