1
|
Casarin M, Toniolo I, Todesco M, Carniel EL, Astolfi L, Morlacco A, Moro FD. Mechanical characterization of porcine ureter for the evaluation of tissue-engineering applications. Front Bioeng Biotechnol 2024; 12:1412136. [PMID: 38952671 PMCID: PMC11215493 DOI: 10.3389/fbioe.2024.1412136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction: Clinics increasingly require readily deployable tubular substitutes to restore the functionality of structures like ureters and blood vessels. Despite extensive exploration of various materials, both synthetic and biological, the optimal solution remains elusive. Drawing on abundant literature experiences, there is a pressing demand for a substitute that not only emulates native tissue by providing requisite signals and growth factors but also exhibits appropriate mechanical resilience and behaviour. Methods: This study aims to assess the potential of porcine ureters by characterizing their biomechanical properties in their native configuration through ring and membrane flexion tests. In order to assess the tissue morphology before and after mechanical tests and the eventual alteration of tissue microstructure that would be inserted in material constitutive description, histological staining was performed on samples. Corresponding computational analyses were performed to mimic the experimental campaign to identify the constitutive material parameters. Results: The absence of any damages to muscle and collagen fibres, which only compacted after mechanical tests, was demonstrated. The experimental tests (ring and membrane flexion tests) showed non-linearity for material and geometry and the viscoelastic behaviour of the native porcine ureter. Computational models were descriptive of the mechanical behaviour ureteral tissue, and the material model feasible. Discussion: This analysis will be useful for future comparison with decellularized tissue for the evaluation of the aggression of cell removal and its effect on microstructure. The computational model could lay the basis for a reliable tool for the prediction of solicitation in the case of tubular substitutions in subsequent simulations.
Collapse
Affiliation(s)
- Martina Casarin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padua, Padova, Italy
| | - Martina Todesco
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padova, Italy
| | | | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Alessandro Morlacco
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Fabrizio Dal Moro
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| |
Collapse
|
2
|
Abuharb AI, Alzarroug AF, Algahtani SN, Alghamdi HK, Alosaimi FA, Alsuwayna N, Almughira AI. The Impact and Implications of Regenerative Medicine in Urology. Cureus 2024; 16:e52264. [PMID: 38352111 PMCID: PMC10863929 DOI: 10.7759/cureus.52264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Urology focuses on the treatment of genitourinary disorders through therapies ranging from lifestyle changes to advanced surgeries; the field has recently incorporated robotic and minimally invasive technologies that have improved patient outcomes and reduced hospital stays and complications. However, these methods still have certain limitations. Regenerative medicine, focusing on natural repair abilities, can be an effective and safer alternative. This review aims to examine the impact of regenerative medicine in urology. We adopted a systematic review design by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An exhaustive online literature search involving the databases PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar was conducted spanning the period between January 2010 and October 2023. Data were extracted from studies on regenerative medicine in urology with a special focus on efficacy and safety. Data from 16 studies were analyzed, which showed that cell therapy, biological materials, and tissue engineering are generally used in the field of urinary diseases. The main applications include the regeneration of urinary tissue, the correction of urinary incontinence, the treatment of erectile dysfunction, the reconstruction of ureteric defects, and the formation of bladder tissue. The study findings generally lack definitive conclusions on effectiveness and safety. While our results indicate that regenerative medicine is successful on a subjective level, more clinical trials are needed to establish its effectiveness and safety.
Collapse
Affiliation(s)
- Abdullah I Abuharb
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Saad N Algahtani
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Hatan K Alghamdi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad A Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Nasser Alsuwayna
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | |
Collapse
|
3
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Kuniakova M, Klein M, Galfiova P, Csobonyeiova M, Feitscherova C, Polak S, Novakova ZV, Topoliova K, Trebaticky B, Varga I, Danisovic L, Ziaran S. Decellularization of the human urethra for tissue engineering applications. Exp Biol Med (Maywood) 2023; 248:1034-1042. [PMID: 37073134 PMCID: PMC10581165 DOI: 10.1177/15353702231162092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/24/2023] [Indexed: 04/20/2023] Open
Abstract
Recently, several scaffolds have been introduced for urethral tissue engineering. However, acellular human urethral scaffold harvested from deceased donors may provide significant advantages compared to synthetic, composite, or other biological scaffolds. This study aims to develop the protocol for decellularization of the human urethra that preserves substantial extracellular matrix (ECM) components, which are essential for subsequent recellularization mimicking the natural environment of the native ECM. A total of 12 human urethras were harvested from deceased donors. An equal part of every harvested urethra was used as a control sample for analyses. The protocol design was based on the enzyme-detergent-enzyme method. Trypsin and Triton X-100 were used to remove cells, followed by DNase treatment to remove DNA residues. Subsequently, the specimens were continually rinsed in deionized water for seven days. The efficiency of decellularization was determined by histochemistry, immunohistochemical staining, scanning electron microscopy (SEM), and DNA quantification. Histological analysis confirmed cell removal and preservation of urethral structure after decellularization. The preservation of collagen IV and fibronectin was confirmed by histologic examination and immunohistochemical staining. SEM confirmed the maintenance of the ultrastructural architecture of ECM and fibers. DNA content in decellularized urethra was significantly lower compared to the native sample (P < 0.001), and so the criteria for decellularized tissue were met. Cytotoxicity analysis data showed that the matrix-conditioned medium did not contain soluble toxins and had no significant inhibitory effect on cell proliferation, providing evidence that the decellularized samples are not toxic. This study demonstrates the feasibility of the enzyme-detergent-enzyme-based decellularization protocol for removing cellular components and maintaining urethral ECM and its ultrastructure. Moreover, obtained results provide solid ground for recellularization and urethral tissue engineering, which will follow.
Collapse
Affiliation(s)
- Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava 811 08, Slovakia
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Maria Csobonyeiova
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Claudia Feitscherova
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Stefan Polak
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava 811 08, Slovakia
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
| | - Katarina Topoliova
- Department of Urology, Faculty of Medicine, Comenius University Bratislava, Bratislava 833 05, Slovakia
| | - Branislav Trebaticky
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Department of Urology, Faculty of Medicine, Comenius University Bratislava, Bratislava 833 05, Slovakia
| | - Ivan Varga
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University Bratislava, Bratislava 811 08, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University Bratislava 811 08, Slovakia
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Piestany 921 12, Slovakia
- Department of Urology, Faculty of Medicine, Comenius University Bratislava, Bratislava 833 05, Slovakia
| |
Collapse
|
5
|
Song B, Fang L, Mao X, Ye X, Yan Z, Ma Q, Shi Z, Hu Y, Zhu Y, Cheng Y. Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway. Front Bioeng Biotechnol 2023; 10:1092543. [PMID: 36686259 PMCID: PMC9849368 DOI: 10.3389/fbioe.2022.1092543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: The repair of a diseased ureter is an urgent clinical issue that needs to be solved. A tissue-engineered scaffold for ureteral replacement is currently insufficient due to its incompetent bioactivity, especially in long-segment abnormalities. The primary reason is the failure of urothelialization on scaffolds. Methods: In this work, we investigated the ability of gelatin-grafted tubular scaffold in ureteral repairment and its related biological mechanism. We designed various porous asymmetric poly (L-lactic acid) (PLLA)/poly (L-lactide-co-e-caprolactone) (PLCL) tubes with a thermally induced phase separation (TIPS) method via a change in the ratio of solvents (named PP). To regulate the phenotype of urothelial cells and ureteral reconstruction, gelatin was grafted onto the tubular scaffold using ammonolysis and glutaraldehyde crosslinking (named PP-gel). The in vitro and in vivo experiments were performed to test the biological function and the mechanism of the scaffolds. Results and Discussion: The hydrophilicity of the scaffold significantly increased after gelatin grafting, which promoted the adhesion and proliferation of urothelial cells. Through subcutaneous implantation in rats, PP-gel scaffolds demonstrated good biocompatibility. The in vivo replacement showed that PP-gel could improve urothelium regeneration and maintain renal function after the ureter was replaced with an ∼4 cm-long PP-gel tube using New Zealand rabbits as the experimental animals. The related biologic mechanism of ureteral reconstruction was detected in detail. The gelatin-grafted scaffold upgraded the integrin α6/β4 on the urothelial cell membrane, which phosphorylates the focal adhesion kinase (FAK) and enhances urothelialization via the MAPK/Erk signaling pathway. Conclusion: All these results confirmed that the PP46-gel scaffold is a promising candidate for the constitution of an engineered ureter and to repair long-segment ureteral defects.
Collapse
Affiliation(s)
- Baiyang Song
- School of Medicine, Ningbo University, Ningbo, China,Department of Urology, Ningbo First Hospital, Ningbo, China
| | - Li Fang
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Xufeng Mao
- School of Medicine, Ningbo University, Ningbo, China
| | - Xianwang Ye
- Department of Radiology, Ningbo First Hospital, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Qi Ma
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Zewen Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiwei Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| |
Collapse
|
6
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
7
|
Davies JA, Elhendawi M, Palakkan AA, Sallam M. Renal engineering: strategies to address the problem of the ureter. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100334. [PMID: 36644495 PMCID: PMC7614056 DOI: 10.1016/j.cobme.2021.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current techniques for making renal organoids generate tissues that show function when transplanted into a host, but they have no ureter through which urine can drain. There are at least 4 possible strategies for adding a ureter: connecting to ta host ureter; inducing an engineered kidney to make a ureter; making a stem-cell derived ureter; and replacement of only damaged cortex and outer medulla, using remaining host calyces, pelvis and ureter. Here we review progress: local BMP4 can induce a collecting duct tubule to become a ureter; a urothelial tube can be produced directly from pluripotent cells, and connect to the collecting duct system of a renal organoid; it is possible to graft ES cell-derived ureters into host kidney rudiments and see connection, smooth muscle development and spontaneous contraction, but this has not yet been achieved with all components being derived from ES cells. Remaining problems are discussed.
Collapse
Affiliation(s)
- Jamie A. Davies
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK,Centre for Mammalian Synthetic Biology, University of Edinburgh, CH Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Mona Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK,Clinical Pathology Department, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Anwar A. Palakkan
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK
| | - May Sallam
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK,Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Adamowicz J, Kuffel B, Van Breda SV, Pokrwczynska M, Drewa T. Reconstructive urology and tissue engineering: Converging developmental paths. J Tissue Eng Regen Med 2019; 13:522-533. [DOI: 10.1002/term.2812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | - Blazej Kuffel
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | | | - Marta Pokrwczynska
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| |
Collapse
|
11
|
Lü WD, Sun RF, Hu YR, Lu JR, Gu L, Liu ZG, Lei GY, Qiang Z, Cai L. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater 2018; 71:460-473. [PMID: 29555461 DOI: 10.1016/j.actbio.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Acellular tumor extracellular matrices (ECMs) have limitations when employed as three-dimensional (3D) scaffolds for tumor engineering. In this work, methylene blue-mediated photooxidation was used to crosslink acellular tumor ECMs. Photooxidative crosslinking greatly increased the stiffness of acellular tumor ECM scaffolds but barely altered the Amide III band of the secondary structure of polypeptides and proteins. MCF-7, HepG2 and A549 cells cultured on photooxidatively crosslinked acellular tumor ECM scaffolds exhibited greater cell number per scaffold, more IL-8 and VEGF secretion, and increase migration and invasion abilities than cells cultured on uncrosslinked acellular tumor ECM scaffolds. The three tumor cell lines cultured on the stiffer photooxidatively crosslinked acellular matrices acquire mesenchymal properties (mesenchymal shift) and dedifferentiated phenotypes. Furthermore, the malignant phenotypes induced in vitro when cultured on the crosslinked scaffold promoted the in vivo tumor growth of BALB/c nude mice. Finally, the dedifferentiated cancer cells, including MCF-7, HepG2 and A549 cells, were less sensitive to chemotherapeutics. Thus, photooxidatively crosslinked acellular tumor ECMs have potentials as 3D tumor engineering scaffolds for cancer research. STATEMENT OF SIGNIFICANCE Natural material scaffolds have been successfully used as 3D matrices to study the in vitro tumor cell growth and mimic the in vivo tumor microenvironment. Acellular tumor ECMs are developed as 3D scaffolds for tumor engineering but have limitations in terms of elastic modulus and cell spheroid formation. Here we use methylene blue-mediated photooxidation to crosslink acellular tumor ECMs and investigate the influence of photooxidative crosslinking on structural, mechanical and biological characteristics of acellular tumor ECM scaffolds. It is the first study to evaluate the feasibility of photooxidatively crosslinked acellular tumor ECMs as 3D scaffolds for cancer research and the results are encouraging. Moreover, this study provides new research areas in regard to photodynamic therapy (PDT) for Cancer.
Collapse
Affiliation(s)
- Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ye-Rong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Jan-Rong Lu
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lu Gu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guang-Yan Lei
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhun Qiang
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lin Cai
- Department of Pathology, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
12
|
Towards a Bioengineered Kidney: Recellularization Strategies for Decellularized Native Kidney Scaffolds. Int J Artif Organs 2017; 40:150-158. [DOI: 10.5301/ijao.5000564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Patients with end-stage renal disease often undergo dialysis as a partial substitute for kidney function while waiting for their only treatment option: a kidney transplant. Several research directions emerged for alternatives in support of the ever-growing numbers of patients. Recent years brought big steps forward in the field, with researchers questioning and improving the current dialysis devices as well as moving towards the design of a bioengineered kidney. Whole-organ engineering is also being explored as a possibility, making use of animal or human kidney scaffolds for engineering a transplantable organ. While this is not a new strategy, having been applied so far for thin tissues, it is a novel approach for complex organs such as the kidneys. Kidneys can be decellularized and the remaining scaffold consisting of an extracellular matrix can be repopulated with (autologous) cells, aiming at growing ex vivo a fully transplantable organ. In a broader view, such organs might also be used for a better understanding of fundamental biological concepts and disease mechanisms, drug screening and toxicological investigations, opening new pathways in the treatment of kidney disease. Decellularization of whole organs has been widely explored and described; therefore, this manuscript only briefly reviews some important considerations with an emphasis on scaffold decontamination, but focuses further on recellularization strategies. Critical aspects, including cell types and sources that can be used for recellularization, seeding strategies and possible applications beyond renal replacement are discussed.
Collapse
|
13
|
Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J, Misiuga M, Nowak M, Bielecki T, Kasperczyk A. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix' scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater 2017; 106:909-923. [DOI: 10.1002/jbm.b.33865] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marek Kawecki
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- University of Technology and Humanities in Bielsko-Biała; Department of Health Science in Bielsko-Biała; Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | | | - Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Malgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- The Medical University of Silesia in Katowice; Unit for Chronic Wound Treatment Organization, Nursery Division; School of Healthcare in Zabrze Poland
| | - Marcelina Misiuga
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Mariusz Nowak
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Tomasz Bielecki
- Saint Barbara's Clinical Hospital number 5 in Sosnowiec; Clinical Department of Orthopaedics, Trauma; Oncologic and Reconstructive Surgery Poland
| | - Aleksandra Kasperczyk
- Medical University of Silesia in Katowice; Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze
| |
Collapse
|
14
|
Xiao SW, Wang PC, Fu WJ, Wang ZX, Li G, Zhang X. Novel perfusion-decellularized method to prepare decellularized ureters for ureteral tissue-engineered repair. J Biosci Bioeng 2016; 122:758-764. [DOI: 10.1016/j.jbiosc.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
|
15
|
Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood) 2016; 241:1015-24. [PMID: 27190254 DOI: 10.1177/1535370216648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds.
Collapse
Affiliation(s)
| | - Brendan Ac Harley
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Acellularization-Induced Changes in Tensile Properties Are Organ Specific - An In-Vitro Mechanical and Structural Analysis of Porcine Soft Tissues. PLoS One 2016; 11:e0151223. [PMID: 26960134 PMCID: PMC4784745 DOI: 10.1371/journal.pone.0151223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. Materials and Methods Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue’s water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. Results Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. Discussion Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin.
Collapse
|