1
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
2
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
4
|
Burtenshaw D, Regan B, Owen K, Collins D, McEneaney D, Megson IL, Redmond EM, Cahill PA. Exosomal Composition, Biogenesis and Profiling Using Point-of-Care Diagnostics—Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:853451. [PMID: 35721503 PMCID: PMC9198276 DOI: 10.3389/fcell.2022.853451] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Kathryn Owen
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, United Kingdom
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - David McEneaney
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
| | - Ian L. Megson
- Division of Biomedical Sciences, Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Paul Aidan Cahill
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
- *Correspondence: Paul Aidan Cahill,
| |
Collapse
|
5
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
6
|
Flourat AL, Combes J, Bailly-Maitre-Grand C, Magnien K, Haudrechy A, Renault JH, Allais F. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production? CHEMSUSCHEM 2021; 14:118-129. [PMID: 33058548 DOI: 10.1002/cssc.202002141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Indexed: 06/11/2023]
Abstract
p-Hydroxycinnamic acids (i. e., p-coumaric, ferulic, sinapic, and caffeic acids) are phenolic compounds involved in the biosynthesis pathway of lignin. These naturally occurring molecules not only exhibit numerous attractive properties, such as antioxidant, anti-UV, and anticancer activities, but they also have been used as building blocks for the synthesis of tailored monomers and functional additives for the food/feed, cosmetic, and plastics sectors. Despite their numerous high value-added applications, the sourcing of p-hydroxycinnamic acids is not ensured at the industrial scale except for ferulic acid, and their production cost remains too high for commodity applications. These compounds can be either chemically synthesized or extracted from lignocellulosic biomass, and recently their production through bioconversion emerged. Herein the different strategies described in the literature to produce these valuable molecules are discussed.
Collapse
Affiliation(s)
- Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Jeanne Combes
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | | | - Kévin Magnien
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Arnaud Haudrechy
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| |
Collapse
|
7
|
Lee HY, Lim S, Park S. Role of Inflammation in Arterial Calcification. Korean Circ J 2021; 51:114-125. [PMID: 33525066 PMCID: PMC7853899 DOI: 10.4070/kcj.2020.0517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/11/2023] Open
Abstract
Arterial calcification, characterized by calcium phosphate deposition in the arteries, can be divided into intimal calcification and medial calcification. The former is the predominant form of calcification in coronary artery plaques; the latter mostly affects peripheral arteries and aortas. Both forms of arterial calcification have strong correlations with adverse cardiovascular events. Intimal microcalcification is associated with increased risk of plaque disruption while the degree of burden of coronary calcification, measured by coronary calcium score, is a marker of overall plaque burden. Continuous research on vascular calcification has been performed during the past few decades, and several cellular and molecular mechanisms and therapeutic targets were identified. However, despite clinical trials to evaluate the efficacy of drug therapies to treat vascular calcification, none have been shown to have efficacy until the present. Therefore, more extensive research is necessary to develop appropriate therapeutic strategies based on a thorough understanding of vascular calcification. In this review, we mainly focus on intimal calcification, namely the pathobiology of arterial calcification, and its clinical implications.
Collapse
Affiliation(s)
- Hae Young Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital and Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Sorokin V, Vickneson K, Kofidis T, Woo CC, Lin XY, Foo R, Shanahan CM. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front Immunol 2020; 11:599415. [PMID: 33324416 PMCID: PMC7726011 DOI: 10.3389/fimmu.2020.599415] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The pathobiology of atherosclerotic disease requires further elucidation to discover new approaches to address its high morbidity and mortality. To date, over 17 million cardiovascular-related deaths have been reported annually, despite a multitude of surgical and nonsurgical interventions and advances in medical therapy. Existing strategies to prevent disease progression mainly focus on management of risk factors, such as hypercholesterolemia. Even with optimum current medical therapy, recurrent cardiovascular events are not uncommon in patients with atherosclerosis, and their incidence can reach 10–15% per year. Although treatments targeting inflammation are under investigation and continue to evolve, clinical breakthroughs are possible only if we deepen our understanding of vessel wall pathobiology. Vascular smooth muscle cells (VSMCs) are one of the most abundant cells in vessel walls and have emerged as key players in disease progression. New technologies, including in situ hybridization proximity ligation assays, in vivo cell fate tracing with the CreERT2-loxP system and single-cell sequencing technology with spatial resolution, broaden our understanding of the complex biology of these intriguing cells. Our knowledge of contractile and synthetic VSMC phenotype switching has expanded to include macrophage-like and even osteoblast-like VSMC phenotypes. An increasing body of data suggests that VSMCs have remarkable plasticity and play a key role in cell-to-cell crosstalk with endothelial cells and immune cells during the complex process of inflammation. These are cells that sense, interact with and influence the behavior of other cellular components of the vessel wall. It is now more obvious that VSMC plasticity and the ability to perform nonprofessional phagocytic functions are key phenomena maintaining the inflammatory state and senescent condition and actively interacting with different immune competent cells.
Collapse
Affiliation(s)
- Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Keeran Vickneson
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao Yun Lin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
10
|
Yu L, Li M. Roles of klotho and stem cells in mediating vascular calcification (Review). Exp Ther Med 2020; 20:124. [PMID: 33005250 DOI: 10.3892/etm.2020.9252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification, characterized by the active deposition of calcium phosphate in the vascular walls, is commonly observed in aging, diabetes mellitus and chronic kidney disease. This process is mediated by different cell types, including vascular stem/progenitor cells. The anti-aging protein klotho may act as an inhibitor of vascular calcification through direct effects on vascular stem/progenitor cells with osteogenic differentiation potential. A better understanding of the possible effects of klotho on vascular stem/progenitor cells may provide novel insight into the cellular and molecular mechanisms of klotho deficiency-related vascular calcification and disease. The klotho protein may be considered as a promising therapeutic agent for treating vascular calcification and disease and calcification-related vascular diseases.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Xianning, Hubei 437100, P.R. China.,Departments of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Mincai Li
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular and Metabolic Disorders, Xianning, Hubei 437100, P.R. China.,Departments of Pathology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
11
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Gancz A, Zueva Y, Weiss OE, Hendler RM, Minnes R, Baranes D. Coralline Skeleton Biomaterial Reduces Phagocytosis in Mouse Blood
in vitro. Isr J Chem 2020. [DOI: 10.1002/ijch.201900151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayala Gancz
- Department of Molecular Biology, Faculty of Natural SciencesAriel University Ariel Israel
| | - Yekaterina Zueva
- Center for Allergy and ImmunologyBarzilai Hospital Ashkelon Israel
| | - Orly E. Weiss
- Department of Molecular Biology, Faculty of Natural SciencesAriel University Ariel Israel
| | - Roni M. Hendler
- Department of Molecular Biology, Faculty of Natural SciencesAriel University Ariel Israel
| | - Rafael Minnes
- Department of Physics, Faculty of Natural SciencesAriel University Ariel Israel
| | - Danny Baranes
- Department of Molecular Biology, Faculty of Natural SciencesAriel University Ariel Israel
| |
Collapse
|
13
|
Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro. Cell Biosci 2020; 10:36. [PMID: 32190286 PMCID: PMC7066751 DOI: 10.1186/s13578-020-00400-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Background Kawasaki disease (KD) is one of the major causes of heart disease and vasculitis in children under 5 years old in the world. Clinical evidence has shown that coronary artery calcification may develop in KD patients, however the mechanism has not been elucidated. Previous studies have found that interferon-γ-inducible protein (IP)-10 and interleukin (IL)-17 can be elevated and may play a role in KD development and coronary artery lesion formation. The purpose of this in vitro study was to investigate the possible role of plasma circulating IP-10 and IL-17 of KD patients in vascular calcification development and its underlying mechanism. Result Human coronary artery smooth muscle cells (HCASMCs) were used in this study. We found that HCASMCs treated with IP-10/IL-17-containing KD serum and co-treated with IP-10/IL-17 recombinant proteins could induce a phenotype that may promote vascular calcification by the bone morphogenetic protein (BMP) 6 autocrine effect. Moreover, the BMP6 autocrine stimulation in IP-10/IL-17 co-treated HCASMCs could upregulate the smad1/5-runx2 signaling activation, thus increasing the expression of bone matrix-related proteins, i.e., osteopontin, osteocalcin, and alkaline phosphatase. Conclusions The presented in vitro results provided new insights into the comprehension of the pathogenesis of vascular calcification in SMCs in KD progression. Although additional in vivo experimental models should be completed to confirm the in vivo relevance of these in vitro findings, the results related to the autocrine role of BMP6 may provide a new direction for theranostic drug development to treat KD.
Collapse
|
14
|
Rogers MA, Aikawa E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat Rev Cardiol 2020; 16:261-274. [PMID: 30531869 DOI: 10.1038/s41569-018-0123-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular calcification is a health disorder with increasing prevalence and high morbidity and mortality. The only available therapeutic options for calcific vascular and valvular heart disease are invasive transcatheter procedures or surgeries that do not fully address the wide spectrum of these conditions; therefore, an urgent need exists for medical options. Cardiovascular calcification is an active process, which provides a potential opportunity for effective therapeutic targeting. Numerous biological processes are involved in calcific disease, including matrix remodelling, transcriptional regulation, mitochondrial dysfunction, oxidative stress, calcium and phosphate signalling, endoplasmic reticulum stress, lipid and mineral metabolism, autophagy, inflammation, apoptosis, loss of mineralization inhibition, impaired mineral resorption, cellular senescence and extracellular vesicles that act as precursors of microcalcification. Advances in molecular imaging and big data technology, including in multiomics and network medicine, and the integration of these approaches are helping to provide a more comprehensive map of human disease. In this Review, we discuss ectopic calcification processes in the cardiovascular system, with an emphasis on emerging mechanistic knowledge obtained through patient data and advances in imaging methods, experimental models and multiomics-generated big data. We also highlight the potential and challenges of artificial intelligence, machine learning and deep learning to integrate imaging and mechanistic data for drug discovery.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Sikder KU, Shivdasani MN, Fallon JB, Seligman P, Ganesan K, Villalobos J, Prawer S, Garrett DJ. Electrically conducting diamond films grown on platinum foil for neural stimulation. J Neural Eng 2019; 16:066002. [DOI: 10.1088/1741-2552/ab2e79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Hobson S, Arefin S, Kublickiene K, Shiels PG, Stenvinkel P. Senescent Cells in Early Vascular Ageing and Bone Disease of Chronic Kidney Disease-A Novel Target for Treatment. Toxins (Basel) 2019; 11:toxins11020082. [PMID: 30717151 PMCID: PMC6409791 DOI: 10.3390/toxins11020082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Together with bone-mineral disorders, premature vascular ageing is a common feature of the uremic phenotype. A detailed understanding of mechanisms involved remains unclear and warrants further research. Available treatment options for end stage renal disease are principally dialysis and organ transplantation, as other treatment alternatives have proven insufficient. Chronic kidney disease (CKD) has been proposed as a model of early vascular and bone ageing, with accumulating evidence supporting the contribution of cellular senescence and the senescence-associated secretory phenotype (SASP) to cardiovascular pathology in CKD. Correspondingly, novel therapies based around the use of senolytic compounds and nuclear factor-erythroid-2-related factor 2 (Nrf2) agonists, have been suggested as attractive novel treatment options. In this review, we detail the contribution of the uremic environment to these processes underpinning ageing and how these relate to vascular health.
Collapse
Affiliation(s)
- Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Paul G Shiels
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow G61 1QH, UK.
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
17
|
Lee LL, Chintalgattu V. Pericytes in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:187-210. [PMID: 30937870 DOI: 10.1007/978-3-030-11093-2_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mural cells known as pericytes envelop the endothelial layer of microvessels throughout the body and have been described to have tissue-specific functions. Cardiac pericytes are abundantly found in the heart, but they are relatively understudied. Currently, their importance is emerging in cardiovascular homeostasis and dysfunction due to their pleiotropism. They are known to play key roles in vascular tone and vascular integrity as well as angiogenesis. However, their dysfunctional presence and/or absence is critical in the mechanisms that lead to cardiac pathologies such as myocardial infarction, fibrosis, and thrombosis. Moreover, they are targeted as a therapeutic potential due to their mesenchymal properties that could allow them to repair and regenerate a damaged heart. They are also sought after as a cell-based therapy based on their healing potential in preclinical studies of animal models of myocardial infarction. Therefore, recognizing the importance of cardiac pericytes and understanding their biology will lead to new therapeutic concepts.
Collapse
Affiliation(s)
- Linda L Lee
- Department of CardioMetabolic Disorders, Amgen Research and Discovery, Amgen Inc., South San Francisco, CA, USA
| | - Vishnu Chintalgattu
- Department of CardioMetabolic Disorders, Amgen Research and Discovery, Amgen Inc., South San Francisco, CA, USA.
| |
Collapse
|
18
|
Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, Alexander MY, Weston R. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5:183. [PMID: 30619890 PMCID: PMC6305318 DOI: 10.3389/fcvm.2018.00183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular calcification is a major health risk and is highly correlated with atherosclerosis, diabetes, and chronic kidney disease. The development of vascular calcification is an active and complex process linked with a multitude of signaling pathways, which regulate promoters and inhibitors of osteogenesis, the balance of which become deregulated in disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting oxidative stress and inflammation within the vessel wall, has been shown as a possible key player in modulating the cell-fate determining canonical Wnt signaling pathways. Suppression of SIRT1 has been reported in patients suffering with cardiovascular pathologies, suggesting that the sustained acetylation of osteogenic factors could contribute to their activation and in turn, lead to the progression of calcification. There is clear evidence of the synergy between β-Catenin and elevated Runx2, and with Wnt signaling being β-Catenin dependent, further understanding is needed as to how these molecular pathways converge and interact, in order to provide novel insight into the mechanism by which smooth muscle cells switch to an osteogenic differentiation programme. Therefore, this review will describe the current concepts of pathological soft tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt signaling and its targets, discussing SIRT1 as a potential target for manipulation and therapy.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex W W Langford-Smith
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ria Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|