1
|
Ma M, Wang Q, Liu Y, Li G, Liu L, Wang G, Guo Y, Huang S, Ma Q, Ji C, Zhao L. Bacillus CotA laccase improved the intestinal health, amino acid metabolism and hepatic metabolic capacity of Pekin ducks fed naturally contaminated AFB 1 diet. J Anim Sci Biotechnol 2024; 15:138. [PMID: 39385285 PMCID: PMC11465776 DOI: 10.1186/s40104-024-01091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a prevalent contaminant in agricultural products, presenting significant risks to animal health. CotA laccase from Bacillus licheniformis has shown significant efficacy in degrading mycotoxins in vitro test. The efficacy of Bacillus CotA laccase in animals, however, remains to be confirmed. A 2 × 2 factorial design was used to investigate the effects of Bacillus CotA laccase level (0 or 1 U/kg), AFB1 challenge (challenged or unchallenged) and their interactions on ducks. The purpose of this study was to evaluate the efficacy of Bacillus CotA laccase in alleviating AFB1 toxicosis of ducks. RESULTS Bacillus CotA laccase alleviated AFB1-induced declines in growth performance of ducks accompanied by improved average daily gain (ADG) and lower feed/gain ratio (F/G). Bacillus CotA laccase ameliorated AFB1-induced gut barrier dysfunctions and inflammation testified by increasing the jejunal villi height/crypt depth ratio (VH/CD) and the mRNA expression of tight junction protein 1 (TJP1) and zonula occluden-1 (ZO-1) as well as decreasing the expression of inflammation-related genes in the jejunum of ducks. Amino acid metabolome showed that Bacillus CotA laccase ameliorated AFB1-induced amino acid metabolism disorders evidenced by increasing the level of glutamic acid in serum and upregulating the expression of amino acid transport related genes in jejunum of ducks. Bacillus CotA laccase ameliorated AFB1-induced liver injury testified by suppressing oxidative stress, inhibiting apoptosis, and downregulating the expression of hepatic metabolic enzyme related genes of ducks. Moreover, Bacillus CotA laccase degraded AFB1 in digestive tract of ducks, resulting in the reduced absorption level of AFB1 across intestinal epithelium testified by the decreased level of AFB1-DNA adduct in the liver, and the reduced content of AFB1 residues in liver and feces of ducks. CONCLUSIONS Bacillus CotA laccase effectively improved the growth performance, intestinal health, amino acid metabolism and hepatic aflatoxin metabolism of ducks fed AFB1 diets, highlighting its potential as an efficient and safe feed enzyme for AFB1 degradation in animal production.
Collapse
Affiliation(s)
- Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Guiming Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Limeng Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Gaigai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Hossain MT, Sardar D, Afsana S, Datta M, Habib MA. Comparative analysis between multi-strain probiotics and antibiotic as starter feed supplement of poultry on growth performance, serum metabolites and meat quality. Vet Anim Sci 2024; 24:100346. [PMID: 38895706 PMCID: PMC11184486 DOI: 10.1016/j.vas.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The unobstructed use of antibiotics in poultry production has emerged as a major driving force of antibiotic resistance and public health hazard, particularly in developing countries. This study aimed to determine the functional roles of lyophilized native probiotic based starter feed on performance, selective serum metabolites and meat quality of poultry. A total of 90 day-old birds (30 broilers, 30 layers and 30 ducks) were used as experimental birds which were divided into three treatment groups for each kind of bird. Isolated native probiotic strains from chicken intestine were used to prepare lyophilized probiotic samples. Growth performances were measured manually, serum biochemicals analysis were carried out using diagnostic kits, and meat quality was determined through Kjeldahl method and Soxhlet method. When compared to groups receiving antibiotics, the introduction of lyophilized probiotics in starter feed significantly (P<0.05) increased body weight gain, feed intake, and feed conversion ratio. The birds' serum calcium and protein levels likewise exhibited a similar pattern. Comparing the groups receiving antibiotics, the protein content of the meat revealed significant (P<0.05) variations. Significant (P<0.05) reduced level of serum total cholesterol, triglycerides and fat content in meat was observed when compared to antibiotic-fed group. It is possible to conclude that lyophilized probiotics have a significant positive impact on growth performance, serum metabolites and meat quality. The findings of the study could open up new avenues for the application and adoption of native probiotic-based poultry feeds as an alternative to antibiotic-based poultry feeds among stakeholders.
Collapse
Affiliation(s)
- Md Taslim Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Science, Khulna Agricultural University, Khulna 9200, Bangladesh
| | - Dipankar Sardar
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Sadia Afsana
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Meheta Datta
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Md. Ahsan Habib
- Department of Animal Science and Nutrition, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
3
|
Hou J, Lu L, Lian L, Tian Y, Zeng T, Ma Y, Li S, Chen L, Xu W, Gu T, Li G, Liu X. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front Microbiol 2024; 15:1368736. [PMID: 38650870 PMCID: PMC11033381 DOI: 10.3389/fmicb.2024.1368736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanfen Ma
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sisi Li
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Liu
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Wang P, Wang Y, Feng T, Yan Z, Zhu D, Lin H, Iqbal M, Deng D, Kulyar MFEA, Shen Y. Hedyotis diffusa alleviate aflatoxin B1-induced liver injury in ducks by mediating Nrf2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114339. [PMID: 36508825 DOI: 10.1016/j.ecoenv.2022.114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1), the most harmful aflatoxins, is a frequent contamination in feed and food items, raising global concerns in animal production and human public health. Also, AFB1 induces oxidative stress, cytotoxicity, mutations, and DNA lesions through its metabolic transformation into aflatoxin B1-8,9-epoxide (AFBO) by cytochrome P450 (CYP450). Hedyotis diffusa (HD) is a traditional Chinese herbal medicine known for its multiple pharmacological activities, including antioxidant, anti-inflammatory, and immunomodulatory. Yet, the influence of HD on AFB1-induced liver injury in ducks is still unknown. Here, we investigated whether HD positively affects AFB1-induced liver injury in ducks. Results revealed that I) AFB1 caused significant changes in serum biochemical indices and decreased growth performance of ducks (such as ALT, AST, ALP, TP, ALB, final body weight, and body weight gain), whereas HD supplementation at 200 mg/kg mitigated these alterations. II) HD alleviated hepatic histopathological changes and liver index induced by AFB1 in ducks. III) HD significantly attenuated AFB1-induced oxidative stress, as measured by increased antioxidant enzyme activities such as SOD, GPx, and T-AOC and decreased MDA levels. Furthermore, HD reduced the level of AFB1-DNA adduct in duck liver. IV) HD significantly promoted the transcriptional expression of NF-E2-related nuclear factor 2 (Nrf2) and associated genes, including heme oxygenase 1 (HO-1), NAD(P)H dehydrogenase quinone 1 (NQO1), glutamate-cysteine ligase catalytic (GCLC). In conclusion, these results demonstrated that HD could activate the Nrf2 pathway in ducks to reduce the hepatotoxicity driven by AFB1. This finding also provides theoretical and data support for a deeper understanding of the toxic mechanisms of AFB1 and its prevention.
Collapse
Affiliation(s)
- Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tianyi Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziyin Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Di Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huixian Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dandan Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Yao Y, Liu Y, Li C, Huang X, Zhang X, Deng P, Jiang G, Dai Q. Effects of rosemary extract supplementation in feed on growth performance, meat quality, serum biochemistry, antioxidant capacity, and immune function of meat ducks. Poult Sci 2022; 102:102357. [PMID: 36502565 PMCID: PMC9763849 DOI: 10.1016/j.psj.2022.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of diets supplemented with different levels of rosemary extract (RE) on the growth performance, meat quality, serum biochemistry, antioxidative capacity, and immunological capacity of Cherry Valley meat ducks. A total of 525 healthy Cherry Valley female meat ducks at 1 d of age were selected for this study. Ducks were randomly divided into 5 treatments with 7 replicates per treatment, and each replicate had 15 ducks. All replicates were randomly assigned to treatments. The study was designed as a dose response experiment. Treatment 1 (CON) was fed with the basal diet, and Treatment 2 to 5 (RE250, RE500, RE750, RE1000) were fed with the basal diet supplemented with 250, 500, 750, and 1,000 g/t RE, respectively. The whole experiment lasted 42 days with early stage (1-21 d) and late stage (22-42 d). Results showed that during 22 to 42 d, ducks that were fed over 500 g/t RE had significantly lower feed gain ratio than the ones in CON (P = 0.006). In addition, ducks in RE750 had significantly lower L* and a* in leg muscle compared with the ones in CON (P < 0.05). Besides, ducks that were fed between 250 and 750 g/t RE had significantly lower total protein level in serum compared with the ones in CON (P = 0.005). Ducks in RE250 and RE750 had significantly lower albumin, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels in serum compared with the ones in CON and RE1000 (P < 0.05), and significant quadratic relationships were noticed between albumin, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and dietary RE level (P < 0.05). Moreover, ducks that were fed between 500 and 750 g/t RE had significantly higher levels of interleukin-2 in serum compared to the ones in CON and RE1000 (P = 0.003). Ducks in RE250 and RE750 had significantly higher levels of immunoglobulin G in serum compared to the ones in CON and RE1000 (P < 0.001). Ducks that were fed over 500 g/t RE had significantly higher levels of immunoglobulin A in serum compared to the ones in CON (P = 0.001). Finally, ducks that were fed between 500 and 750 g/t RE had significantly higher serum levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity (P < 0.05) compared to the ones in CON. Ducks that were fed over 250 g/t RE had significantly lower serum level of malondialdehyde compared to the ones in CON (P = 0.020). Collectively, dietary supplementation of RE improved the growth performance and meat qualities of meat ducks during 22 to 42 d, which were possibly associated with the antioxidative and anti-inflammatory effects of RE. Based on the serum antioxidative and immunological parameters, we suggested that 500 to 750 g/t was the optimal supplementation rate for RE in diets for meat ducks aged 22 to 42 d.
Collapse
Affiliation(s)
- Yuezhou Yao
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China,Hunan Agricultural University, Changsha, 410125, China
| | - Yang Liu
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Chuang Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Xuan Huang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Xu Zhang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Ping Deng
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Guitao Jiang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China
| | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131, China,Corresponding author.
| |
Collapse
|
6
|
Liu Y, Li Y, Niu J, Liu H, Jiao N, Huang L, Jiang S, Yan L, Yang W. Effects of Dietary Macleaya cordata Extract Containing Isoquinoline Alkaloids Supplementation as an Alternative to Antibiotics in the Diets on Growth Performance and Liver Health of Broiler Chickens. Front Vet Sci 2022; 9:950174. [PMID: 35968000 PMCID: PMC9363708 DOI: 10.3389/fvets.2022.950174] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) containing protopine and allotypotopine on the growth performance and liver health in broiler chickens. A total of 486 1-day-old male AA broiler chickens were randomly assigned to the following three groups: (1) control (CON) group, broiler chickens fed a basal diet; (2) AGP group (positive control), broiler chickens fed a basal diet supplemented with 50 mg/kg aureomycin; (3) MCE group, broiler chickens fed a basal diet supplemented with 0.6 mg/kg MCE including 0.4 mg/kg protopine and 0.2 mg/kg allotypotopine. The results showed that the MCE group had significantly higher final body weight and average daily gain from d 0 to 42 than the other groups (p < 0.05), and groups MCE and AGP both had significantly lower feed-to-gain ratio from d 0 to 42 than the CON group (p < 0.05). Serum total protein, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, glucose, immunoglobulin A, immunoglobulin M, and complements (C3, C4) concentrations in the MCE group were significantly higher than in the CON group (p < 0.05). Dietary MCE or aureomycin supplementation significantly reduced the hepatic contents of 8-hydroxy-2'-deoxyguanosine, malondialdehyde, interleukin (IL)-1β, IL-6, NLRs family pyrin domain containing 3 (NLRP3), and caspase-1 in the liver (p < 0.05). Moreover, MCE or aureomycin supplementation significantly inhibited mRNA expressions of Toll-like receptor 4, myeloid differentiation factor 88, nuclear factor-κB, and NLRP3, as well as the expression ratio of Bax to Bcl-2 mRNA (p < 0.05). Therefore, our study suggested that dietary supplementation with 0.6 mg/kg MCE containing protopine and allocryptopine improved growth performance and benefited liver health in broiler chickens possibly through inhibiting caspase-1-induced pyroptosis by inactivating TLR4/MyD88/NF-κB/NLRP3 signaling pathway, and provided support for the application of MCE containing protopine and allocryptopine as an alternative to antibiotics in the feed industry.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- *Correspondence: Yang Li
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- Weiren Yang
| |
Collapse
|
7
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
8
|
Chen X, Shafer D, Sifri M, Lilburn M, Karcher D, Cherry P, Wakenell P, Fraley S, Turk M, Fraley GS. Centennial Review: History and husbandry recommendations for raising Pekin ducks in research or commercial production. Poult Sci 2021; 100:101241. [PMID: 34229220 PMCID: PMC8261006 DOI: 10.1016/j.psj.2021.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
By some accounts, ducks were domesticated between 400 and 10,000 yr ago and have been a growing portion of the poultry industry for decades. Ducks specifically, and waterfowl in general, have unique health, housing, nutrition and welfare concerns compared to their galliform counterparts. Although there have been many research publications in regards to health, nutrition, behavior, and welfare of ducks there have been very few reviews to provide an overview of these numerous studies, and only one text has attempted to review all aspects of the duck industry, from breeders to meat ducks. This review covers incubation, hatching, housing, welfare, nutrition, and euthanasia and highlights the needs for additional research at all levels of duck production. The purpose of this review is to provide guidelines to raise and house ducks for research as specifically related to industry practices.
Collapse
Affiliation(s)
- X Chen
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - D Shafer
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - M Sifri
- Sifri Solutions, LLC, Quincy, IL, USA
| | - M Lilburn
- Ohio State University, Wooster, OH, USA
| | - D Karcher
- Purdue University, West Lafeyette, IN, USA
| | - P Cherry
- Consultant, Lincoln, LN2 2NH United Kingdom
| | - P Wakenell
- Purdue University, West Lafeyette, IN, USA
| | - S Fraley
- Purdue University, West Lafeyette, IN, USA
| | - M Turk
- Dux Consulting, LLC, Milford, IN, USA
| | - G S Fraley
- Purdue University, West Lafeyette, IN, USA.
| |
Collapse
|
9
|
Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J Fungi (Basel) 2021; 7:jof7080606. [PMID: 34436145 PMCID: PMC8397101 DOI: 10.3390/jof7080606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Collapse
|
10
|
Atypical hemograms of the commercial duck. Poult Sci 2021; 100:101248. [PMID: 34225201 PMCID: PMC8264152 DOI: 10.1016/j.psj.2021.101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
A description of standard and atypical heterophils, lymphocytes, and 2 types of giant cells found in the circulation of 17 wk commercial ducks (N = 24) in apparent good health is the subject. Heterophils were sorted as either "classic" (HC) having red rod-shaped cytoplasmic granules, "typical" (HT) having weakly stained granules providing a reticular cytoplasmic appearance, or rarely as "variant" types (HV) having orange spherical granules. Atypical HT's and HC's were in 14 of 24 (58%) of the ducks. Small lymphocytes (Ls), reactive lymphocytes and plasmacytes (Lm) were routinely found. Giant cells, also present, were placed with Lm or monocytes (Mn) depending on cytology. Two counts of 200 leukocytes gave the total white count (TWBC) and 2 heterophil/lymphocyte ratios. H/L 1 = (HT + HC +HV) / Ls; and H/L 2 = (HT + HC + HV) / (Ls + Lm). The results showed that TWBC were normal (~ 23,000 /μL) but both H/L ratios were highly variable. HT were differentiated from HC on nuclear and cytoplasmic criteria. Many HT and HC exhibited signs of deterioration. Some giant cells likely represented developmental stages. Multiple nucleoli were evident in others suggesting polyploidy. The more common lymphoid giants were usually round whereas monocyte types were irregular. Mn types were actively phagocytic often consuming thrombocytes or rarely erythrocytes (RBC). Giant cells of either type were in 13 of 24 (54%) of the duck hemograms. Conidiospores were detected in the blood smears of 4 ducks and bacteria in 2 with 1 duck having both. As all ducks were in apparent good health the blood born microorganisms likely represented low grade infections. Presumably the atypical cells were a response to the presence of toxins of bacterial and fungal origin. The presence of atypical heterophils and lymphocytes complicates interpretation of H/L ratios traditionally used to establish stress. As atypical cells can be found in the context of normal TWBC or nonstress H/L values cytological observations attain additional importance. Moreover, giant cells may be useful indicators of infection even without direct microscopic observation or isolation of the offending organisms.
Collapse
|
11
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
12
|
Solis-Cruz B, Hernandez-Patlan D, Petrone VM, Pontin KP, Latorre JD, Beyssac E, Hernandez-Velasco X, Merino-Guzman R, Arreguin MA, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of a Bacillus -Based Direct-Fed Microbial on Aflatoxin B1 Toxic Effects, Performance, Immunologic Status, and Serum Biochemical Parameters in Broiler Chickens. Avian Dis 2020; 63:659-669. [PMID: 31865681 DOI: 10.1637/aviandiseases-d-19-00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/17/2019] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to evaluate the effect of a commercial Bacillus direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + Bacillus direct-fed microbial). Each group had three replicates of 10 chickens (n = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens (P < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this Bacillus-DFM added at a concentration of 106 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this Bacillus-DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this Bacillus-DFM counteracts the toxic effects of aflatoxin B1.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Victor M Petrone
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Karine P Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul Porto Ale re RS 97105-900 Brazil
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Eric Beyssac
- Laboratoire de Biopharmacie et Technologie Pharmaceutique, UFR de Pharmacie, Faculté de Pharmacie, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | | |
Collapse
|
13
|
Integrative analysis of proteomic and metabonomics data for identification of pathways related to Rhizoma Paridis-induced hepatotoxicity. Sci Rep 2020; 10:6540. [PMID: 32300172 PMCID: PMC7162872 DOI: 10.1038/s41598-020-63632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical reports on hepatotoxicity that arise from Rhizoma Paridis have recently received widespread attention. Because the hepatotoxicity mechanism is little understood, this research strived to investigate the hepatotoxicity mechanism of Rhizoma Paridis extracts based on iTRAQ quantitative proteomics and metabonomics. The extraction solutions were administrated to rats for 7 days by gavage, and the hepatotoxicity was assessed through quantification of biochemical indexes and Oil red O staining. Additionally, the mechanism of hepatotoxicity was investigated by metabonomics based upon GC-MS and iTRAQ quantitative proteomics. The biochemical and histopathological analysis stood out that Rhizoma Paridis extract could induce liver injury, which was proved by the formation of fat droplets, the changes of mitochondrial structure, and biochemical parameters. The iTRAQ proteomics and metabonomics revealed that Rhizoma Paridis-induced hepatotoxicity was chiefly connected with the abnormal activity of mitochondrion function, which brought about oxidative stress injuries and inflammation, finally causing cell apoptosis. Collectively, we have provided previously uncharacterized hepatotoxic mechanism induced by Rhizoma Paridis and a reference to ensure its safe use in the future.
Collapse
|
14
|
Benkerroum N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E423. [PMID: 31936320 PMCID: PMC7013914 DOI: 10.3390/ijerph17020423] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
Abstract
There are presently more than 18 known aflatoxins most of which have been insufficiently studied for their incidence, health-risk, and mechanisms of toxicity to allow effective intervention and control means that would significantly and sustainably reduce their incidence and adverse effects on health and economy. Among these, aflatoxin B1 (AFB1) has been by far the most studied; yet, many aspects of the range and mechanisms of the diseases it causes remain to be elucidated. Its mutagenicity, tumorigenicity, and carcinogenicity-which are the best known-still suffer from limitations regarding the relative contribution of the oxidative stress and the reactive epoxide derivative (Aflatoxin-exo 8,9-epoxide) in the induction of the diseases, as well as its metabolic and synthesis pathways. Additionally, despite the well-established additive effects for carcinogenicity between AFB1 and other risk factors, e.g., hepatitis viruses B and C, and the hepatotoxic algal microcystins, the mechanisms of this synergy remain unclear. This study reviews the most recent advances in the field of the mechanisms of toxicity of aflatoxins and the adverse health effects that they cause in humans and animals.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
15
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
16
|
Jahanian E, Mahdavi AH, Asgary S, Jahanian R, Tajadini MH. Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Prev Vet Med 2019; 168:9-18. [PMID: 31097128 DOI: 10.1016/j.prevetmed.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/16/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023]
Abstract
The present study was conducted to investigate the effects of dietary supplementation of mannanoligosaccharides (MOS) on expression of hepatic immunological genes and immune responses in aflatoxin-contaminated broiler chicks. A total of 336 seven-day-old Ross broiler chicks were randomly allotted to 7 experimental treatments with 4 replicates and 12 birds per replicate. Experimental treatments consisted of 2 aflatoxin levels (0.5 and 2 ppm) and 3 supplemental MOS levels (0, 1 and 2 g/kg) as a 2 × 3 factorial arrangement in comparison with a control group (unchallenged group). The chicks were challenged with a mix of aflatoxins during 7-28 d of age. Results showed that aflatoxin challenge resulted in the lower antibody titers against infectious bronchitis (IBV) and bursal (IBD) diseases viruses. In addition, aflatoxin-contaminated birds had a lower (P < 0.0001) lymphocyte percentage and a decline in (P < 0.01) interleukin-2 (IL-2) mRNA abundance. Likewise, heterophil proportion, heterophil to lymphocyte ratio and gene expressions of hepatic interleukin-6 (IL-6) and C reactive protein (CRP) were raised (P < 0.001) by increasing dietary aflatoxin level. Dietary inclusion of MOS increased (P < 0.05) antibody titers against IBV, IBD and Newcastle disease virus. Lymphocyte proportion and hepatic IL-2 gene expression were greater (P < 0.0001) in MOS-supplemented birds. Furthermore, supplemental MOS decreased hepatic IL-6 and CRP abundances. Additionally, inclusion of 2 g/kg MOS resulted in the upregulation (P < 0.01) of hepatic IL-2 gene expression in birds contaminated with 0.5 ppm aflatoxin. The present results indicate that supplemental MOS could improve cellular immunity via the upregulation of hepatic IL-2 gene expression in birds challenged with aflatoxins.
Collapse
Affiliation(s)
- E Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - A H Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M H Tajadini
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Fouad AM, Ruan D, El-Senousey HK, Chen W, Jiang S, Zheng C. Harmful Effects and Control Strategies of Aflatoxin B₁ Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins (Basel) 2019; 11:E176. [PMID: 30909549 PMCID: PMC6468546 DOI: 10.3390/toxins11030176] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of aflatoxin B₁ (AFB₁) in poultry diets decreases the hatchability, hatchling weight, growth rate, meat and egg production, meat and egg quality, vaccination efficiency, as well as impairing the feed conversion ratio and increasing the susceptibility of birds to disease and mortality. AFB₁ is transferred from poultry feed to eggs, meat, and other edible parts, representing a threat to the health of consumers because AFB₁ is carcinogenic and implicated in human liver cancer. This review considers how AFB₁ produced by Aspergillus flavus and Aspergillus parasiticus strains can affect the immune system, antioxidant defense system, digestive system, and reproductive system in poultry, as well as its effects on productivity and reproductive performance. Nutritional factors can offset the effects of AFB₁ in poultry and, thus, it is necessary to identify and select suitable additives to address the problems caused by AFB₁ in poultry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Wei Chen
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Shouqun Jiang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
18
|
Solis-Cruz B, Hernandez-Patlan D, Petrone VM, Pontin KP, Latorre JD, Beyssac E, Hernandez-Velasco X, Merino-Guzman R, Owens C, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of Cellulosic Polymers and Curcumin to Reduce Aflatoxin B1 Toxic Effects on Performance, Biochemical, and Immunological Parameters of Broiler Chickens. Toxins (Basel) 2019; 11:E121. [PMID: 30781456 PMCID: PMC6410090 DOI: 10.3390/toxins11020121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
To evaluate the effect of cellulosic polymers (CEL) and curcumin (CUR) on aflatoxin B1 (AFB1) toxic effects on performance, and the biochemical and immunological parameters in broiler chickens, 150 one-day-old male broiler chicks were randomly allocated into five groups with three replicates of 10 chickens per pen: Negative Control (feed); AFB1 (feed + 2 ppm AFB1); CUR (feed + 2 ppm AFB1 + Curcumin 0.2%); CEL (feed + 2 ppm AFB1 + 0.3% Cellulosic polymers); and, CEL + CUR (feed + 2 ppm AFB1 + 0.3% Cellulose polymers + 0.2% Curcumin). Every week, body weight, body weight gain, feed intake, and feed conversion ratio were calculated. On day 21, liver, spleen, bursa of Fabricius, and intestine from five broilers per replicate per group were removed to obtain relative organ weight. Histopathological changes in liver, several biochemical biomarkers, antibody titers, and muscle and skin pigmentation were also recorded. Dietary addition of 0.3% CEL and 0.2% CUR separately significantly diminished some of the toxic effects resulting from AFB1 on performance parameters, relative organs weight, histopathology, immune response, and serum biochemical variables (P < 0.05); however, the combination of CUR and CEL showed a better-integrated approach for the management of poultry health problems that are related with the consumption of AFB1, since they have different mechanisms of action with different positive effects on the responses of broiler chickens.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Victor M Petrone
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | - Karine P Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil.
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Eric Beyssac
- Laboratoire de Biopharmacie et Technologie Pharmaceutique, UFR de Pharmacie, Faculté de Pharmacie, Université Clermont Auvergne, 63001 Clermont-Ferrand, France.
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico.
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico.
| | - Casey Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, Estado de Mexico, Mexico.
| | | |
Collapse
|
19
|
Khaleghipour B, Khosravinia H, Toghiyani M, Azarfar A. Effects of silymarin on productive performance, liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Behrouz Khaleghipour
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| | | | - Majid Toghiyani
- Department of Animal Science, Agriculture Faculty, Islamic Azad University Khorasgan Branch, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| |
Collapse
|
20
|
Rauf I, Wajid A, Hussain I, Ather S, Ali MA. Immunoprotective role of LaSota vaccine under immunosuppressive conditions in chicken challenged with velogenic avian avulavirus-1. Trop Anim Health Prod 2019; 51:1357-1365. [DOI: 10.1007/s11250-019-01814-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
|
21
|
The molecular mechanism of cell cycle arrest in the Bursa of Fabricius in chick exposed to Aflatoxin B 1. Sci Rep 2018; 8:1770. [PMID: 29379099 PMCID: PMC5789014 DOI: 10.1038/s41598-018-20164-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 shows potent hepatotoxic, carcinogenic, genotoxic, immunotoxic potential in humans and many species of animals. The aim of this study was to clarify the underlying mechanism of G0G1 phase and G2M phase arrest of cell cycle in the bursa of Fabricius in broilers exposed to dietary AFB1. 144 one-day-old healthy Cobb broilers were randomly divided into two groups and fed on control diet and 0.6 mg·Kg−1 AFB1 diet for 3 weeks. Histological observation showed that AFB1 induced the increase of nuclear debris and vacuoles in lymphoid follicle of BF. Results of flow cytometry studies showed that bursal cells arrested in G2M phase at 7 days of age and blocked in G0G1 phase at 14 and 21 days of age following exposure to AFB1. The qRT-PCR analysis indicated that cell cycle arrested in G2M phase via ATM-Chk2-cdc25-cyclin B/cdc2 pathway, and blocked in G0G1 phase through ATM-Chk2-cdc25-cyclin D/CDK6 pathway and ATM-Chk2-p21-cyclin D/CDK6 route. In a word, our results provided new insights that AFB1 diet induced G2M and G0G1 phase blockage of BF cells in different periods, and different pathways were activated in different arrested cell cycle phase.
Collapse
|
22
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 - Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017; 4:408-414. [PMID: 28959666 PMCID: PMC5615163 DOI: 10.1016/j.toxrep.2017.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity and gene expression changes underlying these effects were investigated. Rats were orally administered three doses (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reaction. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospholipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) downregulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively. A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1 in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart disease.
Collapse
Affiliation(s)
- Oluwakemi Anuoluwapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Chibueze Uchechukwu Duru
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Ogheneworo Joel Ebebeinwe
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Anthonia Obhio Abiodun
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Boluwaji Oluwamayowa Oyeniyi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Francis Adedayo Faduyile
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
23
|
Cotter PF, Bakst MR. A comparison of Mott cell morphology of three avian species. II. - Bad behavior by plasmacytes? Poult Sci 2017; 96:325-331. [DOI: 10.3382/ps/pew288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022] Open
|
24
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null-- kyse] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 4117=cast((chr(113)||chr(112)||chr(98)||chr(118)||chr(113))||(select (case when (4117=4117) then 1 else 0 end))::text||(chr(113)||chr(118)||chr(106)||chr(118)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null-- yenw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null,null,null-- aivx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 8520=4918-- wjtc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 2315=dbms_pipe.receive_message(chr(100)||chr(120)||chr(98)||chr(72),5)-- yhhg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6041=(select 6041 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null-- fzfr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
|
33
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6523=6523-- siki] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
35
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 waitfor delay '0:0:5'-- jxwo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
36
|
|
37
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and sleep(5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and (select 2086 from(select count(*),concat(0x7170627671,(select (elt(2086=2086,1))),0x71766a7671,floor(rand(0)*2))x from information_schema.character_sets group by x)a)-- ppml] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6041=(select 6041 from pg_sleep(5))-- herh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
40
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null-- vapp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null-- fjky] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 6523=6523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null,null-- mvdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
|
45
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 9167=7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and (select 2086 from(select count(*),concat(0x7170627671,(select (elt(2086=2086,1))),0x71766a7671,floor(rand(0)*2))x from information_schema.character_sets group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
|
48
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null-- uwyg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 2315=dbms_pipe.receive_message(chr(100)||chr(120)||chr(98)||chr(72),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
50
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and sleep(5)-- duzb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|