1
|
Hurtado-Ribeira R, Villanueva-Bermejo D, García-Risco MR, Hernández MD, Sánchez-Muros MJ, Fornari T, Vázquez L, Martin D. Evaluation of the interrelated effects of slaughtering, drying, and defatting methods on the composition and properties of black soldier fly ( Hermetia illucens) larvae fat. Curr Res Food Sci 2023; 7:100633. [PMID: 38034945 PMCID: PMC10681923 DOI: 10.1016/j.crfs.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The interrelated effect of different slaughtering, drying and defatting methods of black soldier fly larvae (BSFL) on the lipid composition and properties of the fat was studied. Blanching and freezing were compared as slaughtering methods, oven or freeze-drying as drying methods, and mechanical pressing or supercritical fluid extraction (SFE) as defatting methods. The different modes of slaughtering, drying, and defatting, along with both binary and ternary interactions caused significant effects on processes yields, lipid composition, moisture content and thermal properties. Thus, considering the defatting degree and the yield in total valued products (defatted meal plus fat), the combination of blanching, freeze-drying plus mechanical pressing was the worst option (51.2% and 87.5%, respectively). In contrast, the other combinations demonstrated better and comparable efficiency, although SFE is preferable for defatting (83.2% and 96.9%, respectively). The content of major fatty acids (lauric, palmitic and myristic acids) was significantly affected by the BSFL treatments, although with unsignificant impact on the total saturated fatty acids content. To preserve the integrity of the fat, the combination of blanching and oven-drying was preferred, as non-thermal methods of slaughtering and drying caused intense lipolysis, releasing free fatty acids (FFA) in the range of 18.6-23.5%. To achieve the lowest moisture content in the fats (≤0.1%), oven-drying with mechanical pressing were desired, regardless of the slaughtering method; while values > 1% were reached for freezing, freeze-drying and SFE. Both differences in FFA and moisture contents caused different thermal behaviors in the samples. Specially, the melting temperature was lower for samples with higher FFA and moisture contents, with a notable difference when freezing, freeze-drying and SFE were combined (14.5 °C vs 30.6 °C, as the mean value for the rest of samples). The different modes of processing did not affect the minor lipid compounds. Therefore, the modes employed for slaughtering, drying, and defatting of BSFL determine, either individually or in combination, the process yields, composition, and properties of the fat.
Collapse
Affiliation(s)
- Raúl Hurtado-Ribeira
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Villanueva-Bermejo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mónica R. García-Risco
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M. Dolores Hernández
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Estación de Acuicultura Marina, Puerto de San Pedro Del Pinatar, 30740, Murcia, Spain
| | | | - Tiziana Fornari
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de La Alimentación (CIAL) (CSIC–UAM), 28049, Madrid, Spain
- Sección Departamental de Ciencias de La Alimentación. Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
2
|
Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors. Sci Rep 2021; 11:21419. [PMID: 34725378 PMCID: PMC8560942 DOI: 10.1038/s41598-021-00421-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.
Collapse
|
4
|
Vázquez L, Bañares C, Torres CF, Reglero G. Green Technologies for the Production of Modified Lipids. Annu Rev Food Sci Technol 2020; 11:319-337. [PMID: 31910657 DOI: 10.1146/annurev-food-032519-051701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the use of green solvents in enzyme catalysis of lipophilic compounds is achieving increasing interest from different perspectives. Conducting reactions under supercritical fluids, ionic liquids, deep eutectic solvents, and other green solvents affords opportunities to overcome problems associated with the lack of solubility of lipids in conventional solvents and the poor miscibility of substrates. Research on the biocatalytic production of modified lipids in the framework of green chemistry is conducted to improve the efficiency of obtaining the desired products as well as the selectivity, stability, and activity of the enzymatic systems. This overview describes the fundamentals and characteristics of several types of green solvents, the main variables involved in enzymatic processes, and examples and applications in the field of lipid modification.
Collapse
Affiliation(s)
- Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail:
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (CSIC-UAM), 28049 Madrid, Spain; e-mail: .,Department of Production and Development of Foods for Health, IMDEA-Food Institute, CEI (UAM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
5
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Tobback P, Rincon AM, Horvath Z, Lambré C. Re-evaluation of mono- and di-glycerides of fatty acids (E 471) as food additives. EFSA J 2017; 15:e05045. [PMID: 32625340 PMCID: PMC7010209 DOI: 10.2903/j.efsa.2017.5045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of mono- and di-glycerides of fatty acids (E 471) when used as a food additive. The Panel considered that it is very likely that hydrolysis of mono- and di-glycerides of fatty acids by lipases in the gastrointestinal tract would occur, resulting in the release of glycerol and fatty acids. Glycerol (E 422) and fatty acids (E 570) have been re-evaluated and the Panel concluded that there was no safety concern regarding their use as food additives. Toxicological studies with mono- and di-glycerides rich in unsaturated fatty acids were considered for the re-evaluation of E 471. No evidence for adverse effects was reported in short-term, subchronic studies, chronic, reproductive and developmental toxicity studies. Neither carcinogenic potential nor a promotion effect in initiation/promotion was reported. The available studies did not raise any concern with regard to genotoxicity. The refined estimates were based on 31 out of 84 food categories in which E 471 is authorised. The Panel noted that the contribution of E 471 represented at the mean only 0.8-3.5% of the recommended daily fat intake. Based on the approach described in the conceptual framework for the risk assessment of certain food additives re-evaluated under Commission Regulation (EU) No 257/2010 and taking into account the considerations mentioned above, the Panel concluded that there was no need for a numerical acceptable daily intake (ADI) and that the food additive mono- and di-glycerides of fatty acids (E 471) was of no safety concern at the reported uses and use levels. The Panel recommended some modifications of the EU specifications for E 471.
Collapse
|