1
|
Thagun C, Suzuki T, Kodama Y, Numata K. C-Terminal Domain Controls Protein Quality and Secretion of Spider Silk in Tobacco Cells. Adv Biol (Weinh) 2023; 7:e2300011. [PMID: 37409415 DOI: 10.1002/adbi.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Indexed: 07/07/2023]
Abstract
The remarkable mechanical strength and extensibility of spider dragline silk spidroins are attributed to the major ampullate silk proteins (MaSp). Although fragmented MaSp molecules have been extensively produced in various heterologous expression platforms for biotechnological applications, complete MaSp molecules are required to achieve instinctive spinning of spidroin fibers from aqueous solutions. Here, a plant cell-based expression platform for extracellular production of the entire MaSp2 protein is developed, which exhibits remarkable self-assembly properties to form spider silk nanofibrils. The engineered transgenic Bright-yellow 2 (BY-2) cell lines overexpressing recombinant secretory MaSp2 proteins yield 0.6-1.3 µg L-1 at 22 days post-inoculation, which is four times higher than those of cytosolic expressions. However, only 10-15% of these secretory MaSp2 proteins are discharged into the culture media. Surprisingly, expression of functional domain-truncated MaSp2 proteins lacking the C-terminal domain in transgenic BY-2 cells increases recombinant protein secretion incredibly, from 0.9 to 2.8 mg L-1 per day within 7 days. These findings demonstrate significant improvement in the extracellular production of recombinant biopolymers such as spider silk spidroins using plant cells. In addition, the results reveal the regulatory roles of the C-terminal domain of MaSp2 proteins in controlling their protein quality and secretion.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Phan HT, Tran HX, Ho TT, Pham VT, Trinh VT, Nguyen TT, Pham NB, Chu HH, Conrad U. Plant crude extracts containing oligomeric hemagglutinins protect chickens against highly Pathogenic Avian Influenza Virus after one dose of immunization. Vet Res Commun 2023; 47:191-205. [PMID: 35633471 PMCID: PMC9145123 DOI: 10.1007/s11259-022-09942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Highly pathogenic avian influenza viruses (HPAIV) have been responsible for causing several severe outbreaks across the world. To protect poultry farms and to prevent the possible spread of new influenza pandemics, vaccines that are both efficacious and low-cost are in high demand. We produced stable, large hemagglutinin H5 oligomers in planta by the specific interaction between S•Tag and S•Protein. H5 oligomers combined via S•Tag::S•Protein interaction in plant crude extracts induced strong humoral immune responses, strong neutralizing antibody responses, and resistance in chickens after challenge with a wild type HPAIV H5 virus strain. In all three parameters, plant crude extracts with H5 oligomers induced better responses than crude extracts containing trimers. The neutralizing antibodies induced by by two-dose and one dose immunization with an adjuvanted crude extract containing H5 oligomer protected vaccinated chickens from two lethal H5N1 virus strains with the efficiency of 92% and 100%, respectively. Following housing vaccinated chickens together with ten non-immunized chickens, only one of these chickens had detectable levels of the H5N1 virus. To facilitate the easy storage of a candidate vaccine, the H5 oligomer crude extracts were mixed with adjuvants and stored for 3.5 and 5.5 months at 4 °C, and chickens were immunized with these crude extracts. All these vaccinated chickens survived after a lethal H5N1 virus challenge. H5 oligomer crude extracts are comparable to commercial vaccines as they also induce strong virus-neutralizing immune responses following the administration of a single dose. The cost-effective production of plant crude extract vaccine candidates and the high stability after long-term storage will enable and encourage the further exploration of this technology for veterinary vaccine development.
Collapse
Affiliation(s)
- Hoang Trong Phan
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hanh Xuan Tran
- JSC Central Veterinary NAVETCO, 29A Nguyen Dinh Chieu, 1 District, Ho Chi Minh, Vietnam
| | - Thuong Thi Ho
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Van Thi Pham
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Vy Thai Trinh
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Tra Thi Nguyen
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Ngoc Bich Pham
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Ha Hoang Chu
- grid.267849.60000 0001 2105 6888Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam ,grid.267849.60000 0001 2105 6888Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Udo Conrad
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
3
|
Development of Plant-Based Vaccines for Prevention of Avian Influenza and Newcastle Disease in Poultry. Vaccines (Basel) 2022; 10:vaccines10030478. [PMID: 35335110 PMCID: PMC8952014 DOI: 10.3390/vaccines10030478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.
Collapse
|
4
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
5
|
Phan HT, Conrad U. Production of Influenza H5 Vaccine Oligomers in Plants. Methods Mol Biol 2022; 2465:97-107. [PMID: 35118617 DOI: 10.1007/978-1-0716-2168-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The transient expression of veterinary vaccines in plants is a promising tool because of its low cost connected with a practically unlimited scale-up. To achieve these goals, two major challenges, high immunogenicity of vaccines and minimal of down-stream processing cost, have to be overcome. Here we present and discuss protocols enabling to generate highly immunogenic H5 influenza candidate vaccines as H5 oligomers, by transient expression in Nicotiana benthamiana plants and to perform analytical experiments as Western blot, ELISA, and hemagglutination and hemagglutination inhibition assays.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
6
|
Shrestha A, Sadeyen JR, Lukosaityte D, Chang P, Smith A, Van Hulten M, Iqbal M. Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian influenza. NPJ Vaccines 2021; 6:90. [PMID: 34267228 PMCID: PMC8282863 DOI: 10.1038/s41541-021-00350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
The immunogenicity and protective efficacy of vaccines can be enhanced by the selective delivery of antigens to the antigen-presenting cells (APCs). In this study, H9N2 avian influenza virus haemagglutinin (HA) antigen, was targeted by fusing it to single-chain fragment variable (scFv) antibodies specific to CD83 receptor expressed on chicken APCs. We observed an increased level of IFNγ, IL6, IL1β, IL4, and CxCLi2 mRNA upon stimulation of chicken splenocytes ex vivo by CD83 scFv targeted H9HA. In addition, CD83 scFv targeted H9HA induced higher serum haemagglutinin inhibition activity and virus neutralising antibodies compared to untargeted H9HA, with induction of antibodies as early as day 6 post primary vaccination. Furthermore, chickens vaccinated with CD83 scFv targeted H9HA showed reduced H9N2 challenge virus shedding compared to untargeted H9HA. These results suggest that targeting antigens to CD83 receptors could improve the efficacy of poultry vaccines.
Collapse
Affiliation(s)
- Angita Shrestha
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom ,grid.4991.50000 0004 1936 8948Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Jean-Remy Sadeyen
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Deimante Lukosaityte
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Pengxiang Chang
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Adrian Smith
- grid.4991.50000 0004 1936 8948Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Marielle Van Hulten
- grid.420097.80000 0004 0407 6096Global Poultry R&D Biologicals Boxmeer, Intervet International BV, MSD Animal Health, Boxmeer, The Netherlands
| | - Munir Iqbal
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
7
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
8
|
Shrestha A, Sadeyen JR, Lukosaityte D, Chang P, Van Hulten M, Iqbal M. Targeting Haemagglutinin Antigen of Avian Influenza Virus to Chicken Immune Cell Receptors Dec205 and CD11c Induces Differential Immune-Potentiating Responses. Vaccines (Basel) 2021; 9:vaccines9070784. [PMID: 34358200 PMCID: PMC8310205 DOI: 10.3390/vaccines9070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Improving the immunogenicity and protective efficacy of vaccines is critical to reducing disease impacts. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to the antigen presenting cells (APCs). In this study, we have developed a targeted antigen delivery vaccine (TADV) system by recombinantly fusing the ectodomain of hemagglutinin (HA) antigen of H9N2 influenza A virus to single chain fragment variable (scFv) antibodies specific for the receptors expressed on chicken APCs; Dec205 and CD11c. Vaccination of chickens with TADV containing recombinant H9HA Foldon-Dec205 scFv or H9HA Foldon-CD11c scFv proteins elicited faster (as early as day 6 post primary vaccination) and higher anti-H9HA IgM and IgY, haemagglutination inhibition, and virus neutralisation antibodies compared to the untargeted H9HA protein. Comparatively, CD11c scFv conjugated H9HA protein showed higher immunogenic potency compared to Dec205 scFv conjugated H9HA protein. The higher immune potentiating ability of CD11c scFv was also reflected in ex-vivo chicken splenocyte stimulation assay, whereby H9HA Foldon-CD11c scFv induced higher levels of cytokines (IFNγ, IL6, IL1β, and IL4) compared to H9HA Foldon-Dec205 scFv. Overall, the results conclude that TADV could be a better alternative to the currently available inactivated virus vaccines.
Collapse
Affiliation(s)
- Angita Shrestha
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
- Department of Zoology, Peter Medawar Building, South Parks Road, University of Oxford, Oxford OX1 3SY, UK
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Deimante Lukosaityte
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Pengxiang Chang
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
| | - Marielle Van Hulten
- Global Poultry R&D Biologicals Boxmeer, Intervet International BV, MSD Animal Health, Wim De Körverstraat 35, 5831 AN Boxmeer, The Netherlands;
| | - Munir Iqbal
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (A.S.); (J.-R.S.); (D.L.); (P.C.)
- Correspondence: or ; Tel.: +44-(0)-1483-231441
| |
Collapse
|
9
|
Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845. Int J Biol Macromol 2020; 163:1240-1248. [DOI: 10.1016/j.ijbiomac.2020.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
|
10
|
Phan HT, Pham VT, Ho TT, Pham NB, Chu HH, Vu TH, Abdelwhab EM, Scheibner D, Mettenleiter TC, Hanh TX, Meister A, Gresch U, Conrad U. Immunization with Plant-Derived Multimeric H5 Hemagglutinins Protect Chicken against Highly Pathogenic Avian Influenza Virus H5N1. Vaccines (Basel) 2020; 8:E593. [PMID: 33050224 PMCID: PMC7712794 DOI: 10.3390/vaccines8040593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Since 2003, H5N1 highly pathogenic avian influenza viruses (HPAIV) have not only caused outbreaks in poultry but were also transmitted to humans with high mortality rates. Vaccination is an efficient and economical means of increasing immunity against infections to decrease the shedding of infectious agents in immunized animals and to reduce the probability of further infections. Subunit vaccines from plants are the focus of modern vaccine developments. In this study, plant-made hemagglutinin (H5) trimers were purified from transiently transformed N. benthamiana plants. All chickens immunized with purified H5 trimers were fully protected against the severe HPAIV H5N1 challenge. We further developed a proof-of-principle approach by using disulfide bonds, homoantiparallel peptides or homodimer proteins to combine H5 trimers leading to production of H5 oligomers. Mice vaccinated with crude leaf extracts containing H5 oligomers induced neutralizing antibodies better than those induced by crude leaf extracts containing trimers. As a major result, eleven out of twelve chickens (92%) immunized with adjuvanted H5 oligomer crude extracts were protected from lethal disease while nine out of twelve chickens (75%) vaccinated with adjuvanted H5 trimer crude extracts survived. The solid protective immune response achieved by immunization with crude extracts and the stability of the oligomers form the basis for the development of inexpensive protective veterinary vaccines.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Van Thi Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Thuong Thi Ho
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
| | - Ngoc Bich Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Trang Huyen Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - Tran Xuan Hanh
- National Veterinary Joint Stock Company (NAVETCO), 29 Nguyen Dinh Chieu, Dist 1, Ho Chi Minh City 700000, Vietnam;
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Ulrike Gresch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| |
Collapse
|
11
|
Mossner S, Phan HT, Triller S, Moll JM, Conrad U, Scheller J. Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 2020; 15:e0230804. [PMID: 32236103 PMCID: PMC7112226 DOI: 10.1371/journal.pone.0230804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hoang T. Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Saskia Triller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|