1
|
Song P, Chen X, Zhao J, Li Q, Li X, Wang Y, Wang B, Zhao J. Vitamin A injection at birth improves muscle growth in lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:204-212. [PMID: 37484991 PMCID: PMC10362083 DOI: 10.1016/j.aninu.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Vitamin A and its metabolite, retinoic acid (RA) play important roles in regulating skeletal muscle development. This study was conducted to investigate the effects of early intramuscular vitamin A injection on the muscle growth of lambs. A total of 16 newborn lambs were given weekly intramuscular injections of corn oil (control group, n = 8) or 7,500 IU vitamin A palmitate (vitamin A group, n = 8) from birth to 3 wk of age (4 shots in total). At 3 wk of age and weaning, biceps femoris muscle samples were taken to analyze the effects of vitamin A on the myogenic capacity of skeletal muscle cells. All lambs were slaughtered at 8 months of age. The results suggest that vitamin A treatment accelerated the growth rate of lambs and increased the loin eye area (P < 0.05). Consistently, vitamin A increased the diameter of myofibers in longissimus thoracis muscle (P < 0.01) and increased the final body weight of lambs (P < 0.05). Vitamin A injection did not change the protein kinase B/mammalian target of rapamycin and myostatin signaling (P > 0.05). Moreover, vitamin A upregulated the expression of PAX7 (P < 0.05) and the myogenic marker genes including MYOD and MYOG (P < 0.01). The skeletal muscle-derived mononuclear cells from vitamin A-treated lambs showed higher expression of myogenic genes (P < 0.05) and formed more myotubes (P < 0.01) when myogenic differentiation was induced in vitro. In addition, in vitro analysis showed that RA promoted myogenic differentiation of the skeletal muscle-derived mononuclear cells in the first 3 d (P < 0.05) but not at the later stage (P > 0.05) as evidenced by myogenic gene expression and fusion index. Taken together, neonatal intramuscular vitamin A injection promotes lamb muscle growth by promoting the myogenic potential of satellite cells.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaoyou Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Qiang Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xinrui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| |
Collapse
|
2
|
Meyer MM, Bobeck EA. Dietary inositol-stabilized arginine silicate numerically reduced woody breast severity in male Ross 708 broilers without altering growth. Poult Sci 2023; 102:102589. [PMID: 36907126 PMCID: PMC10024240 DOI: 10.1016/j.psj.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The woody breast (WB) myopathy is an unintended outcome of fast broiler chicken growth and high breast muscle yields. Myodegeneration and fibrosis in the living tissue are results of hypoxia and oxidative stress driven by lack of blood supply to muscle fibers. The study aim was to titrate a vasodilator ingredient, inositol-stabilized arginine silicate (ASI), as a feed additive to improve blood flow and ultimately, breast meat quality. A total of 1,260 male Ross 708 broilers were assigned to: 1) a control basal diet, or the control diet plus increasing ASI: 2) 0.025% ASI, 3) 0.05% ASI, 4) 0.10% ASI, or 5) 0.15% ASI. At d 14, 28, 42, and 49, growth performance was measured on all broilers and serum from 12 broilers/diet was analyzed for creatine kinase and myoglobin presence. On d 42 and 49, 12 broilers/diet were measured for breast width, then left breast fillets were excised, weighed, palpated for WB severity, and visually scored for degree of white striping (WS). At 1 d postmortem, 12 raw fillets/treatment underwent compression force analysis, and at 2d postmortem, the same fillets were analyzed for water-holding capacity. mRNA was isolated from 6 right breasts/diet at both d 42 and 49 for qPCR quantification of myogenic gene expression. Birds fed the lowest dose of 0.025% ASI had a 5-point/3.25% feed conversion ratio reduction compared to birds fed 0.10% ASI over wk 4 to 6 and reduced serum myoglobin at 6-wk of age compared to the control. Breasts from birds fed 0.025% ASI received 42% greater normal WB scores at d 42 compared to control fillets. At d 49, breasts from broilers fed 0.10 and 0.15% ASI received 33% normal WB scores. At d 49, 0.025% AS-fed broiler breasts showed no severe WS. Increased myogenin expression was observed in 0.05 and 0.10% ASI breast samples on d 42 and myoblast determination protein-1 expression was upregulated in breasts from birds fed 0.10% ASI on d 49 compared to the control. Therefore, a dietary inclusion of 0.025, 0.10, or 0.15% ASI was beneficial in reducing WB and WS severity and promoting muscle growth factor gene expression at age of harvest without diminishing bird growth or breast muscle yields.
Collapse
Affiliation(s)
- M M Meyer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Tang H, Liu D, Zhang H, Fan W, Hu J, Xu Y, Guo Z, Huang W, Hou S, Zhou Z. Genome-wide association studies demonstrate the genes associated with perimysial thickness in ducks. Anim Genet 2023; 54:363-374. [PMID: 36697366 DOI: 10.1111/age.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
The thickness of the perimysium has an essential effect on the tenderness of the meat. However, the genetic basis underlying perimysial thickness has not been determined. The objective of this study was to explore the quantitative trait loci (QTL) that influence perimysial thickness in an F2 segregating population generated by Mallard × Pekin duck using the genome-wide association study (GWAS) method. Two QTL identified in chromosomes 27 and 13 displayed significant associations with perimysial thickness traits at the genome-wide level. The strongest association was the QTL located in chromosome 27, and this region had an effect on perimysial thickness and contained a promising candidate gene MAGI3 (Membrane-associated guanylate kinase, WW and PDZ domain containing 3). Meanwhile, association analysis showed that the top SNP within the MAGI3 gene was also associated with intramuscular fat content traits, which showed that perimysial thickness was positively correlated with intramuscular fat content. The second strongest association was the QTL region of chromosome 13. SUCLG2 (Succinate-CoA ligase GDP-forming subunit beta) is proximal to the top SNP and stood out as another candidate gene. Furthermore, the Transposase-Accessible Chromatin using Sequencing result showed that some key transcription factors (MYF5, MYOD1, KLF11) related to muscle development or energy metabolism might bind to the open regions of MAGI3 and SUCLG2. By analyzing the expression of different genotypes of the candidate gene, we speculate that different genotypes of MAGI3 may have an effect on breast muscle development, and then affect the thickness of the perimysium. This study maps two major genes of the duck breast muscle perimysial thickness trait, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.
Collapse
Affiliation(s)
- Hehe Tang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co. Ltd, Liaocheng, China
| | - Wenlei Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jian Hu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaxi Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbao Guo
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Bailey RA. Strategies and opportunities to control breast myopathies: An opinion paper. Front Physiol 2023; 14:1173564. [PMID: 37089423 PMCID: PMC10115961 DOI: 10.3389/fphys.2023.1173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
|
5
|
Meyer M, Bobeck E. Dietary vasodilator and vitamin C/L-arginine/choline blend improve broiler feed efficiency during finishing and reduce woody breast severity at 6 and 7 wks. Poult Sci 2022; 102:102421. [PMID: 36571874 PMCID: PMC9803950 DOI: 10.1016/j.psj.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Woody breast has become a considerable economic concern to the poultry industry. This myopathy presents rigid, pale breasts characterized by replacement of lean muscle protein with connective tissue, a result of hypoxia and oxidative stress in a metabolically starved muscle with inadequate circulation. Hence, the objectives were to supplement broiler diets with ingredients specifically aimed to improve circulation and oxidative status. About 1,344 male Ross 708 broilers were assigned to 1 of 4 diets: 1) a basal diet (control), 2) basal diet plus a blend of 0.2% supplemental L-arginine, 0.17% choline bitartrate, and 0.03% vitamin C (blend), 3) 0.1% vasodilator ingredient (vasodilator), or 4) 0.02% Astaxanthin ingredient (AsX). At d 14, 28, 42, and 49, performance outcomes were collected on all birds and serum from 16 broilers/diet (n = 64) was analyzed for creatine kinase and myoglobin. Once weekly beginning on d 28, a subset of 192 broilers were measured for breast width. On d 42 and 49, breast fillets from 16 broilers/diet (n = 64) were palpated for woody breast severity, weighed, and analyzed for compression force at 1-day postmortem and water-holding capacity at 2-day postmortem. mRNA was isolated from 15 breast fillets/timepoint for qPCR quantification of myogenic gene expression. Data were analyzed using Proc Mixed (SAS Version 9.4) with the fixed effect of diet. Feed conversion ratio was improved in the blend and vasodilator-fed birds d 42 to 49, each by over 2 points (P < 0.05). Breast width was increased in the control on d 42 compared to the vasodilator and AsX-fed broilers (P < 0.05). At d 42, there were 12% greater normal fillets in blend diet-fed birds and 13% more normal scores in vasodilator-fed birds at d 49 compared to the control. At d 49, myogenin expression was upregulated in the AsX diet compared to blend and control diets (P < 0.05), and muscle regulatory factor-4 expression was increased by 6.5% in the vasodilator diet compared to the blend and AsX diets (P < 0.05). Blend and vasodilator diets simultaneously improved feed efficiency in birds approaching market weight while reducing woody breast severity.
Collapse
|
6
|
Early Post-Hatch Nutrition Influences Performance and Muscle Growth in Broiler Chickens. Animals (Basel) 2022; 12:ani12233281. [PMID: 36496802 PMCID: PMC9740399 DOI: 10.3390/ani12233281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The poultry industry is under pressure to produce safe and good quality meat in the welfare conditions. Many areas such as genetics, biosecurity, and immunoprophylaxis were improved, and hatchery is one of the areas in which welfare could be improved for better production output. The aim of the study was to investigate the effect of early post-hatch nutrition providing body weight and muscle development in broiler chickens. The experiment involving two groups (chicken hatched with access to water and feed in the hatcher, and chicken without feed and water in hatcher) was replicated three times, and the body weights and breast-muscle index of the randomly chosen 30 chickens per group in each term were measured on the 1st, 7th, 21st, and 35th day of life. The breast-muscle sample was taken for genetic examination (the expression of the myoD, myoG, and MRF4 genes) and histological examination. The results showed that the positive effect of early nutrition was observed on the seventh day of bird life with higher expression of myoG and MRF4 and higher body weight of the birds. The positive effect of early nutrition on the diameter of the breast-muscle fibers was visible on days 21 and 35 of chicken life. The average final body weight in groups with early access to food and water was 5% higher than in groups hatched under classic conditions. Conclusions: early feeding in the hatcher improves performance and muscle growth in broiler chickens.
Collapse
|
7
|
Restricted feeding regimens improve white striping associated muscular defects in broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:128-137. [PMID: 36683879 PMCID: PMC9841233 DOI: 10.1016/j.aninu.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2023]
Abstract
The current study investigated the effects of intermittent feeding (IF) and fasting strategies at different times post-hatch on muscle growth and white striping (WS) breast development. In the first trial, 32 one-day-old Abor Acre broilers were fed ad libitum (AL) for 3 d post-hatch and then randomly allotted into 4 feeding strategies including AL, 1h-IF group (1 h IF, 4 times feeding/d, 1 h each time), 1.5h-IF (1.5 h IF, 4 times feeding/d, 1.5 h each time), and fasting (1d acute fasting, 6 d free access to feed) groups and fed for 7 d. Although angiogenic genes including VEGFA, VEGFR1, and VEGFR2, and myogenic genes including MYOG and MYOD were upregulated (P < 0.05), the breast muscle satellite cell (SC) number and PAX7, MYF5 expression were decreased by the IF strategies (P < 0.05). One-day fasting at 6 d of age also upregulated angiogenic genes and MYOD expression (P < 0.05), downregulated MYF5 expression (P < 0.05), but did not change SC number (P > 0.05). In the second trial, 384 one-day-old birds were fed AL for 1 wk and then randomly allotted to the above 4 feeding strategies starting at 8 d of age until 42 d of age. Similarly, IF and fasting strategies upregulated the expression of angiogenic and myogenic genes (P < 0.05). Both 1h-IF and 1.5h-IF increased breast muscle SC number (P < 0.05). At slaughter, breast muscle fiber diameter of 1.5h-IF was smaller but the SC number was larger than that of the birds fed AL (P < 0.05). The IF and fasting strategies prevented WS development, and reduced breast WS scores and triglyceride content (P < 0.05) without changing the body weight (P > 0.05). Fasting and 1h-IF reduced the expression of adipogenic genes ZNF423 and PDGFRα (P < 0.05). Moreover, IF and fasting strategies reduced fibrosis in breast muscle and reduced skeletal muscle-specific E3 ubiquitin ligases (TRIM63 and MAFBX) (P < 0.05). Fasting significantly reduced CASPASE-3 in breast muscle (P < 0.05). In conclusion, IF starting in the first week decreases SC number. Compared to AL, IF or fasting promotes muscular angiogenesis, increases SC number, prevents muscle degeneration, and prevents the development of WS without impairing the growth performance of broiler chickens.
Collapse
|
8
|
Ebeid TA, Tůmová E, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part II- carcass characteristics, meat quality, muscle fibre properties, and breast meat myopathies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Velleman SG. Why breast muscle satellite cell heterogeneity is an issue of importance for the poultry industry: An opinion paper. Front Physiol 2022; 13:987883. [PMID: 36045749 PMCID: PMC9421025 DOI: 10.3389/fphys.2022.987883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Alpha-tocopherol acetate and alpha lipoic acid may mitigate the development of wooden breast myopathy in broilers at an early age. Br Poult Sci 2021; 62:749-758. [PMID: 33988058 DOI: 10.1080/00071668.2021.1927985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The objective of this study was to identify the effects of the antioxidant alpha-tocopherol acetate (ATA) and alpha lipoic acid (ALA) which have anti-inflammatory effects on developmental onset, severity and the progression of wooden breast (WB) based on Pectoralis major (P. major) muscle morphology and expression of genes associated with WB during the first three weeks post-hatch.2. A total of 160 newly hatched Ross 708 broiler chicks were randomly assigned in a replicated trial to either a control group or three dietary treatments (ATA 160 mg/kg feed, ALA 500 mg/kg feed or in combination).3. Microscopic changes associated with WB began at one week of age in all groups. The ATA acetate and ALA fed in combination decreased WB severity at two weeks of age (P = 0.05) and ATA alone or in combination reduced severity at three weeks of age compared to the control group (P = 0.05). Expression of myogenic determination factor 1 and peroxisome proliferator-activated receptor gamma was reduced in all dietary treatments compared to the control at three weeks of age (P ≤ 0.05), which suggested reduced muscle degeneration and lipid deposition.4. ATA and ALA fed both independently and in combination had a positive effect on mitigating WB severity microscopically as early as two weeks of age.
Collapse
Affiliation(s)
- J Wang
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - D L Clark
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - S K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
11
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Effect of vitamin E and alpha lipoic acid on intestinal development associated with wooden breast myopathy in broilers. Poult Sci 2021; 100:100952. [PMID: 33652526 PMCID: PMC7936179 DOI: 10.1016/j.psj.2020.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023] Open
Abstract
Intestinal development is closely associated with inflammatory wooden breast (WB) myopathy. Vitamin E (VE) and alpha lipoic acid (ALA) with antioxidant and anti-inflammatory effects were used independently and in combination to evaluate their effects on intestinal developmental changes in ileal morphology and expression of genes related with gut nutrient transport, structure, and inflammation in broilers during the first 3 wk posthatch. A total of 160 newly hatched Ross 708 broiler chicks were randomly assigned into a control and 3 dietary treatments with 10 replicates of 4 birds each. Supplementation of VE (160 mg/kg) and ALA (500 mg/kg) independently and in combination were fed during the first 3 wk. At 1, 2, and 3 wk of age, one chick from each pen was harvested. Plasma VE concentration and ileal morphology were determined. Gene expression was measured by real-time quantitative PCR. Broilers in VE and combination of ALA and VE group had higher plasma VE concentration than the control and ALA group at 1, 2, and 3 wk of age (P < 0.01). All dietary treatments increased ileal villus height at 1 wk of age (P < 0.01) and decreased intraepithelial lymphocytes at 3 wk of age compared to the control (P ≤ 0.05). Combination of VE and ALA increased collagen type IV alpha 1 chain expression (P ≤ 0.05) and improved basement membrane structure indicating increased gut basement membrane integrity at 2 and 3 wk of age compared to the control. Expression of lipopolysaccharide-induced tumor necrosis factor-alpha factor associated with inflammation was decreased in all dietary treatments at 3 wk of age compared to the control (P < 0.01). Ileal morphology and gene expression were closely correlated with breast muscle morphology and gene expression. These results suggest that VE and ALA especially when they were combined in the diet had positive effects on mitigating intestinal inflammation and improving nutrient transport beginning at 1 wk of age, which is likely critical in reducing the severity of WB.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691.
| |
Collapse
|
12
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poult Sci 2020; 99:2108-2119. [PMID: 32241496 PMCID: PMC7587660 DOI: 10.1016/j.psj.2019.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
The wooden breast (WB) myopathy is identified by the palpation of a rigid pectoralis major (P. major) muscle and is characterized as a fibrotic, necrotic P. major muscle disorder in broilers resulting in reduced breast meat quality. Breast muscle affected with WB is under severe oxidative stress and inflammation. The objectives were to identify the effects of dietary vitamin E (VE) and omega-3 (n-3) fatty acids independently or in combination when fed during the starter phase (0-10 D) or grower phase (11-24 D) on growth performance, meat yield, meat quality, and severity of WB myopathy and to determine the most beneficial dietary supplementation period. A total of 210 Ross 708 broiler chicks were randomly assigned into 7 experimental groups with 10 replicates of 3 birds each. The control group was fed with corn-soybean meal basal diet with VE (10 IU/kg) and n-3 fatty acids (n-6/n-3 ratio of 30:1) at a standard level during the entire study (0-58 D). Supplementation of VE (200 IU/kg), n-3 fatty acids (n-6/n-3 ratio of 3:1), or combination of both was performed during the starter phase or grower phase. Growth performance, meat yield, meat quality, and WB scores were obtained. There was no significant difference in final body weight and meat yield when VE was increased (P > 0.05). In contrast, n-3 fatty acids supplementation in starter diets significantly decreased final body weight, hot carcass weight, and chilled carcass weight of broilers (P ≤ 0.05). The P. major muscle from broilers supplemented with VE in starter diets had lower shear force than in grower diets (P ≤ 0.05). Supplemental VE reduced the severity of WB and in starter diets showed a more beneficial effect than those fed VE in the grower diets. These data are suggestive that additional supplementation of dietary VE may reduce the severity of WB and promote breast meat quality without adversely affecting growth performance and meat yield.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA.
| |
Collapse
|
13
|
Velleman SG, Coy CS. Research Note: Effect of selection for body weight on the adipogenic conversion of turkey myogenic satellite cells by Syndecan-4 and its covalently attached N-glycosylation chains. Poult Sci 2020; 99:1209-1215. [PMID: 32029150 PMCID: PMC7587650 DOI: 10.1016/j.psj.2019.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 11/26/2022] Open
Abstract
Adult myoblasts, satellite cells, will proliferate, and differentiate into myotubes in vitro. However, changes in environmental and nutritional conditions will result in the satellite cells differentiating into adipocyte-like cells synthesizing lipids. Prior research has shown that levels of N-glycosylation and heparan sulfate can promote or prevent the adipogenic conversion of myogenic satellite cells. Syndecan-4, an N-glycosylated heparan sulfate proteoglycan, has been shown to play key roles in satellite cell proliferation and migration. The objective of the current study was to determine if syndecan-4, and syndecan-4 N-glycosylation and heparan sulfate chain levels altered the conversion of satellite cells to an adipogenic cell fate and if growth selection affected the response of the satellite cells. Over-expression of syndecan-4, syndecan-4 without N-glycosylated chains but with its heparan sulfate chains attached, syndecan-4 without heparan sulfate chains with its N-glycosylation chains, and syndecan-4 without N-glycosylation and heparan sulfate chains was measured for lipid accumulation in pectoralis major muscle satellite cells isolated from the Randombred Control line 2 (RBC2) and 16 wk body weight (F line) turkeys. The F line was selected from the RBC2 line for only 16 wk body weight. Results from this study demonstrated that wild type levels of syndecan-4 and its covalently attached N-glycosylation chains play a key role in regulating the conversion of pectoralis major muscle satellite cells to an adipogenic lineage while selection for body weight was not a major contributing factor in this conversion.
Collapse
Affiliation(s)
- Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster OH 44691, USA.
| | - Cynthia S Coy
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster OH 44691, USA
| |
Collapse
|
14
|
Liu HH, Mao HG, Dong XY, Cao HY, Liu K, Yin ZZ. Expression of MSTN gene and its correlation with pectoralis muscle fiber traits in the domestic pigeons (Columba livia). Poult Sci 2020; 98:5265-5271. [PMID: 31265735 DOI: 10.3382/ps/pez399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth and plays an important role in muscle development. In this research, we constructed a tissue expression profile of the pigeon MSTN gene in eight tissues and a spatio-temporal expression profile in the pectoral muscle using qRT-PCR method. And the pectoralis muscle fiber traits during pigeon post-hatching stages at 1, 7, 14, 21, and 28 D were analyzed through the paraffin sections. Then the correlations between the muscle fiber diameter, cross-sectional area, density, and the expression of MSTN in the pectoral muscle were analyzed. Results showed that MSTN mRNA was mainly expressed in breast muscle, heart, spleen, and kidney and it was almost unexpressed in the liver and lungs. Moreover, the MSTN mRNA expression level in breast muscle was significantly higher than that in other tissues (P < 0.05), and showed an interesting trend that it decreased in the first week and then increased with age. Meanwhile, decrease of myostatin transcripts was accompanied by the down-regulation of Myf5 and the up-regulation of MyoG during the first week post-hatching. In addition, the paraffin sections analysis results revealed that the diameter and cross-sectional area of pectoralis muscle fiber significantly increased with age (P < 0.05), and a significant positive correlation was shown between the MSTN gene expression level and muscle fiber diameter (P < 0.05). These fundamental researches might contribute to further understanding of the roles MSTN played in the post-hatching muscle fiber development in pigeon.
Collapse
Affiliation(s)
- H H Liu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| | - H G Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| | - X Y Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| | - H Y Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| | - K Liu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| | - Z Z Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
15
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction and syndecan-4 or glypican-1 knockdown on the differentiation of turkey pectoralis major satellite cells differing in age and growth selection. Poult Sci 2020; 98:6078-6090. [PMID: 31180126 DOI: 10.3382/ps/pez304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle growth is mediated by the proliferation and differentiation of satellite cells, whose activity is affected by both nutrition and the expression of syndecan-4 and glypican-1. Previous research has not addressed if there is an interactive effect of nutrition with the expression of syndecan-4 and glypican-1. Thus, the objective of the current study was to determine if the response of satellite cells to nutrient restriction was altered by syndecan-4 or glypican-1 knockdown and if age and growth selection are factors. Satellite cells were isolated from pectoralis major muscle of 1-day, 7-wk, and 16-wk-old turkeys selected for increased 16-wk body weight (F line) and the randombred control (RBC2) line from which the F line was selected. Syndecan-4 or glypican-1 expression was knocked down in both lines using small interfering RNAs along with nutrient restriction of 0 or 20% of the standard cell culture medium either applied during proliferation with subsequent normal differentiation medium (RN) or during differentiation with preceding normal proliferation medium (NR). For both lines, nutrient restriction and syndecan-4 or glypican-1 knockdown had an independent and additive effect on satellite cell differentiation at 72 h of differentiation except for 1 d satellite cells. The 1 d satellite cell differentiation was increased by RN treatment, but when combined with syndecan-4 or glypican-1 knockdown, the increase in differentiation was negated. At 48 h of differentiation, syndecan-4 knockdown in 7 and 16 wk satellite cells and glypican-1 knockdown in 7 wk cells cancelled the effect of the RN treatment, but enhanced the effect of NR treatment at 24 h of differentiation. Growth selection had little effect on the interaction between nutrient restriction and syndecan-4 or glypican-1 knockdown. Taken together, these data demonstrate that the satellite cell response to nutrition is dependent on the expression of syndecan-4 and glypican-1 in an age-dependent manner with growth selection having little impact.
Collapse
Affiliation(s)
- Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Daniel L Clark
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Jeffrey R Tonniges
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
16
|
Tonniges JR, Velleman SG. Nutrient restriction and migration of turkey satellite cells. Poult Sci 2019; 98:7090-7096. [PMID: 31222280 PMCID: PMC8913961 DOI: 10.3382/ps/pez349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Post hatch muscle growth and the repair or regeneration of muscle after myofiber injury is mediated by satellite cells. Satellite cells proliferate, migrate, differentiate, and fuse with growing or regenerating myofibers. The proliferation and differentiation of satellite cells are affected by nutrition, but it is unknown how nutrition impacts satellite cell migration. The objective of the study was to determine the effect of a nutrient restriction on satellite cell migration. Satellite cells from the pectoralis major muscle of 1 and 49-day-old Randombred Control Line 2 turkeys were grown in culture, and migration was measured using a wound healing assay. Nutrient restrictions of 0, 5, 10, and 20% of the standard culture medium were applied starting immediately after scratch or 24 h prior to scratch. Nutrient restrictions of 5 and 20% increased 1 D satellite cell migration at 6 h post scratch compared to 1 D satellite cells with standard culture medium but had no effect after 12 h post scratch. Nutrient restrictions started 24 h prior to scratch increased 1 D satellite cell migration at 6 and 12 h post scratch compared to nutrient restrictions started immediately after scratch. The migration of 49 D satellite cells was not affected by the percentage or timing of the nutrient restriction. These data suggest that nutrition has only a minor effect on the migration of turkey pectoralis major muscle satellite cells. Therefore, the influence of nutrition on satellite cell migration is likely not an important factor for evaluating poultry diet formulations to optimize muscle growth and structure for improved meat protein and fat content as well as meat texture.
Collapse
Affiliation(s)
- Jeffrey R Tonniges
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691
| | - Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691
| |
Collapse
|
17
|
Van Blois L, Bentley A, Porter L, Prihoda N, Potter H, Van Wyk B, Shafer D, Fraley S, Fraley G. Feed Restriction Can Alter Gait but Does not Reduce Welfare in Meat Ducks. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
|
19
|
Zitnan R, Albrecht E, Kalbe C, Miersch C, Revajova V, Levkut M, Röntgen M. Muscle characteristics in chicks challenged with Salmonella Enteritidis and the effect of preventive application of the probiotic Enterococcus faecium. Poult Sci 2019; 98:2014-2025. [PMID: 30590796 PMCID: PMC6448134 DOI: 10.3382/ps/pey561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to assess the effects of the probiotic Enterococcus faecium AL41 (EF) and of the enteric pathogen Salmonella Enteritidis PT4 (SE) on the development of posthatch pectoralis major muscle (PM) of broiler chicks. The four experimental groups were control (CON), EF, SE, and EF+SE (EFSE). EF and SE were given per os from days 1 to 7 and at day 4 posthatch, respectively. Muscle samples from 6 chicks per group were taken at day 8 (D8) and day 11 (D11) to evaluate PM myofiber growth, capillarization, DNA, RNA, and protein content, as well as enzyme activities (isocitrate dehydrogenase, lactate dehydrogenase, creatine kinase). PM growth rate was 7.45 ± 2.7 g/d in non-SE groups (CON, EF) and 5.10 ± 1.82 g/d in SE-infected groups (P < 0.02). Compared with group CON, application of bacteria (groups EF and SE) reduced the fiber cross-sectional area (246 and 262 vs. 347 ± 19 μm2) and the number of myonuclei per fiber (0.66 and 0.64 vs. 0.79 ± 0.03). At D11, hypertrophic myofiber growth normalized in the EF group, but negative effects persisted in SE and EFSE birds contributing to lower daily PM gain. In addition, SE infection strongly disturbed PM capillarization. Negative effects on capillary cross-sectional area and on the area (%) covered by capillaries persisted until D11 in the SE group, whereas pre-feeding of EF restored capillarization in the EFSE group to control levels. We conclude that supplementation of the probiotic bacteria EF AL41 had positive effects on PM capillarization and, thus, on delivery of O2, supply of nutrients, and removal of metabolites. Supplementation of probiotic bacteria might therefore reduce energetic stress and improve muscle health and meat quality during SE infection.
Collapse
Affiliation(s)
- R Zitnan
- National Agriculture and Food Centre, Research Institute of Animal Production, Nitra, Kosice, Slovakia
| | - E Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Miersch
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - V Revajova
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Levkut
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Röntgen
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
20
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction on the proliferation and differentiation of turkey pectoralis major satellite cells differing in age and growth rate. Poult Sci 2019; 98:1893-1902. [DOI: 10.3382/ps/pey509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022] Open
|
21
|
Clark D, Walter K, Velleman S. Incubation temperature and time of hatch impact broiler muscle growth and morphology. Poult Sci 2017; 96:4085-4095. [DOI: 10.3382/ps/pex202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
|
22
|
Velleman SG, Song Y. Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation. Front Physiol 2017; 8:577. [PMID: 28848451 PMCID: PMC5550705 DOI: 10.3389/fphys.2017.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State UniversityWooster, OH, United States
| | - Yan Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
23
|
Chodová D, Tůmová E, Sládková K, Langrová I, Jankovská I, Vadlejch J, Čadková Z, Krejčířová R. Effects of subclinical Eimeria tenella infection on Pectoralis major muscle in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1351899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Darina Chodová
- Department of Animal Husbandry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eva Tůmová
- Department of Animal Husbandry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Karolína Sládková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ivana Jankovská
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zuzana Čadková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Romana Krejčířová
- Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Powell DJ, Velleman SG, Cowieson AJ, Muir WI. Methionine concentration in the pre-starter diet: its effect on broiler breast muscle development. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of feeding diets of variable methionine concentration on breast muscle development was assessed in Ross 308 broiler chicks. Four isonitrogenous and isoenergetic starter diets were formulated to contain 7.8, 5.9, 4.6, and 3.4 g methionine/kg diet, and were provided for the first 7 days post-hatch. At 7 days of age all birds were placed on an industry standard starter diet with 5.9 g methionine/kg diet until 14 days, and then provided standard broiler grower (until 28 days) and finisher (until 42 days) diets. Birds were weighed periodically throughout the study and feed intake and feed conversion ratio were determined. Ten birds per treatment were sacrificed and weighed on 0, 1, 4, 7, 14, 21, 28, 35, and 42 days. The pectoralis major (breast muscle) was then removed from the carcass and weighed. Samples of breast muscle were collected for genetic and histological analysis. Expression of the myogenic marker genes, myogenic differentiation factor 1 and myogenin, which regulate satellite cell activity, and the adipogenic marker gene, peroxisome proliferator-activated receptor gamma (PPARγ), was measured. Histological assessment of breast muscle morphology and fat deposition morphology was also performed. No effect of dietary treatment was observed on body or breast muscle weight, feed intake or feed conversion ratio. Marker gene expression was also similar in all treatment groups, except for PPARγ. Significantly higher expression of PPARγ was observed at 0 days in the 5.9 g methionine/kg diet treatment, before dietary treatments were provided. Expression of PPARγ did not differ among treatment groups on any subsequent day. Methionine dietary treatment had no effect on the morphological structure of the breast muscle, or intramuscular fat deposition. These results suggest that under the conditions of this study, satellite cell activity in the early post-hatch chick, and subsequent muscle development, were not responsive to the variable methionine manipulations tested in the pre-starter period.
Collapse
|
25
|
van der Klein S, Silva F, Kwakkel R, Zuidhof M. The effect of quantitative feed restriction on allometric growth in broilers. Poult Sci 2017; 96:118-126. [DOI: 10.3382/ps/pew187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/20/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022] Open
|
26
|
Powell D, Velleman S, Cowieson A, Singh M, Muir W. Influence of chick hatch time and access to feed on broiler muscle development. Poult Sci 2016; 95:1433-48. [DOI: 10.3382/ps/pew047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
|
27
|
Powell DJ, Velleman SG, Cowieson AJ, Singh M, Muir WI. Influence of hatch time and access to feed on intramuscular adipose tissue deposition in broilers. Poult Sci 2016; 95:1449-56. [PMID: 26976909 DOI: 10.3382/ps/pew063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
The effect of hatch time and subsequent access to feed on intramuscular adipose tissue deposition was studied in the pectoralis major muscle of male Ross 308 broiler chickens. Based on their hatch time chicks were classified as early (EH), midterm (MH), or late (LH) hatchers, with an average incubation duration of 497.7 h for EH, 508.8 h for MH, and 514.5 h for LH birds. Chicks were provided access to feed either immediately at hatch, or 24 h after the conclusion of the hatch window. Expression of the adipogenic regulatory genes peroxisome proliferator-activated receptor gamma (PPARγ), and stearoyl-CoA desaturase (SCD), were measured at the time of hatch, and zero, one, 4, 7, 28, and 40 d. Intramuscular adipocyte cell width and visualization of adipose tissue deposition was observed at 28 and 40 d. Expression of PPARγ was increased in the pectoralis major of LH birds at the time of hatch, zero, and one d. The expression of PPARγ at one and 7 d, and SCD at 7 d were increased in all birds that received delayed access to feed. At 28 d, adipocyte cell width was increased in LH birds with delayed access to feed, compared to EH and MH birds with delayed access to feed and LH birds with immediate access to feed. At 40 d, adipocyte cell width was increased in all birds that received delayed access to feed. Also at 40 d, there was a trend (P = 0.078) for more extensive intramuscular adipose tissue deposition in LH than EH birds, and in birds with delayed access to feed (P = 0.075). These data indicate delayed access to feed increases intramuscular adipose tissue deposition in the pectoralis major muscle, and suggest that hatch time influences this regulation.
Collapse
Affiliation(s)
- D J Powell
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2750, Australia Poultry CRC, PO Box U242, University of New England, Armidale, NSW 2351, Australia
| | - S G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster 44691
| | - A J Cowieson
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2750, Australia
| | - M Singh
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2750, Australia
| | - W I Muir
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2750, Australia
| |
Collapse
|
28
|
Velleman SG. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Dis 2016; 59:525-31. [PMID: 26629627 DOI: 10.1637/11223-063015-review.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
29
|
Butzen F, Vieira M, Kessler A, Aristimunha P, Marx F, Bockor L, Ribeiro A. Early feed restriction in broilers. II: Body composition and nutrient gain. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Velleman SG. Effect of Growth Selection on Adipogenic Gene Expression During the Development of the Turkey Breast Muscle. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.680.684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Velleman SG, Coy CS, Emmerson DA. Effect of the timing of posthatch feed restrictions on the deposition of fat during broiler breast muscle development. Poult Sci 2014; 93:2622-7. [PMID: 25085937 DOI: 10.3382/ps.2014-04206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the timing of posthatch feed restriction on adipose deposition and adipogenic gene expression in the broiler pectoralis major muscle was studied by applying a 20% feed restriction either the first or second week after hatch. Broiler chicks at hatch were divided into a full-fed (control) group and a 20% feed restriction group. The expression of adipogenic genes, peroxisome proliferator-activated receptor gamma (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα) were measured. The expression of both PPARγ and C/EBPα was affected by the wk 1 feed restriction with expression significantly increased during the first week posthatch. The deposition of fat within the pectoralis major muscle was affected by the timing of the feed restriction. Extensive fat depots were present by 27 d of age in the pectoralis major muscle of the wk 1 restricted group compared with the control. Fat deposition was eliminated when the 20% feed restriction occurred in wk 2. Taken together, these results demonstrate that the timing of early posthatch feed restrictions in chicks is critical in the deposition of fat in the pectoralis major muscle and expression of adipogenic genes.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - C S Coy
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster 44691
| | - D A Emmerson
- Aviagen Incorporated, 5015 Bradford Dr, Huntsville, AL 35805
| |
Collapse
|