1
|
Ahmad M, Mohamed A, Amiras D, Siracusa F, Shalhoub J, Davies AH. Sarcopenia in the foot on magnetic resonance imaging in patients with diabetes mellitus - a systematic review. Clin Diabetes Endocrinol 2024; 10:31. [PMID: 39449093 PMCID: PMC11515346 DOI: 10.1186/s40842-024-00194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Sarcopenia is defined by low measures of muscle quantity, quality and reduced physical performance. It is associated with higher levels of frailty. Individuals with diabetes mellitus (DM) undergo sarcopenia at an accelerated rate resulting in structural changes potentially culminating in limb loss. AIMS To review the evidence on methods of detecting and measuring sarcopenic changes on magnetic resonance imaging (MRI) in the foot in patients with diabetes. METHODS A literature review was conducted in accordance with PRISMA guidelines. We searched Embase and Medline (via Ovid), CINAHL (via Ebsco Host), Web of Science and Scopus as well as the grey literature. The MeSH terms "sarcopenia" AND "diabetes mellitus" AND "magnetic resonance imaging" were employed in the primary search string. RESULTS 874 studies were identified. 404 articles were excluded in the title and abstract screening. 33 studies were assessed for eligibility after abstract and title screening was completed by two reviewers. 7 studies evaluating sarcopenia in the foot were included in the final review. CONCLUSION Sarcopenic changes are evident on MRI of the foot in patients with diabetes and is profound in patients with diabetic neuropathy. The general extent and severity of sarcopenia seems to correlate with clinical scores to assess neuropathy and is implicated in the development of diabetic foot disease.
Collapse
Affiliation(s)
- Manal Ahmad
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, 4th Floor, North Wing, Charing Cross Hospital, Fulham Palace Road, London, United Kingdom.
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | | | - Dimitri Amiras
- Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Francesca Siracusa
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, 4th Floor, North Wing, Charing Cross Hospital, Fulham Palace Road, London, United Kingdom
| | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, 4th Floor, North Wing, Charing Cross Hospital, Fulham Palace Road, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alun Huw Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, 4th Floor, North Wing, Charing Cross Hospital, Fulham Palace Road, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
2
|
Rojas-Torres F, Infanzón-Talango H, García-Ulloa AC, Hernández-Jiménez S, Rodríguez-Reyes G. Exploring plantar pressure distribution in patients with newly diagnosed diabetes: Implications for foot ulcer prevention in an overweight Mexican population. ENDOCRINOL DIAB NUTR 2024; 71:340-347. [PMID: 39374996 DOI: 10.1016/j.endien.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Elevated plantar pressure (PP) constitutes a risk factor for developing foot ulcers. Once present, elevated PP increases morbidity and mortality in patients with diabetes. Given the high prevalence of overweight and obesity in the Mexican population, this study aimed to describe the magnitudes and the distribution of the PP observed in a sample of newly diagnosed patients with diabetes, adjusting for body mass index (BMI) groups (normal weight, overweight, grade I obesity, and grade II and III obesity). MATERIALS AND METHODS A total of 250 volunteers attending a comprehensive care program for the management of type 2 diabetes received foot assessments that included vascular and neurological evaluation, the identification of musculoskeletal changes, and measurements of PP. RESULTS Diabetic neuropathy and peripheral arterial disease were present in 21.6% and 11.2% of all participants. Musculoskeletal alterations were present in 70.8% of participants. A positive and significant correlation (p<0.001) was observed between BMI and the peak PP of all anatomical regions assessed. After adjusting for BMI, significant differences (p<0.001) were seen between groups. The metatarsal region, particularly under the third metatarsal head, denoted the highest magnitudes across all BMI. CONCLUSIONS Periodic PP assessment is recommended to identify the distribution of high-pressure points along the plantar surface. However, as a preventive measure, it is suggested to encourage patients with diabetes and overweight or obesity to wear appropriate footwear and pressure-relief insoles to relieve high-pressure areas - often seen in these populations - to help prevent foot complications.
Collapse
Affiliation(s)
- Francis Rojas-Torres
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Infanzón-Talango
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ana Cristina García-Ulloa
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Hernández-Jiménez
- Centro de Atención Integral del Paciente con Diabetes (CAIPaDi), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Rodríguez-Reyes
- Laboratorio de Ortesis y Prótesis, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
| |
Collapse
|
3
|
Ramadhan GT, Haris F, Jan YK, Liau BY, Chang WT, Tai CC, Lung CW. Effect of different inner pressures of air insoles and walking durations on plantar pressure time integral. Sci Rep 2024; 14:19272. [PMID: 39164374 PMCID: PMC11336220 DOI: 10.1038/s41598-024-70312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Air insoles have provided insights for reducing the risk of diabetic foot ulcers (DFU). The pressure time integral (PTI) is an effective assessment that considers the time effect in various physical activities. We investigated the interactions between three different insole inner pressures (80, 160, and 240 mmHg) and two walking durations (10 and 20 min). The big toe (T1), first metatarsal head (M1), and second metatarsal head (M2) were investigated in 13 healthy participants. One-way analysis of variance (ANOVA) showed that the effects of each insole inner pressure significantly differed (P < 0.05) with a 10 min walking duration. The PTI values resulting from 80 mmHg in M2 (38.4 ± 3.8, P = 0.002) and 160 mmHg in M1 (44.3 ± 4.3, P = 0.027) were lower than those from 240 mmHg. Additionally, the paired t test showed that the effects of each walking duration were also considerably different at 160 mmHg. The PTI at 10 min was lower than that at 20 min in M1 (44.31 ± 4.31, P = 0.015) and M2 (47.14 ± 5.27, P = 0.047). Thus, we suggest that walking with a pressure of 160 mmHg for 10 min has a lower risk of DFU.
Collapse
Affiliation(s)
- Gilang Titah Ramadhan
- Department of Computer Science and Information Engineering, Asia University, Taichung, 413305, Taiwan
| | - Fahni Haris
- School of Nursing, Universitas Muhammadiyah Yogyakarta, Yogyakarta, 55183, Indonesia
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Ben-Yi Liau
- Department of Automatic Control Engineering, Feng Chia University, Taichung, 407102, Taiwan
| | - Wen-Thong Chang
- Department of Computer Science and Information Engineering, Asia University, Taichung, 413305, Taiwan
| | - Chien-Cheng Tai
- School of Public Health, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.
- Department of Creative Product Design, Asia University, Taichung, 413305, Taiwan.
| |
Collapse
|
4
|
Ren Y, Wang H, Song X, Wu Y, Lyu Y, Zeng W. Advancements in diabetic foot insoles: a comprehensive review of design, manufacturing, and performance evaluation. Front Bioeng Biotechnol 2024; 12:1394758. [PMID: 39076210 PMCID: PMC11284111 DOI: 10.3389/fbioe.2024.1394758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024] Open
Abstract
The escalating prevalence of diabetes has accentuated the significance of addressing the associated diabetic foot problem as a major public health concern. Effectively offloading plantar pressure stands out as a crucial factor in preventing diabetic foot complications. This review comprehensively examines the design, manufacturing, and evaluation strategies employed in the development of diabetic foot insoles. Furthermore, it offers innovative insights and guidance for enhancing their performance and facilitating clinical applications. Insoles designed with total contact customization, utilizing softer and highly absorbent materials, as well as incorporating elliptical porous structures or triply periodic minimal surface structures, prove to be more adept at preventing diabetic foot complications. Fused Deposition Modeling is commonly employed for manufacturing; however, due to limitations in printing complex structures, Selective Laser Sintering is recommended for intricate insole designs. Preceding clinical implementation, in silico and in vitro testing methodologies play a crucial role in thoroughly evaluating the pressure-offloading efficacy of these insoles. Future research directions include advancing inverse design through machine learning, exploring topology optimization for lightweight solutions, integrating flexible sensor configurations, and innovating new skin-like materials tailored for diabetic foot insoles. These endeavors aim to further propel the development and effectiveness of diabetic foot management strategies. Future research avenues should explore inverse design methodologies based on machine learning, topology optimization for lightweight structures, the integration of flexible sensors, and the development of novel skin-like materials specifically tailored for diabetic foot insoles. Advancements in these areas hold promise for further enhancing the effectiveness and applicability of diabetic foot prevention measures.
Collapse
Affiliation(s)
- Yuanfei Ren
- The First Department of Hand and Foot Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hao Wang
- Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Xiaoshuang Song
- Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Yanli Wu
- Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Yongtao Lyu
- Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - Wei Zeng
- Department of Mechanical Engineering, New York Institute of Technology, New York, NY, United States
| |
Collapse
|
5
|
Brady LM, Wukelic C, Ledoux WR. A method for automated masking and plantar pressure analysis using segmented computed tomography scans. Gait Posture 2024; 111:92-98. [PMID: 38657477 PMCID: PMC11127777 DOI: 10.1016/j.gaitpost.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Plantar pressure, a common gait and foot biomechanics measurement, is typically analyzed using proprietary commercial software packages. Regional plantar pressure analysis is often reported in terms of underlying bony geometry, and recent advances in image processing and accessibility have made computed tomography, radiographs, magnetic resonance imaging, or other imaging methods more popular for incorporating bone analyses in biomechanics. RESEARCH QUESTION Can a computed tomography-based regional mask provide comparable regional analysis to commercial plantar pressure software and can the increased flexibility of an in-house method obtain additional insight from common measurements? METHODS A plantar pressure analysis method was developed based on bony geometry from computed tomography scans to calculate peak pressure, pressure time integral incorporating sub-peak values, force time integral, pressure gradient, and pressure gradient angle. Static and dynamic plantar pressure were acquired for 4 subjects (male, 65 ± 2.4 years). Plantar pressure variables were calculated using commercial and computed tomography-based systems. RESULTS Dynamic peak pressure, pressure time integral, and force-time integral computed using the bone-based software was 5 % (9kPa), 7 % (0.3kPa-s) and 13 % (0.3 N-s) different than the commercial software on average. Region masks of the metatarsals and toes differed between commercial and computed tomography-based software due to subject-specific bone geometry and toe shape. Pressure time integral values incorporating sub-peak pressure were higher and demonstrated higher relative hindfoot values compared to those without. Removing step-on frames to static pressure analysis decreased forefoot pressures. Regional maps of peak pressure and maximum pressure gradient demonstrate different peak locations. SIGNIFICANCE Computed tomography-based regional masks are comparable to commercial masks. Inclusion of static step-on frames and sub-peak pressures may change regional plantar pressure patterns. Differences in location of maximum pressure gradient and peak pressure may be useful for assessing subject specific injury risk.
Collapse
Affiliation(s)
- Lynda M Brady
- VA RR& D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Corey Wukelic
- VA RR& D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA
| | - William R Ledoux
- VA RR& D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Castro-Martins P, Marques A, Coelho L, Vaz M, Baptista JS. In-shoe plantar pressure measurement technologies for the diabetic foot: A systematic review. Heliyon 2024; 10:e29672. [PMID: 38699042 PMCID: PMC11064085 DOI: 10.1016/j.heliyon.2024.e29672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Loss of cutaneous protective sensation and high plantar pressures increase the risk for diabetic foot patients. Trauma and ulceration are imminent threats, making assessment and monitoring essential. This systematic review aims to identify systems and technologies for measuring in-shoe plantar pressures, focusing on the at-risk diabetic foot population. Methods A systematic search was conducted across four electronic databases (Scopus, Web of Science, PubMed, Oxford Journals) using PRISMA methodology, covering articles published in English from 1979 to 2024. Only studies addressing systems or sensors exclusively measuring plantar pressures inside the shoe were included. Results A total of 87 studies using commercially available devices and 45 articles proposing new systems or sensors were reviewed. The prevailing market offerings consist mainly of instrumented insoles. Emerging technologies under development often feature configurations with four, six or eight resistive sensors strategically placed within removable insoles. Despite some variability due to the inherent heterogeneity of human gait, these devices assess plantar pressure, although they present significant differences between them in measurement results. Individuals with diabetic foot conditions appears exhibit elevated plantar pressures, with reported peak pressures reaching approximately 1000 kPa. The results also showed significant differences between the diabetic and non-diabetic groups. Conclusion Instrumented insoles, particularly those incorporating resistive sensor technology, dominate the field. Systems employing eight sensors at critical locations represent a pragmatic approach, although market options extend to systems with up to 960 sensors. Differences between devices can be a critical factor in measurement and highlights the importance of individualized patient assessment using consistent measurement devices.
Collapse
Affiliation(s)
- Pedro Castro-Martins
- CIETI, ISEP, Polytechnic of Porto, Portugal
- Faculty of Engineering, University of Porto, Portugal
| | - Arcelina Marques
- CIETI, ISEP, Polytechnic of Porto, Portugal
- Institute for Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Luís Coelho
- CIETI, ISEP, Polytechnic of Porto, Portugal
- INESC-TEC, Centre for Robotics in Industry and Intelligent Systems, Porto, Portugal
| | - Mário Vaz
- Faculty of Engineering, University of Porto, Portugal
- Institute for Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | | |
Collapse
|
7
|
Haris F, Jan YK, Liau BY, Hsieh CW, Shen WC, Tai CC, Shih YH, Lung CW. Plantar pressure gradient and pressure gradient angle are affected by inner pressure of air insole. Front Bioeng Biotechnol 2024; 12:1353888. [PMID: 38529404 PMCID: PMC10961410 DOI: 10.3389/fbioe.2024.1353888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Clinically, air insoles may be applied to shoes to decrease plantar pressure gradient (PPG) and increase plantar gradient angle (PGA) to reduce foot ulcers. PPG and PGA may cause skin breakdown. The effects of different inner pressures of inflatable air insoles on dynamic PPG and PGA distributions are largely unknown in non-diabetics and people with diabetes. This study aimed to explore the impact of varying inner air insole pressures on PPG and PGA to establish early mitigation strategies for people at risk of foot ulcers. A repeated measures study design, including three air insoles (80 mmHg, 160 mmHg, and 240 mmHg) and two walking durations (10 and 20 min) for a total of six walking protocols, was tested on 13 healthy participants (height, 165.8 ± 8.4 cm; age, 27.0 ± 7.3 years; and weight, 56.0 ± 7.9 kg, BMI: 20.3 ± 1.7 kg/m^2) over three consecutive weeks. PPG, a measurement of the spatial variation in plantar pressure around the peak plantar pressure (PPP) and PGA, a variation in the gradient direction values at the three plantar regions, big toe (T1), first metatarsal head (M1), and second metatarsal head (M2), were calculated. This study indicated that PPG was lower at 80 mmHg air insoles after 20 min of walking in the M1 region (p = 0.010). The PGA in the M2 increased at an air insole of 80 mmHg compared to 240 mmHg (p = 0.015). Compared to 20 min, the 10 min walking duration at 240 mmHg of air insole had the lowest PPG in the M1 (p = 0.015) and M2 (p = 0.034) regions. The 80 mmHg air insole significantly lowered the PPG compared to a 160 mmHg and 240 mmHg air insole. Moreover, the 80 mmHg air insole significantly decreased PPP and increased PGA compared to the 160 mmHg and 240 mmHg air insole. A shorter walking period (10 min) significantly lowered PPG. The findings of this study suggest that people with a higher risk of foot ulcers should wear softer air insoles to have a lower PPG, as well as an increased PGA.
Collapse
Affiliation(s)
- Fahni Haris
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- School of Nursing, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ben-Yi Liau
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Wei-Cheng Shen
- Department of Digital Media Design, Asia University, Taichung, Taiwan
| | - Chien-Cheng Tai
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chi-Wen Lung
- Rehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Creative Product Design, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Haris F, Jan YK, Liau BY, Hsieh CW, Shen WC, Tai CC, Shih YH, Lung CW. The effects of different inner pressures of air insoles and walking durations on peak plantar pressure. Medicine (Baltimore) 2023; 102:e35704. [PMID: 37904356 PMCID: PMC10615489 DOI: 10.1097/md.0000000000035704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Exercise reduces chronic complications in individuals with diabetes and peripheral vascular diseases. In clinical practice, the use of air insole may reduce peak plantar pressure (PPP), and risk for diabetic foot ulcers (DFUs). However, there is no guideline on selecting air insole pressure for effectively reducing PPP. Therefore, this study aimed to investigate the effects of different air insole pressure on PPP at different walking durations. METHODS We tested 13 participants using repeated measures study design, including 3 air insole pressures (80, 160, and 240 mm Hg) and 2 walking durations (10 and 20 minutes) for 6 walking conditions. PPP values at the first toe, first metatarsal head, and second metatarsal head were calculated. RESULTS The one-way ANOVA showed significant pairwise differences of PPP at 20 minutes duration in the first metatarsal head between 80 and 240 mm Hg (P = .007) and between 160 and 240 mm Hg (P = .038); in the second metatarsal head between 80 and 240 mm Hg (P = .043). The paired t test confirmed that walking duration significantly has lower PPP at 10 minutes than 20 minutes with 240 mm Hg air insole in the first metatarsal head (P = .012) and the second metatarsal head (P = .027). CONCLUSION People at risk of foot ulcers are suggested to wear shoes with 80 mm Hg of air insole for reducing PPP in the first metatarsal head and the second metatarsal head. Moreover, people may avoid wearing the stiffer insole (240 mm Hg) for more than 20 minutes.
Collapse
Affiliation(s)
- Fahni Haris
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- School of Nursing, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Ben-Yi Liau
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Computer Science & Information Engineering, Asia University, Taichung, Taiwan
| | - Wei-Cheng Shen
- Department of Digital Media Design, Asia University, Taichung, Taiwan
| | - Chien-Cheng Tai
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chi-Wen Lung
- Rehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Creative Product Design, Asia
| |
Collapse
|
9
|
Ahsan M, Shanb AA. The influence of isometric resisted ankle strength on dynamic foot plantar pressure in diabetes and non-diabetes participants. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
<b>Introduction</b>: Patients with diabetes are more likely to fall due to increased plantar pressure and decreased strength in the lower extremities.<br />
<b>Objectives:</b> To determine the influence of isometric ankle strength on dynamic foot plantar pressure in diabetes and non-diabetes participants.<br />
<b>Methods: </b>Twenty diabetes patients and twenty non-diabetes participants with age 28-54 years, height 150-182 cm, weight 48-90 kg, and BMI 25-54 kg/m<sup>2</sup> participated in the study. The diabetes level was determined based on fasting plasma glucose levels. The resisted isometric muscle strength of the foot during dorsiflexion, plantar flexion, inversion, and eversion was measured using an electronic handheld dynamometer. The plantar pressure distribution during dynamic conditions was determined by using a 48.7×44.7 cm pressure platform. The outcome measures between diabetes and non-diabetes groups were statistically compared by student t-test. The correlation coefficient was determined by the Pearson correlation coefficient test. A p-value of less than 0.05 was considered significant.<br />
<b>Result: </b>The significant differences were found between diabetes and non-diabetes participants for the dorsiflexion (p=.048), plantarflexion (p=.031), inversion (p=.011), eversion (p=.024), peak pressure (p=.024), pressure per square inch (p=.012), pressure time integral (p=.014), and peak pressure gradient (p=.009). Significant relationships between resisted isometric ankle joint strength and foot plantar pressure for diabetes patients and non-diabetes participants were found.<br />
<b>Conclusion: </b>The present study’s findings reflect the higher frequency of plantar pressure distribution and higher muscle weakness in diabetes patients than in non-diabetes participants. These findings suggested that pressure data could help us to customize therapy strategies for patients with diabetes and prescribe a proper exercise intervention’s short-and long-term effects on gait biomechanics.
Collapse
Affiliation(s)
- Mohammad Ahsan
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, SAUDI ARABIA
| | - Alsayed Abdelhameed Shanb
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, SAUDI ARABIA
| |
Collapse
|
10
|
Wu FL, Lung CW, Wang WTJ, Elliott J, Jain S, Jan YK. Effects of Walking Speeds and Durations on Peak Plantar Pressures. J Am Podiatr Med Assoc 2022; 112:20-043. [PMID: 36525323 DOI: 10.7547/20-043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Walking at various speeds and durations may result in different peak plantar pressure (PPP). However, there is no study comparing the effect of walking speeds and durations on PPP. The purpose of this study was to explore whether different walking speeds and durations significantly change PPP and establish a normal response in healthy people. METHODS An in-shoe plantar pressure system was used to measure PPP under the first toe, first metatarsal, second metatarsal, and heel regions in 12 healthy, young people. All participants performed six walking trials at three speeds (3, 6, and 9 km/h) and for two durations (10 and 20 min). The 3 × 2 two-way analysis of variance was used to examine the main effects of speeds and durations and their interaction. RESULTS The results showed that walking speeds significantly affected PPP and that walking duration did not. No interaction between the walking speed and duration was observed. Peak plantar pressure values under the first toe and the first metatarsal head were significantly higher (P < .05) at 9 km/h (509.1 ± 314.2 kPa and 591.4 ± 302.4 kPa, respectively) than at 3 km/h (275.4 ± 168.7 kPa and 369.4 ± 205.4 kPa, respectively) after 10-min walking. CONCLUSIONS People at risk for foot ulcers may use slow and brisk walking for exercise to reduce PPP, thus reducing risk for foot ulcers. Our study demonstrated that slow running at 9 km/h significantly increases PPP.
Collapse
Affiliation(s)
- Fu-Lien Wu
- *Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Chi-Wen Lung
- *Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL.,†Department of Creative Product Design, Asia University, Taichung, Taiwan
| | - Wendy Tzyy-Jiuan Wang
- ‡Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Jeannette Elliott
- §Disability Resources and Educational Services, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Sanjiv Jain
- ‖Department Physical Medicine and Rehabilitation, Carle Foundation Hospital, Urbana, IL
| | - Yih-Kuen Jan
- *Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL.,¶Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Zorkaltsev MA, Zavadovskaya VD, Saprina TV, Zamyshevskaya MA, Udodov VD, Shestakov AV, Mikhailova AA, Loyko YN, Musina NN. Pathogen-specific molecular imaging and molecular testing methods in the prognosis of the complicated course of diabetic foot syndrome, the risk of amputation, and patient survival. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-166-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this review was to provide extended information on current trends in the diagnosis of complicated diabetic foot syndrome (DFS), the most frequent and severe complication of diabetes mellitus, including hightech medical imaging methods and instrumental and laboratory predictors of the complicated course and risk of amputation in DFS.The article provides an analytical review of modern publications over the past 5 years on diagnosis and therapy. Pilot data on the use of high-tech medical imaging methods, assessment of skin microbiota and ulcers in DFS, molecular testing methods in terms of predicting the amputation risk and survival of patients with DFS, as well as the effectiveness of biosensing systems have been systematized, summarized, and subjected to analytical evaluation.The review provides an expert assessment of the capabilities of pathogen-specific molecular imaging using modern positron emission tomography (PET), single-photon emission computed tomography (SPECT), and highenergy radionuclides in bacterial infection to understand its pathogenesis, minimize diagnostic problems, improve antimicrobial treatment, and address fundamental and applied aspects of DFS. Literature data on the assessment of foot perfusion in diabetic patients with varying degrees of limb ischemia by hybrid technologies (SPECT / CT and PET / CT) and new modalities of magnetic resonance imaging (MRI) are also systematized, which contributes to new understanding of the response to revascularization, surgical shunting, and stimulation of angiogenesis within ischemic tissue, as well as potentially to healing of foot ulcers.The review is aimed at substantiating a multidisciplinary approach in DFS, selection, development, and implementation of innovative strategies for diagnostic modalities to identify diabetic foot pathologies, and choice of an adequate method for treating and monitoring the results of therapy in the context of personalized medicine.
Collapse
|
12
|
Khalaf K, Mohan DM, Hindi MA, Khandoker AH, Jelinek HF. Plantar pressure alterations associated with increased BMI in young adults. Gait Posture 2022; 98:255-260. [PMID: 36201927 DOI: 10.1016/j.gaitpost.2022.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite evidence suggesting that excess weight is linked to gait alterations and foot disorders, its effect on peak plantar pressure (PPP) variability and complexity during walking remains poorly understood. RESEARCH QUESTION This study aimed to examine the influence of overweight (BMI ≥ 25) on the dynamic PPP distribution during gait using traditional and nonlinear dynamic measures in young college students. METHODS Fifty-two overweight (BMI >25, average 29.3 ± 4.02) and sixty-four control college students (BMI<25, 21.7 ± 1.76) aged 18-25 years, walked across a Tekscan gait assessment system at their preferred speed. A t-test or a Mann Whitney U test was used for analysis, subject to data normality. Kinematic, kinetic, spatiotemporal, and GaitEn (sample entropy of 2D spatial PPP maps) for window lengths (m=2) at various filtering levels (r) were used to explore the impact of BMI on PPP alterations. RESULTS AND SIGNIFICANCE The overweight group exhibited significantly higher mean PPP. The PPP under the forefoot region was also significantly higher for the overweight group as compared to the heel. The mean GaitEn values of overweight and control groups were found significantly different at r = (0.7-0.8) x STD, where GaitEn of the control group was relatively higher, which indicates better gait performance as compared to the overweight group in alignment with previous studies. A significant correlation of GaitEn with STD of PPP was revealed for the overweight group only, suggesting that overweight could significantly change the regularity or the complexity of the PPP series. Although no spatiotemporal parameters (stride length, step length, step width) were significantly affected by the increased BMI, GaitEn dynamic measure, along with spatiotemporal (decrease in gait velocity and cadence with increased BMI), and kinetic measures (increased maximum forces and plantar pressure with increased BMI), were significantly affected by overweight, indicating the feasibility of assessing the impact of increased BMI using pressure platforms in clinical settings.
Collapse
Affiliation(s)
- Kinda Khalaf
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Health Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Dhanya Menoth Mohan
- Health Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Maha Al Hindi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahsan Habib Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Health Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Health Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Lung CW, Mo PC, Cao C, Zhang K, Wu FL, Liau BY, Jan YK. Effects of walking speeds and durations on the plantar pressure gradient and pressure gradient angle. BMC Musculoskelet Disord 2022; 23:823. [PMID: 36042445 PMCID: PMC9426236 DOI: 10.1186/s12891-022-05771-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Walking exercise has been demonstrated to improve health in people with diabetes. However, it is largely unknown the influences of various walking intensities such as walking speeds and durations on dynamic plantar pressure distributions in non-diabetics and diabetics. Traditional methods ignoring time-series changes of plantar pressure patterns may not fully capture the effect of walking intensities on plantar tissues. The purpose of this study was to investigate the effect of various walking intensities on the dynamic plantar pressure distributions. In this study, we introduced the peak pressure gradient (PPG) and its dynamic patterns defined as the pressure gradient angle (PGA) to quantify dynamic changes of plantar pressure distributions during walking at various intensities. METHODS Twelve healthy participants (5 males and 7 females) were recruited in this study. The demographic data were: age, 27.1 ± 5.8 years; height, 1.7 ± 0.1 m; and weight, 63.5 ± 13.5 kg (mean ± standard deviation). An insole plantar pressure measurement system was used to measure plantar pressures during walking at three walking speeds (slow walking 1.8 mph, brisk walking 3.6 mph, and slow running 5.4 mph) for two durations (10 and 20 min). The gradient at a location is defined as the unique vector field in the two-dimensional Cartesian coordinate system with a Euclidean metric. PGA was calculated by quantifying the directional variation of the instantaneous peak gradient vector during stance phase of walking. PPG and PGA were calculated in the plantar regions of the first toe, first metatarsal head, second metatarsal head, and heel at higher risk for foot ulcers. Two-way ANOVA with Fisher's post-hoc analysis was used to examine the speed and duration factors on PPG and PGA. RESULTS The results showed that the walking speeds significantly affect PPG (P < 0.05) and PGA (P < 0.05), and the walking durations does not. No interaction between the walking duration and speed was observed. PPG in the first toe region after 5.4 mph for either 10 or 20 min was significantly higher than 1.8 mph. Meanwhile, after 3.6 mph for 20 min, PPG in the heel region was significantly higher than 1.8 mph. Results also indicate that PGA in the forefoot region after 3.6 mph for 20 min was significantly narrower than 1.8 mph. CONCLUSIONS Our findings indicate that people may walk at a slow speed at 1.8 mph for reducing PPG and preventing PGA concentrated over a small area compared to brisk walking at 3.6 mph and slow running at 5.4 mph.
Collapse
Affiliation(s)
- Chi-Wen Lung
- grid.35403.310000 0004 1936 9991Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL USA ,grid.252470.60000 0000 9263 9645Department of Creative Product Design, Asia University, Taichung, Taiwan
| | - Pu-Chun Mo
- grid.35403.310000 0004 1936 9991Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Chunmei Cao
- grid.12527.330000 0001 0662 3178Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Keying Zhang
- grid.12527.330000 0001 0662 3178Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Fu-Lien Wu
- grid.35403.310000 0004 1936 9991Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Ben-Yi Liau
- grid.411432.10000 0004 1770 3722Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| | - Yih-Kuen Jan
- grid.35403.310000 0004 1936 9991Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL USA
| |
Collapse
|
14
|
Guan Y, Bai M, Li Q, Li W, Liu G, Liu C, Chen Y, Lin Y, Hui Y, Wei R. A plantar wearable pressure sensor based on hybrid lead zirconate-titanate/microfibrillated cellulose piezoelectric composite films for human health monitoring. LAB ON A CHIP 2022; 22:2376-2391. [PMID: 35635092 DOI: 10.1039/d2lc00051b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible and wearable electronic sensors hold great promise for improving the quality of life, especially in the field of healthcare monitoring, owing to their low cost, flexibility, high electromechanical coupling performance, high sensitivity, and biocompatibility. To achieve high piezoelectric performance similar to that of rigid materials while satisfying the flexible requirements for wearable sensors, we propose novel hybrid films based on lead zirconate titanate powder and microfibrillated cellulose (PZT/MFC) for plantar pressure measurements. The flexible films made using the polarization process are tested. It was found that the maximum piezoelectric coefficient was 31 pC N-1 and the maximum tensile force of the flexible films was 26 N. A wide range of bending angles between 15° and 180° proves the flexibility capability of the films. In addition, the charge density shows a proportional relation with the applied mechanical force, and it could sense stress of 1 kPa. Finally, plantar pressure sensors are arranged and packaged with a film array followed by connection with the detection module. Then, the pressure curves of each point on the plantar are obtained. Through analysis of the curve, several parameters of human body motions that are important in the rehabilitation of diabetic patients and the detection of sports injury can be performed, including stride frequency, length and speed. Overall, the proposed PZT/MFC wearable plantar pressure sensor has broad application prospects in the field of sports injury detection and medical rehabilitation training.
Collapse
Affiliation(s)
- Yanfang Guan
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyang Bai
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Qiuliang Li
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wujie Li
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Guangyu Liu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chunbo Liu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yu Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Yang Lin
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston 02881, USA
| | - Yanbo Hui
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Ronghan Wei
- Advanced Intelligent Manufacturing, Nano Opto-mechatronics & Biomedical Engineering Lab, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Leung MSH, Yick KL, Sun Y, Chow L, Ng SP. 3D printed auxetic heel pads for patients with diabetic mellitus. Comput Biol Med 2022; 146:105582. [PMID: 35588678 DOI: 10.1016/j.compbiomed.2022.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
More than 422 million people worldwide suffered from diabetes mellitus (DM) in 2021. Diabetic foot is one the most critical complications resultant of DM. Foot ulceration and infection are frequently arisen, which are associated with changes in the mechanical properties of the plantar soft tissues, peripheral arterial disease, and sensory neuropathy. Diabetic insoles are currently the mainstay in reducing the risk of foot ulcers by reducing the magnitude of the pressure on the plantar Here, we propose a novel pressure relieving heel pad based on a circular auxetic re-entrant honeycomb structure by using three-dimensional (3D) printing technology to minimize the pressure on the heel, thus reducing the occurrence of foot ulcers. Finite element models (FEMs) are developed to evaluate the structural changes of the developed circular auxetic structure upon exertion of compressive forces. Moreover, the effects of the internal angle of the re-entrant structure on the peak contact force and the mean pressure acting on the heel as well as the contact area between the heel and the pads are investigated through a finite element analysis (FEA). Based on the result from the validated FEMs, the proposed heel pad with an auxetic structure demonstrates a distinct reduction in the peak contact force (∼10%) and the mean pressure (∼14%) in comparison to a conventional diabetic insole (PU foam). The characterized result of the designed circular auxetic structure not only provides new insights into diabetic foot protection, but also the design and development of various impact resistance products.
Collapse
Affiliation(s)
- Matthew Sin-Hang Leung
- The Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong, China
| | - Kit-Lun Yick
- The Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong, China.
| | - Yue Sun
- School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province, China
| | - Lung Chow
- The Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sun-Pui Ng
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Kelly ES, Worsley PR, Bowen CJ, Cherry LS, Keenan BE, Edwards CJ, O'Brien N, King L, Dickinson AS. Predicting Forefoot-Orthosis Interactions in Rheumatoid Arthritis Using Computational Modelling. Front Bioeng Biotechnol 2022; 9:803725. [PMID: 35004656 PMCID: PMC8733946 DOI: 10.3389/fbioe.2021.803725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Foot orthoses are prescribed to reduce forefoot plantar pressures and pain in people with rheumatoid arthritis. Computational modelling can assess how the orthoses affect internal tissue stresses, but previous studies have focused on a single healthy individual. This study aimed to ascertain whether simplified forefoot models would produce differing biomechanical predictions at the orthotic interface between people with rheumatoid arthritis of varying severity, and in comparison to a healthy control. The forefoot models were developed from magnetic resonance data of 13 participants with rheumatoid arthritis and one healthy individual. Measurements of bony morphology and soft tissue thickness were taken to assess deformity. These were compared to model predictions (99th% shear strain and plantar pressure, max. pressure gradient, volume of soft tissue over 10% shear strain), alongside clinical data including body mass index and Leeds Foot Impact Scale–Impairment/Footwear score (LFIS-IF). The predicted pressure and shear strain for the healthy participant fell at the lower end of the rheumatoid models’ range. Medial first metatarsal head curvature moderately correlated to all model predicted outcomes (0.529 < r < 0.574, 0.040 < p < 0.063). BMI strongly correlated to all model predictions except pressure gradients (0.600 < r < 0.652, p < 0.05). There were no apparent relationships between model predictions and instances of bursae, erosion and synovial hypertrophy or LFIS-IF score. The forefoot models produced differing biomechanical predictions between a healthy individual and participants with rheumatoid arthritis, and between individuals with rheumatoid arthritis. Models capable of predicting subject specific biomechanical orthotic interactions could be used in the future to inform more personalised devices to protect skin and soft tissue health. While the model results did not clearly correlate with all clinical measures, there was a wide range in model predictions and morphological measures across the participants. Thus, the need for assessment of foot orthoses across a population, rather than for one individual, is clear.
Collapse
Affiliation(s)
- Emily S Kelly
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Peter R Worsley
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Catherine J Bowen
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Lindsey S Cherry
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Bethany E Keenan
- Cardiff School of Engineering and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | | | - Neil O'Brien
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Leonard King
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Alex S Dickinson
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
Estimation of Various Walking Intensities Based on Wearable Plantar Pressure Sensors Using Artificial Neural Networks. SENSORS 2021; 21:s21196513. [PMID: 34640838 PMCID: PMC8512589 DOI: 10.3390/s21196513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
Walking has been demonstrated to improve health in people with diabetes and peripheral arterial disease. However, continuous walking can produce repeated stress on the plantar foot and cause a high risk of foot ulcers. In addition, a higher walking intensity (i.e., including different speeds and durations) will increase the risk. Therefore, quantifying the walking intensity is essential for rehabilitation interventions to indicate suitable walking exercise. This study proposed a machine learning model to classify the walking speed and duration using plantar region pressure images. A wearable plantar pressure measurement system was used to measure plantar pressures during walking. An Artificial Neural Network (ANN) was adopted to develop a model for walking intensity classification using different plantar region pressure images, including the first toe (T1), the first metatarsal head (M1), the second metatarsal head (M2), and the heel (HL). The classification consisted of three walking speeds (i.e., slow at 0.8 m/s, moderate at 1.6 m/s, and fast at 2.4 m/s) and two walking durations (i.e., 10 min and 20 min). Of the 12 participants, 10 participants (720 images) were randomly selected to train the classification model, and 2 participants (144 images) were utilized to evaluate the model performance. Experimental evaluation indicated that the ANN model effectively classified different walking speeds and durations based on the plantar region pressure images. Each plantar region pressure image (i.e., T1, M1, M2, and HL) generates different accuracies of the classification model. Higher performance was achieved when classifying walking speeds (0.8 m/s, 1.6 m/s, and 2.4 m/s) and 10 min walking duration in the T1 region, evidenced by an F1-score of 0.94. The dataset T1 could be an essential variable in machine learning to classify the walking intensity at different speeds and durations.
Collapse
|
18
|
Lung CW, Liau BY, Peters JA, He L, Townsend R, Jan YK. Effects of various walking intensities on leg muscle fatigue and plantar pressure distributions. BMC Musculoskelet Disord 2021; 22:831. [PMID: 34579699 PMCID: PMC8477480 DOI: 10.1186/s12891-021-04705-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/04/2021] [Indexed: 01/14/2023] Open
Abstract
Background Physical activity may benefit health and reduce risk for chronic complications in normal and people with diabetes and peripheral vascular diseases. However, it is unclear whether leg muscle fatigue after weight-bearing physical activities, such as brisk walking, may increase risk for plantar tissue injury. In the literature, there is no evidence on the effect of muscle fatigue on plantar pressure after various walking intensities. The objectives of this study were to investigate the effects of various walking intensities on leg muscle fatigue and plantar pressure patterns. Methods A 3 × 2 factorial design, including 3 walking speeds (1.8 (slow and normal walking), 3.6 (brisk walking), and 5.4 (slow running) mph) and 2 walking durations (10 and 20 min) for a total of 6 walking intensities, was tested in 12 healthy participants in 3 consecutive weeks. The median frequency and complexity of electromyographic (EMG) signals of tibialis anterior (TA) and gastrocnemius medialis (GM) were used to quantify muscle fatigue. Fourier transform was used to compute the median frequency and multiscale entropy was used to calculate complexity of EMG signals. Peak plantar pressure (PPP) values at the 4 plantar regions (big toe, first metatarsal head, second metatarsal head, and heel) were calculated. Results Two-way ANOVA showed that the walking speed (at 1.8, 3.6, 5.4 mph) significantly affected leg muscle fatigue, and the duration factor (at 10 and 20 min) did not. The one-way ANOVA showed that there were four significant pairwise differences of the median frequency of TA, including walking speed of 1.8 and 3.6 mph (185.7 ± 6.1 vs. 164.9 ± 3.0 Hz, P = 0.006) and 1.8 and 5.4 mph (185.7 ± 6.1 vs. 164.5 ± 5.5 Hz, P = 0.006) for the 10-min duration; and walking speed of 1.8 and 3.6 mph (180.0 ± 5.9 vs. 163.1 ± 4.4 Hz, P = 0.024) and 1.8 and 5.4 mph (180.0 ± 5.9 vs. 162.8 ± 4.9 Hz, P = 0.023) for the 20-min duration. The complexity of TA showed a similar trend with the median frequency of TA. The median frequency of TA has a significant negative correlation with PPP on the big toe ( r = -0.954, P = 0.003) and the first metatarsal head ( r = -0.896, P = 0.016). Conclusions This study demonstrated that brisk walking and slow running speeds (3.6 and 5.4 mph) cause an increase in muscle fatigue of TA compared to slow walking speed (1.8 mph); and the increased muscle fatigue is significantly related to a higher PPP.
Collapse
Affiliation(s)
- Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.,Department of Creative Product Design, Asia University, Taichung, 41354, Taiwan
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hungkuang University, Taichung, 433304, Taiwan
| | - Joseph A Peters
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Li He
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - Runnell Townsend
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.
| |
Collapse
|
19
|
Abstract
Various walking speeds may induce different responses on the plantar pressure patterns. Current methods used to analyze plantar pressure patterns are linear and ignore nonlinear features. The purpose of this study was to analyze the complexity of plantar pressure images after walking at various speeds using nonlinear bidimensional multiscale entropy (MSE2D). Twelve participants (age: 27.1 ± 5.8 years; height: 170.3 ± 10.0 cm; and weight: 63.5 ± 13.5 kg) were recruited for walking at three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for 20 minutes. A plantar pressure measurement system was used to measure plantar pressure patterns. Complexity index (CI), a summation of MSE2D from all time scales, was used to quantify the changes of complexity of plantar pressure images. The analysis of variance with repeated measures and Fisher’s least significant difference correction were used to examine the results of this study. The results showed that CI of plantar pressure images of 1.8 mph (1.780) was significantly lower compared with 3.6 (1.790) and 5.4 mph (1.792). The results also showed that CI significantly increased from the 1st min (1.780) to the 10th min (1.791) and 20th min (1.791) with slow walking (1.8 mph). Our results indicate that slow walking at 1.8 mph may not be good for postural control compared with moderate walking (3.6 mph) and fast walking (5.4 mph). This study demonstrates that bidimensional multiscale entropy is able to quantify complexity changes of plantar pressure images after different walking speeds.
Collapse
|
20
|
Emerging technologies for the prevention and management of diabetic foot ulcers. J Tissue Viability 2020; 29:61-68. [DOI: 10.1016/j.jtv.2020.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/27/2019] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
|
21
|
Zhu T, Wang Y, Yang J, Liao F, Wang S, Jan YK. Wavelet-based analysis of plantar skin blood flow response to different frequencies of local vibration. Physiol Meas 2020; 41:025004. [DOI: 10.1088/1361-6579/ab6e56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Effects of walking speeds and durations on plantar skin blood flow responses. Microvasc Res 2020; 128:103936. [DOI: 10.1016/j.mvr.2019.103936] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
|
23
|
Complexity-Based Measures of Postural Sway during Walking at Different Speeds and Durations Using Multiscale Entropy. ENTROPY 2019. [PMCID: PMC7514472 DOI: 10.3390/e21111128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
: Participation in various physical activities requires successful postural control in response to the changes in position of our body. It is important to assess postural control for early detection of falls and foot injuries. Walking at various speeds and for various durations is essential in daily physical activities. The purpose of this study was to evaluate the changes in complexity of the center of pressure (COP) during walking at different speeds and for different durations. In this study, a total of 12 participants were recruited for walking at two speeds (slow at 3 km/h and moderate at 6 km/h) for two durations (10 and 20 minutes). An insole-type plantar pressure measurement system was used to measure and calculate COP as participants walked on a treadmill. Multiscale entropy (MSE) was used to quantify the complexity of COP. Our results showed that the complexity of COP significantly decreased (p < 0.05) after 20 min of walking (complexity index, CI = −3.51) compared to 10 min of walking (CI = −3.20) while walking at 3 km/h, but not at 6 km/h. Our results also showed that the complexity index of COP indicated a significant difference (p < 0.05) between walking at speeds of 3 km/h (CI = −3.2) and 6 km/h (CI = −3.6) at the walking duration of 10 minutes, but not at 20 minutes. This study demonstrated an interaction between walking speeds and walking durations on the complexity of COP.
Collapse
|
24
|
Lung CW, Yang TD, Liau BY, Cheung WC, Jain S, Jan YK. Dynamic changes in seating pressure gradient in wheelchair users with spinal cord injury. Assist Technol 2019; 32:277-286. [PMID: 30644792 DOI: 10.1080/10400435.2018.1546781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pressure ulcer interventions are commonly assessed with measures of seating interface pressure, such as peak pressure gradients (PPGs). Decreases in PPG magnitudes may reduce pressure ulcer risk by decreasing tissue deformation and increasing tissue perfusion of at-risk weight-bearing tissues. Changes in PPG directions, which have previously been overlooked in the seating pressure literature, may provide a transient increase in blood flow to at-risk tissues, even if the PPG magnitude and location remain the same. The purpose of this study was to assess both PPG components in response to combinations of wheelchair tilt and recline angles. Thirteen power wheelchair users were recruited into the study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were tested in random order. Each combination was tested with 5-min upright sitting, 5-min tilt and recline, and 5-min maximal pressure relief recovery. Changes in PPG magnitudes and PPG directions under the left ischial tuberosity were computed for the six angle combinations. The findings in this study suggested that when combining wheelchair tilt and recline, the recline function may be particularly useful in reducing PPG magnitudes, while the tilt function may be particularly useful in manipulating PPG directions.
Collapse
Affiliation(s)
- Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Champaign, Illinois, USA.,Department of Creative Product Design, Asia University , Taichung, Taiwan
| | - Tim D Yang
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Champaign, Illinois, USA
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hung Kuang University , Taichung, Taiwan
| | - Waifong Catherine Cheung
- Department of Special Education, University of Illinois at Urbana-Champaign , Champaign, Illinois, USA
| | - Sanjiv Jain
- Department of Physical Medicine and Rehabilitation, Carle Foundation Hospital , Urbana, Illinois, USA
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Champaign, Illinois, USA
| |
Collapse
|
25
|
Fernando ME, Crowther RG, Lazzarini PA, Yogakanthi S, Sangla KS, Buttner P, Jones R, Golledge J. Plantar pressures are elevated in people with longstanding diabetes-related foot ulcers during follow-up. PLoS One 2017; 12:e0181916. [PMID: 28859075 PMCID: PMC5578502 DOI: 10.1371/journal.pone.0181916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 01/14/2023] Open
Abstract
Objective High plantar pressures are implicated in the development of diabetes-related foot ulcers. Whether plantar pressures remain high in patients with chronic diabetes-related foot ulcers over time is uncertain. The primary aim of this study was to compare plantar pressures at baseline and three and six months later in participants with chronic diabetes-related foot ulcers (cases) to participants without foot ulcers (controls). Methods Standardised protocols were used to measure mean peak plantar pressure and pressure-time integral at 10 plantar foot sites (the hallux, toes, metatarsals 1 to 5, mid-foot, medial heel and lateral heel) during barefoot walking. Measurements were performed at three study visits: baseline, three and six months. Linear mixed effects random-intercept models were utilised to assess whether plantar pressures differed between cases and controls after adjusting for age, sex, body mass index, neuropathy status and follow-up time. Standardised mean differences (Cohen’s d) were used to measure effect size. Results Twenty-one cases and 69 controls started the study and 16 cases and 63 controls completed the study. Cases had a higher mean peak plantar pressure at several foot sites including the toes (p = 0.005, Cohen’s d = 0.36) and mid-foot (p = 0.01, d = 0.36) and a higher pressure-time integral at the hallux (p<0.001, d = 0.42), metatarsal 1 (p = 0.02, d = 0.33) and mid-foot (p = 0.04, d = 0.64) compared to controls throughout follow-up. A reduction in pressure-time integral at multiple plantar sites over time was detected in all participants (p<0.05, respectively). Conclusions Plantar pressures assessed during gait are higher in diabetes patients with chronic foot ulcers than controls at several plantar sites throughout prolonged follow-up. Long term offloading is needed in diabetes patients with diabetes-related foot ulcers to facilitate ulcer healing.
Collapse
Affiliation(s)
- Malindu E. Fernando
- Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Movement Analysis Laboratory, Sports and Exercise Science, James Cook University, Townsville, Australia
- Podiatry Service, Kirwan Community Health Campus, Townsville, Queensland, Australia
- * E-mail:
| | - Robert G. Crowther
- Movement Analysis Laboratory, Sports and Exercise Science, James Cook University, Townsville, Australia
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter A. Lazzarini
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Allied Health Research Collaborative, Metro North Hospital & Health Service, Queensland Health, Brisbane, Australia
| | - Saiumaeswar Yogakanthi
- Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Kunwarjit S. Sangla
- Department of Diabetes and Endocrinology, The Townsville Hospital, Townsville, Queensland, Australia
| | - Petra Buttner
- Centre for Chronic Disease Prevention, James Cook University, Cairns, Queensland, Australia
| | - Rhondda Jones
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Jonathan Golledge
- Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|