1
|
Sheng X, Che Z, Qiao H, Qiu C, Wu J, Li C, Tan C, Li J, Wang G, Liu W, Gao H, Li X. A functional mineralized collagen hydrogel to promote angiogenic and osteogenic for osseointegration of 3D-printed titanium alloy microporous scaffolds. Int J Biol Macromol 2024; 277:133806. [PMID: 38996886 DOI: 10.1016/j.ijbiomac.2024.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Bone defects, resulting from trauma, inflammation, tumors, and various other factors, affect both health and quality of life. Although autologous bone transplantation is the gold-standard treatment for bone defects, it has disadvantages such as donor site limitations, prolonged surgical durations, and potential complications, necessitating the development of alternative bone tissue engineering materials. In this study, we used 3D printing technology to fabricate porous titanium implants characterized by superior biocompatibility and mechanical properties. Sodium alginate (SA) and strontium ions (Sr2+) were integrated into mineralized collagen matrices (MCs) to develop strontium-functionalized alginate-mineralized collagen hydrogels (SAMs) with high mechanical strength and sustained metal ion release ability. SAMs were seamlessly incorporated into the porous structures of 3D-printed titanium scaffolds, establishing a novel organic-inorganic bioactive interface. This composite system exhibited high biocompatibility in vitro and increased the expression of genes important for osteogenic differentiation and angiogenesis. In a rabbit model of femoral defect, the titanium implants effectively promoted bone and vascular regeneration on their surface, highlighting their potential in facilitating bone-implant integration.
Collapse
Affiliation(s)
- Xiao Sheng
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, PR China
| | - Hongqing Qiao
- Weihai Municipal Hosp., 70 Heping Rd., Weihai 264200, China
| | - Chenhao Qiu
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Junhao Wu
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Chengjie Tan
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Jianyou Li
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Guorong Wang
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Wei Liu
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Hongliang Gao
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China.
| | - Xiongfeng Li
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| |
Collapse
|
2
|
da Costa Silva E, de Souza AM, Rossi AM, Costa AM, Grangeiro JM, Luchiari AC, de Medeiros SRB. Use of Zebrafish (Danio rerio) for Biosafety Evaluation of Strontium Nanostructured Hydroxyapatite. J Biomed Mater Res B Appl Biomater 2024; 112:e35478. [PMID: 39223072 DOI: 10.1002/jbm.b.35478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Despite the numerous studies on biocompatibility with nano-biomaterials, the biological effects of strontium-substituted HA nanoparticles (nSrHA) need to be better understood. So, we conducted an embryotoxicity test using zebrafish (Danio rerio) according to the OECD 236 guideline, a model that represents a viable alternative that bridges the gap between in vitro and mammalian models. Zebrafish embryos were exposed for 120 h to microspheres containing nSrHA nanoparticles with low and high crystallinity, synthesized at temperatures of 5°C (nSrHA5) and 90°C (nSrHA90). We evaluated lethality, developmental parameters, and reactive oxygen species (ROS) production. The larval behavior was assessed at 168 hpf to determine if the biomaterials affected motor responses and anxiety-like behavior. The results showed that the survival rate decreased significantly for the nSrHA5 group (low crystalline particles), and an increase in ROS was also observed in this group. However, none of the biomaterials caused morphological changes indicative of toxicity during larval development. Additionally, the behavioral tests did not reveal any alterations in all experimental groups, indicating the absence of neurotoxic effects from exposure to the tested biomaterials. These findings provide valuable insights into the biosafety of modified HA-based nanostructured biomaterials, making them a promising strategy for bone tissue repair. As the use of hydroxyapatite-based biomaterials continues to grow, it is crucial to ensure rigorous control over the quality, reliability, and traceability of these materials.
Collapse
Affiliation(s)
- Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Machado Costa
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Grangeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
3
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Mohan AS, Ravindran DR, Marudhamuthu M, Rajan M. Investigation of Osteomyelitis Inducing Methicillin-Resistant Staphylococcus aureus Inhibition Effect by Strontium-Substituted Borate Bioactive Glasses. ACS APPLIED BIO MATERIALS 2024; 7:3828-3840. [PMID: 38750624 DOI: 10.1021/acsabm.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Borate glass transforms into hydroxycarbonate apatite more rapidly than silicate glass. This research aims to evaluate strontium's structural and biological effects on borate bioactive glass (BBG) and the influence of strontium concentrations (0%, 5%, 10%, and 15% Sr) prepared via the sol-gel method. The study reveals significant findings related to the physicochemical properties of the glass. Immersion of the glass powders in a simulated body fluid (SBF) led to the development of a hydroxyapatite (HAP) layer on the glass surfaces. This transformation was verified through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) analyses. In particular, 5% strontium exhibited gradual degradation, resulting in particle sizes below 100 nm. The BBG-15%Sr demonstrates heightened pathogenic activity as it shows a significant inhibition zone of 14 mm at 250 μg/mL, surpassing other substituted BBGs. It effectively combats Gram-positive bacteria, completely inhibiting MRSA growth at 50 μg/mL. This underscores its robust biofilm disruption capabilities, eradicating biofilms, even at minimal concentrations after prolonged exposure. C. elegans when subjected to BBG-15%Sr shows less ROS production when compared with the others. Moreover, the results suggest that the modified glass could be a potential material for the treatment of osteomyelitis-affected bone repair.
Collapse
Affiliation(s)
- Anne Seles Mohan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | | |
Collapse
|
5
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Naruphontjirakul P, Li M, Boccaccini AR. Strontium and Zinc Co-Doped Mesoporous Bioactive Glass Nanoparticles for Potential Use in Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:575. [PMID: 38607110 PMCID: PMC11013354 DOI: 10.3390/nano14070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have attracted significant attention as multifunctional nanocarriers for various applications in both hard and soft tissue engineering. In this study, multifunctional strontium (Sr)- and zinc (Zn)-containing MBGNs were successfully synthesized via the microemulsion-assisted sol-gel method combined with a cationic surfactant (cetyltrimethylammonium bromide, CTAB). Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs exhibited spherical shapes in the nanoscale range of 100 ± 20 nm with a mesoporous structure. Sr and Zn were co-substituted in MBGNs (60SiO2-40CaO) to induce osteogenic potential and antibacterial properties without altering their size, morphology, negative surface charge, amorphous nature, mesoporous structure, and pore size. The synthesized MBGNs facilitated bioactivity by promoting the formation of an apatite-like layer on the surface of the particles after immersion in Simulated Body Fluid (SBF). The effect of the particles on the metabolic activity of human mesenchymal stem cells was concentration-dependent. The hMSCs exposed to Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs at 200 μg/mL enhanced calcium deposition and osteogenic differentiation without osteogenic supplements. Moreover, the cellular uptake and internalization of Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs in hMSCs were observed. These novel particles, which exhibited multiple functionalities, including promoting bone regeneration, delivering therapeutic ions intracellularly, and inhibiting the growth of Staphylococcus aureus and Escherichia coli, are potential nanocarriers for bone regeneration applications.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Meng Li
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| |
Collapse
|
7
|
Williams TD, Adler T, Smokoff L, Kaur A, Rodriguez B, Prakash KJ, Redzematovic E, Baker TS, Rapoport BI, Yoon ES, Beall DP, Dordick JS, De Leacy RA. Bone Cements Used in Vertebral Augmentation: A State-of-the-art Narrative Review. J Pain Res 2024; 17:1029-1040. [PMID: 38505504 PMCID: PMC10949389 DOI: 10.2147/jpr.s437827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024] Open
Abstract
Vertebral compression fractures (VCFs) are common in osteoporotic patients, with a frequency projected to increase alongside a growing geriatric population. VCFs often result in debilitating back pain and decreased mobility. Cement augmentation, a minimally invasive surgical technique, is widely used to stabilize fractures and restore vertebral height. Acrylic-based cements and calcium phosphate cements are currently the two primary fill materials utilized for these procedures. Despite their effectiveness, acrylic bone cements and calcium phosphate cements have been associated with various intraoperative and postoperative incidents impacting VCF treatment. Over the past decade, discoveries in the field of biomedical engineering and material science have shown advancements toward addressing these limitations. This narrative review aims to assess the potential pitfalls and barriers of the various types of bone cements.
Collapse
Affiliation(s)
- Tyree D Williams
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| | - Talia Adler
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Columbia University School of General Studies, New York, NY, USA
| | - Lindsey Smokoff
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Columbia University School of General Studies, New York, NY, USA
| | - Anmoldeep Kaur
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neuroscience, Smith College, Northampton, MA, USA
| | - Benjamin Rodriguez
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Turner S Baker
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
- Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin I Rapoport
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| | | | | | | | - Reade A De Leacy
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| |
Collapse
|
8
|
Stipniece L, Ramata-Stunda A, Vecstaudza J, Kreicberga I, Livkisa D, Rubina A, Sceglovs A, Salma-Ancane K. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:5264-5281. [PMID: 38039078 PMCID: PMC10731655 DOI: 10.1021/acsabm.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Anna Ramata-Stunda
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Jana Vecstaudza
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Inta Kreicberga
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Dora Livkisa
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Anna Rubina
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Artemijs Sceglovs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Kristine Salma-Ancane
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| |
Collapse
|
9
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
10
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116960-116983. [PMID: 36456674 DOI: 10.1007/s11356-022-24176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
Collapse
Affiliation(s)
- Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Islamic Azad University, Rasht, Rasht Branch, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
- Alavi Educational and Cultural Complex, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohamad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India, Chennai, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Abdalla MM, Bijle MN, Abdallah NMA, Yiu CKY. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate. J Dent 2023; 138:104731. [PMID: 37777085 DOI: 10.1016/j.jdent.2023.104731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVES To investigate enamel remineralization and antimicrobial effect of sodium fluoride (NaF) varnish containing calcium strontium silicate (CSR). METHODS CSR was synthesized by sol-gel process and incorporated in 5 % NaF varnish at three different concentrations (1 %, 2 %, and 4 % w/v). The treatment/control groups were: 1 % CSR+NaF, 2 % CSR+NaF, 4 % CSR+NaF, NaF, and no treatment. Strontium and fluoride release from the varnishes was evaluated. Sound enamel specimens (n = 6) were demineralized, varnish-treated, and subjected to remineralization cycle. Mineral density of enamel specimens was evaluated using micro-CT. Antimicrobial effect of the varnishes on Streptococcus mutans and Lactobacillus acidophilus biofilms was assessed using confocal laser scanning microscopy. The HGF-1 cytotoxicity of the varnishes was examined using CCK-8 assay. RESULTS Both 2 % and 4 % CSR+NaF varnishes showed significantly higher F release and remineralization potential than NaF varnish (p < 0.05). Dead bacterial proportion of 4 % CSR+NaF varnish was significantly higher than NaF varnish (p < 0.05). The CFUs values of both S. mutans and L. acidophilus were significantly lower in 4 % CSR+NaF group than NaF group (p < 0.05). No significant difference in cell viability was observed among the groups (p > 0.05). CONCLUSIONS Incorporation of 4 % CSR in a NaF varnish significantly enhanced its enamel remineralization and antimicrobial potential with no cytotoxic effect. CLINICAL SIGNIFICANCE Dental caries is a major public health problem globally. The study highlights the great potential of CSR-doped NaF varnish as a novel anti-caries agent with synergistic remineralizing and antimicrobial properties to combat early enamel caries lesions in the general population.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China; Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Nermeen M A Abdallah
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, China.
| |
Collapse
|
13
|
Chen J, Xiao J, Han X, Sima X, Guo W. An HA/PEEK scaffold with modified crystallinity via 3D-bioprinting for multiple applications in hard tissue engineering. Biomed Mater 2023; 18:065021. [PMID: 37852224 DOI: 10.1088/1748-605x/ad0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Hard tissues, especially teeth and bones, are highly mineralized and the large-scale defect or total loss of them is irreversible. There is still no ideal strategy for the reconstruction of various hard tissue defects that can achieve the balance between biological and mechanical properties. Polyether ether ketone (PEEK) has the potential to substitute for natural hard tissue in defect areas but is limited by its biological inertness. The addition of hydroxyapatite (HA) can significantly improve the osteogenic properties and osteointegration of PEEK materials. But the mechanical properties of HA/PEEK scaffolds are far from satisfaction making scaffolds easy to fracture. We put forward a strategy to balance the mechanical and biological properties of HA/PEEK scaffolds via the regulation of the inner crystallinity and HA mixing ratio and we systematically evaluated the modified HA/PEEK scaffolds through material characterization,in vitroandin vivoexperiments. And we found that the 20%HA/PEEK scaffolds with low crystallinity achieved the required strength and elasticity, and exhibited the characteristics of promoting the proliferation, migration and osteogenic differentiation of bone marrow mesenchymal stem cells. The results of the implantation of beagles' teeth, mandible and rib showed that the 20%HA/PEEK scaffold with low crystallinity could well withstand the local complex force in the defect area and combine well with natural bone tissue, which made it a candidate for a practical versatile hard tissue engineering scaffold.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jingyi Xiao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xue Han
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
14
|
Ryu JH, Mangal U, Lee MJ, Seo JY, Jeong IJ, Park JY, Na JY, Lee KJ, Yu HS, Cha JK, Kwon JS, Choi SH. Effect of strontium substitution on functional activity of phosphate-based glass. Biomater Sci 2023; 11:6299-6310. [PMID: 37551440 DOI: 10.1039/d3bm00610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Phosphate-based glass (PBG) is a bioactive agent, composed of a glass network with phosphate as the primary component and can be substituted with various therapeutic ions for functional enhancement. Strontium (Sr) has been shown to stimulate osteogenic activity and inhibit pro-inflammatory responses. Despite this potential, there are limited studies that focus on the proportion of Sr substituted and its impact on the functional activity of resulting Sr-substituted PBG (PSr). In this study, focusing on the cellular biological response we synthesized and investigated the functional activity of PSr by characterizing its properties and comparing the effect of Sr substitution on cellular bioactivity. Moreover, we benchmarked the optimal composition against 45S5 bioactive glass (BG). Our results showed that PSr groups exhibited a glass structure and phosphate network like that of PBG. The release of Sr and P was most stable for PSr6, which showed favorable cell viability. Furthermore, PSr6 elicited excellent early osteogenic marker expression and inhibition of pro-inflammatory cytokine expression, which was significant compared to BG. In addition, compared to BG, PSr6 had markedly higher expression of osteopontin in immunocytochemistry, higher ALP expression in osteogenic media, and denser alizarin red staining in vitro. We also observed a comparable in vivo regenerative response in a 4-week rabbit calvaria defect model. Therefore, based on the results of this study, PSr6 could be identified as the functionally optimized composition with the potential to be applied as a valuable bioactive component of existing biomaterials used for bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, 1 Baekseokdaehak-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31065, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Il Jun Jeong
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Na
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Zhang S, Ding L, Chen G, Zhang J, Ge W, Qu Y. Enhanced bone regeneration via local low-dose delivery of PTH 1-34 in a composite hydrogel. Front Bioeng Biotechnol 2023; 11:1209752. [PMID: 37465690 PMCID: PMC10352085 DOI: 10.3389/fbioe.2023.1209752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Introducing bone regeneration-promoting factors into scaffold materials to improve the bone induction property is crucial in the fields of bone tissue engineering and regenerative medicine. This study aimed to develop a Sr-HA/PTH1-34-loaded composite hydrogel system with high biocompatibility. Teriparatide (PTH1-34) capable of promoting bone regeneration was selected as the bioactive factor. Strontium-substituted hydroxyapatite (Sr-HA) was introduced into the system to absorb PTH1-34 to promote the bioactivity and delay the release cycle. PTH1-34-loaded Sr-HA was then mixed with the precursor solution of the hydrogel to prepare the composite hydrogel as bone-repairing material with good biocompatibility and high mechanical strength. The experiments showed that Sr-HA absorbed PTH1-34 and achieved the slow and effective release of PTH1-34. In vitro biological experiments showed that the Sr-HA/PTH1-34-loaded hydrogel system had high biocompatibility, allowing the good growth of cells on the surface. The measurement of alkaline phosphatase activity and osteogenesis gene expression demonstrated that this composite system could promote the differentiation of MC3T3-E1 cells into osteoblasts. In addition, the in vivo cranial bone defect repair experiment confirmed that this composite hydrogel could promote the regeneration of new bones. In summary, Sr-HA/PTH1-34 composite hydrogel is a highly promising bone repair material.
Collapse
Affiliation(s)
- Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lei Ding
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Gaoyang Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Hand Surgery, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen, China
| | - Jiayin Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wanbao Ge
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Qu
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Thabit HA, Ismail AK, Mhareb M, Abdulmalik D, I A, Al-Fakih AM, Alajerami Y, S.Hashim. Exploring the properties of Dy 2O 3-Y 2O 3 Co-activated telluro-borate glass: Structural, physical, optical, thermal, and mechanical properties. Heliyon 2023; 9:e18309. [PMID: 37539187 PMCID: PMC10393758 DOI: 10.1016/j.heliyon.2023.e18309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
The successful application of glass-based materials in a wide range of scientific fields depends on the associated physical, optical, thermal, and mechanical properties. This article investigate the structural, Physical, thermal, optical, and mechanical properties of Dy2O3, Y2O3 co-activated telluro-borate glass developed using the melt-quenching method. The glassy quality and the elements component of the specimens were observed using XRD and EDX analyses. The addition of Y2O3 rise the glass density from 2.956 to 3.303 g/cm3 the refractive index from 2.5 to 2.7. These changes are due to the increase in polarizability and non-bridging oxygen (NBO). The photoluminescence (PL) spectra revealed a broad peak at 550 nm and additional weak emission peaks at 573 and 664 nm, respectively. While the observed broader peak can be linked to the convolution of Bi3+ ions transitions corresponding to the non-centrosymmetric site respectively, the weak emission bands are due to 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 Dy3+ transitions. Hence, the low symmetrical features of both Bi3+ and Dy3+ ions were confirmed. The increase in the Vickers hardness of the glass from 536.7 to 1366.9 indicates the influence of Y2O3 addition on the mechanical properties of the glasses. The findings help to improve our understanding of the behaviour of the glass composition and its prospective applications in disciplines such as photonic, and laser optics.
Collapse
Affiliation(s)
| | - Abd Khamim Ismail
- Department of Physics, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - M.H.A. Mhareb
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia
| | - D.A. Abdulmalik
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdullahi I
- Department of Physics, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Physics Department, Federal University Gusau Zamfara State Nigeria
| | - Abdo Mohammed Al-Fakih
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Y.S.M. Alajerami
- Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine
| | - S.Hashim
- Department of Physics, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
17
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
18
|
Özel C, Çevlik CB, Özarslan AC, Emir C, Elalmis YB, Yucel S. Evaluation of biocomposite putty with strontium and zinc co-doped 45S5 bioactive glass and sodium hyaluronate. Int J Biol Macromol 2023; 242:124901. [PMID: 37210057 DOI: 10.1016/j.ijbiomac.2023.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The application of powder or granule formed bioactive glasses in the defect area with the help of a liquid carrier to fill the defects is a subject of interest and is still open to development. In this study, it was aimed to prepare biocomposites of bioactive glasses incorporating different co-dopants with a carrier biopolymer and to create a fluidic material (Sr and Zn co-doped 45S5 bioactive glasses‑sodium hyaluronate). All biocomposite samples were pseudoplastic fluid type, which may be suitable for defect filling and had excellent bioactivity behaviors confirmed by FTIR, SEM-EDS and XRD. Biocomposites with Sr and Zn co-doped bioactive glass had higher bioactivity considering the crystallinity of hydroxyapatite formations compared to biocomposite with undoped bioactive glasses. Biocomposites with high bioactive glass content had hydroxyapatite formations with higher crystallinity compared to biocomposites with low bioactive glass. Furthermore, all biocomposite samples showed non-cytotoxic effect on the L929 cells up to a certain concentration. However, biocomposites with undoped bioactive glass showed cytotoxic effects at lower concentrations compared to biocomposites with co-doped bioactive glass. Thus, biocomposite putties utilizing Sr and Zn co-doped bioactive glasses may be advantageous for orthopedic applications due to their specified rheological, bioactivity, and biocompatibility properties.
Collapse
Affiliation(s)
- Cem Özel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey.
| | - Cem Batuhan Çevlik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
| | - Ali Can Özarslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Ceren Emir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey; Alanya Alaaddin Keykubat University, Faculty of Rafet Kayis Engineering, Genetic and Bioengineering Department, Antalya, Turkey
| | - Yeliz Basaran Elalmis
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Sevil Yucel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| |
Collapse
|
19
|
Naruphontjirakul P, Kanchanadumkerng P, Ruenraroengsak P. Multifunctional Zn and Ag co-doped bioactive glass nanoparticles for bone therapeutic and regeneration. Sci Rep 2023; 13:6775. [PMID: 37185618 PMCID: PMC10130135 DOI: 10.1038/s41598-023-34042-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Bone cancer has traditionally been treated using surgery, radiotherapy, and/or chemotherapy. The nonspecific distribution of chemotherapy and implantable infections are significant risk factors for the failure of the bone to heal. Multifunctional zinc and silver co-doped bioactive glass nanoparticles (yAg-xZn-BGNPs) with a diameter of 150 ± 30 nm were successfully synthesized using modified sol-gel and two-step post-functionalization processes, tailored to provide antibacterial and anticancer activity whilst maintaining osteogenesis ability. Co-doped BGNPs with Zn and Ag did not significantly alter physicochemical properties, including size, morphology, glass network, and amorphous nature. Apatite-like layer was observed on the surface of yAg-xZn-BGNPs and resorbed in the simulated body fluid solution, which could increase their bioactivity. Human fetal osteoblast cell line (hFOB 1.19) treated with particles showed calcified tissue formation and alkaline phosphatase activity in the absence of osteogenic supplements in vitro, especially with 0.5Ag-1Zn-BGNPs. Moreover, these particles preferentially disrupted the metabolic activity of bone cancer cells (MG-63) and had an antibacterial effect against B. subtilis, E. coli, and S. aureus via the disc diffusion method. This novel 0.5Ag-1Zn-BGNP and 1Ag-1Zn-BGNPs, with wide-ranging ability to stimulate bone regeneration, to inhibit bone cancer cell proliferation, and to prevent bacterial growth properties, may provide a feasible strategy for bone cancer treatment. The 0.5Ag-1Zn-BGNPs and 1Ag-1Zn-BGNPs can be applied for the preparation of scaffolds or filler composites using in bone tissue engineering.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | | | - Pakatip Ruenraroengsak
- Division of Pharmaceutical Technology, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
20
|
Yang X, Wang Q, Zhang Y, He H, Xiong S, Chen P, Li C, Wang L, Lu G, Xu Y. A dual-functional PEEK implant coating for anti-bacterial and accelerated osseointegration. Colloids Surf B Biointerfaces 2023; 224:113196. [PMID: 36764204 DOI: 10.1016/j.colsurfb.2023.113196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in biomedical engineering. However, the unsatisfactory bioactivity essentially limits the clinical application of PEEK. In this study, a simply immersing method was proposed to fabricate a dual-functional PEEK with antibacterial properties and enhanced bone integration. Firstly, the surface of PEEK was modified with a polydopamine (PDA) coating by incubating at dopamine solution. Afterward, the PEEK-PDA was modified with manganese (Mn) and silver (Ag) ions by the soaking method to fabricate the PEEK-PDA-Mn/Ag. The physicochemical capabilities of PEEK-PDA-Mn/Ag were further explored in the ions release, wettability, morphology, and element distributions. PEEK-PDA-Mn/Ag obviously accelerated the adhesion and distribution of MC3T3-E1 cells, indicating favorable biosafety in vitro. Meanwhile, the osteogenic properties of PEEK-PDA-Mn and PEEK-PDA-Mn/Ag were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Additionally, the wide antibacterial capabilities of PEEK-PDA-Mn/Ag were proved in both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. Furthermore, the PEEK-PDA-Mn/Ag was antibacterial with capability in enhancing osseointegration in vivo. Overall, the simply immersing method can modify the surface of PEEK, giving the bioactivity, biocompatibility, and antibacterial ability to the composited PEEK, which could be applied as an orthopedic implant in clinical.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China; Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Guohai Lu
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China.
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
21
|
Shearer A, Montazerian M, Sly JJ, Hill RG, Mauro JC. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater 2023; 160:14-31. [PMID: 36804821 DOI: 10.1016/j.actbio.2023.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
At least 25 bioactive glass (BG) medical devices have been approved for clinical use by global regulatory agencies. Diverse applications include monolithic implants, bone void fillers, dentin hypersensitivity agents, wound dressing, and cancer therapeutics. The morphology and delivery systems of bioactive glasses have evolved dramatically since the first devices based on 45S5 Bioglass®. The particle size of these devices has generally decreased with the evolution of bioactive glass technology but primarily lies in the micron size range. Morphologies have progressed from glass monoliths to granules, putties, and cements, allowing medical professionals greater flexibility and control. Compositions of these commercial materials have primarily relied on silicate-based systems with varying concentrations of sodium, calcium, and phosphorus. Furthermore, therapeutic ions have been investigated and show promise for greater control of biological stimulation of genetic processes and increased bioactivity. Some commercial products have exploited the borate and phosphate-based compositions for soft tissue repair/regeneration. Mesoporous BGs also promise anticancer therapies due to their ability to deliver drugs in combination with radiotherapy, photothermal therapy, and magnetic hyperthermia. The objective of this article is to critically discuss all clinically approved bioactive glass products. Understanding essential regulatory standards and rules for production is presented through a review of the commercialization process. The future of bioactive glasses, their promising applications, and the challenges are outlined. STATEMENT OF SIGNIFICANCE: Bioactive glasses have evolved into a wide range of products used to treat various medical conditions. They are non-equilibrium, non-crystalline materials that have been designed to induce specific biological activity. They can bond to bone and soft tissues and contribute to their regeneration. They are promising in combating pathogens and malignancies by delivering drugs, inorganic therapeutic ions, and heat for magnetic-induced hyperthermia or laser-induced phototherapy. This review addresses each bioactive glass product approved by regulatory agencies for clinical use. A review of the commercialization process is also provided with insight into critical regulatory standards and guidelines for manufacturing. Finally, a critical evaluation of the future of bioactive glass development, applications, and challenges are discussed.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials, Department of Materials Engineering, Federal University of Campina Grande, PB, Brazil
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert G Hill
- Institute of Dentistry, Dental Physical Sciences Unit, Queen Mary University of London, London, United Kingdom
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
22
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Rifane TO, Cordeiro KEM, Silvestre FA, Souza MT, Zanotto ED, Araújo-Neto VG, Giannini M, Sauro S, de Paula DM, Feitosa VP. Impact of silanization of different bioactive glasses in simplified adhesives on degree of conversion, dentin bonding and collagen remineralization. Dent Mater 2023; 39:217-226. [PMID: 36690502 DOI: 10.1016/j.dental.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To analyze simplified adhesive containing pure or silanized bioglass 45S5 (with calcium) or Sr-45S5 (strontium-substituted) fillers applied on dentin and to evaluate the microtensile bond strength (µTBS), interface nanoleakage, degree of conversion of adhesive, collagen degradation and remineralization. METHODS Ambar Universal adhesive (FGM) was doped with 10 wt% bioactive glasses to form following groups: Control (no bioglass), 45S5 (conventional bioglass 45S5), Sr-45S5 (Sr-substituted bioglass 45S5), Sil-45S5 (silanized bioglass 45S5) and Sil-Sr-45S5 (silanized bioglass Sr-45S5). Adhesives were applied after dentin acid-etching using phosphoric acid at extracted human molars. Resin-dentin sticks were obtained and tested for µTBS, nanoleakage at 24 h or 6 months. Degree of conversion was measured using micro-Raman spectroscopy. Dentin remineralization was assessed by FTIR after 6-month storage in PBS. Hydroxyproline (HYP) release was surveyed by UV-Vis spectroscopy. Statistical analysis was performed using ANOVA and Tukey's test (p < 0.05). RESULTS Regarding µTBS, Sr-45S5 and 45S5 presented higher and stable results (p > 0.05). Control (p = 0.018) and Sil-Sr-45S5 (p < 0.001) showed µTBS reduction after 6-month aging. Sil-Sr-45S5 showed higher HYP release than that obtained in the 45S5 group. Sil-45S5 showed mineral deposition and increase in µTBS (p = 0.028) after 6-months. All experimental adhesives exhibited higher degree of conversion compared to Control group, except for 45S5. All adhesives created gap-free interfaces, with very low silver impregnation, except for Sil-Sr-45S5. SIGNIFICANCE The incorporation of silanized 45S5 bioglass into the universal adhesive was advantageous in terms of dentin remineralization, bonding performance and adhesive polymerization. Conversely, Sil-Sr-45S5 compromised the µTBS, interface nanoleakage and had a negative impact on HYP outcomes.
Collapse
Affiliation(s)
| | | | | | - Marina Trevelin Souza
- Vitreous Materials Laboratory (LAMAV), Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil.
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory (LAMAV), Department of Materials Engineering, Federal University of São Carlos, São Carlos, Brazil.
| | - Vitaliano Gomes Araújo-Neto
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - Salvatore Sauro
- Department of Biomaterials and Minimally Invasive Dentistry, Cardenal Herreara CEU University, Valencia, Spain.
| | | | | |
Collapse
|
24
|
Pang S, Wu D, Yang H, Kamutzki F, Kurreck J, Gurlo A, Hanaor DAH. Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds. BIOMATERIALS ADVANCES 2023; 145:213230. [PMID: 36527963 DOI: 10.1016/j.bioadv.2022.213230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Shumin Pang
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dongwei Wu
- Technische Universität Berlin, Chair of Applied Biochemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Haotian Yang
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Franz Kamutzki
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jens Kurreck
- Technische Universität Berlin, Chair of Applied Biochemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Aleksander Gurlo
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dorian A H Hanaor
- Technische Universität Berlin, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
25
|
Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B 2023; 11:955-973. [PMID: 36633185 DOI: 10.1039/d2tb02505a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of their excellent biologically active qualities, bioactive glasses (BGs) have been extensively used in the biomedical domain, leading to better tissue-implant interactions and promoting bone regeneration and wound healing. Aside from having attractive characteristics, BGs are appealing as a porous scaffold material. On the other hand, such porous scaffolds should enable tissue proliferation and integration with the natural bone and neighboring soft tissues and degrade at a rate that allows for new bone development while preventing bacterial colonization. Therefore, researchers have recently become interested in a different BG composition based on borate (B2O3) rather than silicate (SiO2). Furthermore, apatite synthesis in the borate-based bioactive glass (BBG) is faster than in the silicate-based bioactive glass, which slowly transforms to hydroxyapatite. This low chemical durability of BBG indicates a fast degradation process, which has become a concern for their utilization in biological and biomedical applications. To address these shortcomings, glass network modifiers, active ions, and other materials can be combined with BBG to improve the bioactivity, mechanical, and regenerative properties, including its degradation potential. To this end, this review article will highlight the details of BBGs, including their structure, properties, and medical applications, such as bone regeneration, wound care, and dental/bone implant coatings. Furthermore, the mechanism of BBG surface reaction kinetics and the role of doping ions in controlling the low chemical durability of BBG and its effects on osteogenesis and angiogenesis will be outlined.
Collapse
Affiliation(s)
- Oluwatosin David Abodunrin
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Khalil El Mabrouk
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| | - Meriame Bricha
- Euromed Research Centre, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, 30030 Fes, Morocco.
| |
Collapse
|
26
|
Wu Y, Fu Y, Pan H, Chang C, Ao N, Xu H, Zhang Z, Hu P, Li R, Duan S, Li YY. Preparation and evaluation of stingray skin collagen/oyster osteoinductive composite scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-22. [PMID: 36644798 DOI: 10.1080/09205063.2023.2166338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regeneration of bone defects is a major challenge for clinical orthopaedics. Herein, we designed and prepared a new type of bioactive material, using stingray skin collagen and oyster shell powder (OSP) as raw materials. A stingray skin collagen/oyster osteoinductive composite scaffold (Col-OSP) was prepared for the first time by genipin cross-linking, pore-forming and freeze-drying methods. These scaffolds were characterized by ATR-FTIR, SEM, compression, swelling, cell proliferation, cell adhesion, alkaline phosphatase activity, alizarin red staining and RT-PCR etc. The Col-OSP scaffold had an interconnected three-dimensional porous structure, and the mechanical properties of the Col-OSP composite scaffold were enhanced compared with Col, combining with the appropriate swelling rate and degradation rate, the scaffold was more in line with the requirements of bone tissue engineering scaffolds. The Col-OSP scaffold was non-toxic, promoted the proliferation, adhesion, and differentiation of MC3T3-E1 cells, and stimulated the osteogenesis-related genes expressions of osteocalcin (OCN), collagen type I (COL-I) and RUNX2 of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China.,R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yingkun Fu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Hongfu Pan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Cong Chang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Hui Xu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Zhengnan Zhang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ping Hu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Shuxia Duan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
27
|
Barreto MEV, Medeiros RP, Shearer A, Fook MVL, Montazerian M, Mauro JC. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J Funct Biomater 2022; 14:23. [PMID: 36662070 PMCID: PMC9861949 DOI: 10.3390/jfb14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Recently, composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds. Searching "bioactive glass gelatin" in the tile on Scopus renders 80 highly relevant articles published in the last ~10 years, which signifies the importance of such composites. First, this review addresses the basic concepts of soft and hard tissue engineering, including the healing mechanisms and limitations ahead. Then, current knowledge on gelatin/BG composites including composition, processing and properties is summarized and discussed both for soft and hard tissue applications. This review explores physical, chemical and mechanical features and ion-release effects of such composites concerning osteogenic and angiogenic responses in vivo and in vitro. Additionally, recent developments of BG/gelatin composites using 3D/4D printing for tissue engineering are presented. Finally, the perspectives and current challenges in developing desirable composites for the regeneration of different tissues are outlined.
Collapse
Affiliation(s)
- Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Rebeca P. Medeiros
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
28
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
29
|
Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol 2022; 219:1319-1336. [PMID: 36055598 DOI: 10.1016/j.ijbiomac.2022.08.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds.. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.
Collapse
|
30
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
31
|
A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the therapeutic effects of ions when released in physiological environments. Recent studies have shown that metallic ions like Ag+, Sr2+, Mg2+, Mn2+, Cu2+, Ca2+, P+5, etc., have shown promising results in drug delivery systems and regenerative medicine. These metallic ions can be loaded in nanoparticles, mesoporous bioactive glass nanoparticles (MBGNs), hydroxyapatite (HA), calcium phosphates, polymeric coatings, and salt solutions. The metallic ions can exhibit different functions in the physiological environment such as antibacterial, antiviral, anticancer, bioactive, biocompatible, and angiogenic effects. Furthermore, the metals/metalloid ions can be loaded into scaffolds to improve osteoblast proliferation, differentiation, bone development, fibroblast growth, and improved wound healing efficacy. Moreover, different ions possess different therapeutic limits. Therefore, further mechanisms need to be developed for the highly controlled and sustained release of these ions. This review paper summarizes the recent progress in the use of metallic/metalloid ions in regenerative medicine and encourages further study of ions as a solution to cure diseases.
Collapse
|
32
|
Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060903. [PMID: 35743934 PMCID: PMC9225502 DOI: 10.3390/life12060903] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/11/2022]
Abstract
Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.
Collapse
|
33
|
Al Maruf DSA, Parthasarathi K, Cheng K, Mukherjee P, McKenzie DR, Crook JM, Wallace GG, Clark JR. Current and future perspectives on biomaterials for segmental mandibular defect repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D S Abdullah Al Maruf
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Krishnan Parthasarathi
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
| | - Kai Cheng
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Payal Mukherjee
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - David R. McKenzie
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Jeremy M. Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
- Illawarrah Health and Medical Research Institute, The University of Wollongong, Wollongong, Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Jonathan R. Clark
- Craniomaxillofacial Prosthetic and Advanced Reconstructive Translational Surgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- The Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| |
Collapse
|
34
|
A Review of 3D Printed Bone Implants. MICROMACHINES 2022; 13:mi13040528. [PMID: 35457833 PMCID: PMC9025296 DOI: 10.3390/mi13040528] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
Abstract
3D printing, that is, additive manufacturing, has solved many major problems in general manufacturing, such as three-dimensional tissue structure, microenvironment control difficulty, product production efficiency and repeatability, etc., improved the manufacturing speed and precision of personalized bone implants, and provided a lot of support for curing patients with bone injuries. The application of 3D printing technology in the medical field is gradually extensive, especially in orthopedics. The purpose of this review is to provide a report on the related achievements of bone implants based on 3D printing technology in recent years, including materials, molding methods, optimization of implant structure and performance, etc., in order to point out the existing shortcomings of 3D printing bone implants, promote the development of all aspects of bone implants, and make a prospect of 4D printing, hoping to provide some reference for the subsequent research of 3D printing bone implants.
Collapse
|
35
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
36
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
37
|
Mitruţ I, Scorei IR, Manolea HO, Biţă A, Mogoantă L, Neamţu J, Bejenaru LE, Ciocîlteu MV, Bejenaru C, Rău G, Mogoşanu GD. Boron-containing compounds in Dentistry: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:477-483. [PMID: 36588485 PMCID: PMC9926150 DOI: 10.47162/rjme.63.3.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Research on the use of boron (B) in the field of oral health has gained momentum in recent years, with various studies on the possibilities of using various B-containing compounds (BCCs). A multitude of applications have been discovered, from cariostatic activity to anti-inflammatory and antifungal activity, paving the way for other new research directions. B is a microelement that is commonly found in the human diet, and present throughout the body, with the highest concentration in the structure of bones, teeth, and gastrointestinal mucus gel layer. Multiple studies have demonstrated that B plays some important roles, especially in bone development and recently has been proposed to have an essential role in the healthy symbiosis. In addition, B has also attracted the interest of researchers, as various studies used BCCs in conventional or modern biomaterials. In this review, we have brought together the information we have found about B updates in the dental field and analyzing its future perspectives and potential for further studies.
Collapse
Affiliation(s)
- Ioana Mitruţ
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
| | - Horia Octavian Manolea
- Department of Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - George Dan Mogoşanu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania , Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
38
|
Naruphontjirakul P, Li S, Pinna A, Barrak F, Chen S, Redpath AN, Rankin SM, Porter AE, Jones JR. Interaction of monodispersed strontium containing bioactive glass nanoparticles with macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112610. [PMID: 35042635 DOI: 10.1016/j.msec.2021.112610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
The cellular response of murine primary macrophages to monodisperse strontium containing bioactive glass nanoparticles (SrBGNPs), with diameters of 90 ± 10 nm and a composition (mol%) of 88.8 SiO2-1.8CaO-9.4SrO (9.4% Sr-BGNPs) was investigated for the first time. Macrophage response is critical as applications of bioactive nanoparticles will involve the nanoparticles circulating in the blood stream and macrophages will be the first cells to encounter the particles, as part of inflammatory response mechanisms. Macrophage viability and total DNA measurements were not decreased by particle concentrations of up to 250 μg/mL. The Sr-BGNPs were actively internalised by the macrophages via formation of endosome/lysosome-like vesicles bordered by a membrane inside the cells. The Sr-BGNPs degraded inside the cells, with the Ca and Sr maintained inside the silica network. When RAW264.7 cells were incubated with Sr-BGNPs, the cells were polarised towards the pro-regenerative M2 population rather than the pro-inflammatory M1 population. Sr-BGNPs are potential biocompatible vehicles for therapeutic cation delivery for applications in bone regeneration.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Thailand
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Visiting Specialist Services Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, UK
| | - Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; The Francis Crick Institute, London NW11AT, UK
| | - Fadi Barrak
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Visiting Specialist Services Ltd, Office 6.072 6th Floor, First Central 200, 2 Lakeside Drive, London NW10 7FQ, UK
| | - Shu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andia N Redpath
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK
| | - Sara M Rankin
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK
| | - Alexandra E Porter
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
39
|
In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00547-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Liu F, Wang X, Li S, Liao Y, Zhan X, Tao A, Zheng F, Li H, Su Y, Jiang J, Li C. Strontium-Loaded Nanotubes of Ti-24Nb-4Zr-8Sn Alloys for Biomedical Implantation. J Biomed Nanotechnol 2021; 17:1812-1823. [PMID: 34688326 DOI: 10.1166/jbn.2021.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.
Collapse
Affiliation(s)
- Fei Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinyu Wang
- Jiamusi University Affiliated Stomatological Hospital, Heilongjiang Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, 154000, China
| | - Shujun Li
- Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yiheng Liao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yucheng Su
- Dental Implant Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
41
|
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts. NANOMATERIALS 2021; 11:nano11092189. [PMID: 34578505 PMCID: PMC8465982 DOI: 10.3390/nano11092189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin (ART)-loaded cerium-doped mesoporous calcium silicate nanopowders (NPs) on the hemocompatibility and cell proliferation of human periodontal ligament fibroblasts (hPDLFs). Mesoporous NPs were synthesized in a basic environment via a surfactant assisted cooperative self-assembly process and were characterized using Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction Analysis (XRD) and N2 Porosimetry. The loading capacity of NPs was evaluated using Ultrahigh Performance Liquid Chromatography/High resolution Mass Spectrometry (UHPLC/HRMS). Their biocompatibility was evaluated with the MTT assay, and the analysis of reactive oxygen species was performed using the cell-permeable ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). The synthesized NPs presented a mesoporous structure with a surface area ranging from 1312 m2/g for undoped silica to 495 m2/g for the Ce-doped NPs, excellent bioactivity after a 1-day immersion in c-SBF, hemocompatibility and a high loading capacity (around 80%). They presented ROS scavenging properties, and both the unloaded and ART-loaded NPs significantly promoted cell proliferation even at high concentrations of NPs (125 μg/mL). The ART-loaded Ce-doped NPs with the highest amount of cerium slightly restricted cell proliferation after 7 days of culture, but the difference was not significant compared with the control untreated cells.
Collapse
|
42
|
Abstract
Cellulose acetate (CA)/strontium phosphate (SrP) hybrid coating has been proposed as an effective strategy to build up novel bone-like structures for bone healing since CA is soluble in most organic solvents. Strontium (Sr2+) has been reported as a potential agent to treat degenerative bone diseases due to its osteopromotive and antibacterial effects. Herein, bioactive hybrid composite SrP-based coatings (CASrP) were successfully produced for the first time. CASrP was synthesized via a modified biomimetic method (for 7—CA7dSrP, and 14 days—CA14dSrP), in which the metal ion Sr2+ was used in place of Ca2+ in the simulated body fluid. Energy-dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the SrP incorporation chemically in the CASrP samples. Atomic absorption spectroscopy (AAS) supported EDX data, showing Sr2+ adsorption into CA, and its significant increase with the augmentation of time of treatment (ca. 92%—CA7dSrP and 96%—CA14dSrP). An increment in coating porosity and the formation of SrP crystals were evidenced by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) evidenced a greater crystallinity than CA membranes and a destabilization of CA14dSrP structure compared to CA7dSrP. The composites were extremely biocompatible for fibroblast and osteoblast cells. Cell viability (%) was higher either for CA7dSrP (48 h: ca. 92% and 115%) and CA14dSrP (48 h: ca. 88% and 107%) compared to CA (48 h: ca. 70% and 51%) due to SrP formation and Sr2+ presence in its optimal dose in the culture media (4.6–9 mg·L−1). In conclusion, the findings elucidated here evidence the remarkable potential of CA7dSrP and CA14dSrP as bioactive coatings on the development of implant devices for inducing bone regeneration.
Collapse
|
43
|
Lee NH, Kang MS, Kim TH, Yoon DS, Mandakhbayar N, Jo SB, Kim HS, Knowles JC, Lee JH, Kim HW. Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. Biomaterials 2021; 276:121025. [PMID: 34298444 DOI: 10.1016/j.biomaterials.2021.121025] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Repair of defective hard-tissues in osteoporotic patients faces significantly challenges with limited therapeutic options. Although biomedical cements are considered promising materials for healthy bone repair, their uses for healing osteoporotic fracture are clinically limited. Herein, strontium-releasing-nanoscale cement was introduced to provide dual therapeutic-actions (pro-osteogenesis and anti-osteoclastogenesis), eventually for the regeneration of osteoporotic bone defect. The Sr-nanocement hardened from the Sr-doped nanoscale-glass particles was shown to release multiple ions including silicate, calcium and strontium at doses therapeutically relevant over time. When the Sr-nanocement was treated to pre-osteoblastic cells, the osteogenic mRNA level (Runx2, Opn, Bsp, Ocn), alkaline phosphatase activity, calcium deposition, and target luciferase reporter were stimulated with respect to the case with Sr-free-nanocement. When treated to pre-osteoclastic cells, the Sr-nanocement substantially reduced the osteoclastogenesis, such as osteoclastic mRNA level (Casr, Nfatc1, c-fos, Acp, Ctsk, Mmp-9), tartrate-resistant acid trap activity, and bone resorption capacity. In particular, the osteoclastic inhibition resulted in part from the interactive effect of osteoblasts which were activated by the Sr-nanocement, i.e., blockage of RANKL (receptor activator of nuclear factor-κB ligand) binding by enhanced osteoprotegerin and the deactivated Nfatc1. The Sr-nanocement, administered to an ovariectomized tibia defect (osteoporotic model) in rats, exhibited profound bone regenerative potential in cortical and surrounding trabecular area, including increased bone volume and density, enhanced production of osteopromotive proteins, and more populated osteoblasts, together with reduced signs of osteoclastic bone resorption. These results demonstrate that Sr-nanocement, with its dual effects of osteoclastic inhibition and osteogenic-stimulation, can be considered an effective nanotherapeutic implantable biomaterial platform for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
44
|
Crush J, Hussain A, Seah KTM, Khan WS. Bioactive Glass: Methods for Assessing Angiogenesis and Osteogenesis. Front Cell Dev Biol 2021; 9:643781. [PMID: 34195185 PMCID: PMC8236622 DOI: 10.3389/fcell.2021.643781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterials are playing an increased role in the regeneration of damaged or absent bone tissue in the context of trauma, non-union, infection or congenital abnormality. Restoration of not only the physical scaffold that bone provides, but also of its homeostatic functions as a calcium store and hematopoietic organ are the gold standards of any regenerative procedure. Bioactive glasses are of interest as they can bond with the host bone and induce further both bone and blood vessel growth. The composition of the bioactive glasses can be manipulated to maximize both osteogenesis and angiogenesis, producing a 3D scaffolds that induce bone growth whilst also providing a structure that resists physiological stresses. As the primary endpoints of studies looking at bioactive glasses are very often the ability to form substantial and healthy tissues, this review will focus on the methods used to study and quantify osteogenesis and angiogenesis in bioactive glass experiments. These methods are manifold, and their accuracy is of great importance in identifying plausible future bioactive glasses for clinical use.
Collapse
Affiliation(s)
- Jos Crush
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Ali Hussain
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - K T M Seah
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Improved osteogenesis and angiogenesis of theranostic ions doped calcium phosphates (CaPs) by a simple surface treatment process: A state-of-the-art study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112082. [PMID: 33947573 DOI: 10.1016/j.msec.2021.112082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Surface treatment of biomaterials could enable reliable and quick cellular responses and accelerate the healing of the host tissue. Here, a series of calcium phosphates (CaPs) were surface treated by hydrogen peroxide (H2O2) and the treatment effects were physicochemically and biologically evaluated. For this aim, as-synthesized CaPs doped with strontium (Sr2+), iron (Fe2+), silicon (Si4+), and titanium (Ti4+) ions were sonicated in H2O2 media. The results showed that the specific surface area and zeta potential values of the surface-treated CaPs were increased by ~50% and 25%, respectively. Moreover, the particle size and the band-gap (Eg) values of the surface-treated CaPs were decreased by ~25% and ~2-10%, respectively. The concentration of oxygen vacancies was increased in the surface-treated samples, which was confirmed by the result of ultraviolet (UV), photoluminescence (PL), Commission Internationale de l'éclairage (CIE 1931), and X-ray photoelectron spectroscopy (XPS) analyses. In vitro cellular assessments of surface-treated CaPs exhibited an improvement in cytocompatibility, reactive oxygen species generation (ROS) capacity, bone nodule formation, and the migration of cells up to ~8%, 20%, 35%, and 13%, respectively. Based on the obtained data, it can be stated that improved physicochemical properties of H2O2-treated CaPs could increase the ROS generation and subsequently enhance the biological activities. In summary, the results demonstrate the notable effect of the H2O2 surface treatment method on improving surface properties and biological performance of CaPs.
Collapse
|
46
|
Jinga SI, Anghel AM, Brincoveanu SF, Bucur RM, Florea AD, Saftau BI, Stroe SC, Zamfirescu AI, Busuioc C. Ce/Sm/Sr-Incorporating Ceramic Scaffolds Obtained via Sol-Gel Route. MATERIALS 2021; 14:ma14061532. [PMID: 33800992 PMCID: PMC8003880 DOI: 10.3390/ma14061532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Three different inorganic scaffolds were obtained starting from the oxide system SiO2‒P2O5‒CaO‒MgO, to which Ce4+/Sm3+/Sr2+ cations were added in order to propose novel materials with potential application in the field of hard tissue engineering. Knowing the beneficial effects of each element, improved features in terms of mechanical properties, antibacterial activity and cellular response are expected. The compositions were processed in the form of scaffolds by a common sol-gel method, followed by a thermal treatment at 1000 and 1200 °C. The obtained samples were characterized from thermal, compositional, morphological and mechanical point of view. It was shown that each supplementary component triggers the modification of the crystalline phase composition, as well as microstructural details. Moreover, the shrinkage behavior is well correlated with the attained compression strength values. Sm was proven to be the best choice, since in addition to a superior mechanical resistance, a clear beneficial influence on the viability of 3T3 fibroblast cell line was observed.
Collapse
Affiliation(s)
- Sorin-Ion Jinga
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Ana-Maria Anghel
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Silvia-Florena Brincoveanu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Raluca-Maria Bucur
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andrei-Dan Florea
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Bianca-Irina Saftau
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Stefania-Cristina Stroe
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Andreea-Ioana Zamfirescu
- Faculty of Medical Engineering, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania; (A.-M.A.); (S.-F.B.); (R.-M.B.); (A.-D.F.); (B.-I.S.); (S.-C.S.); (A.-I.Z.)
| | - Cristina Busuioc
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, RO-011061 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
47
|
Peng TY, Tsai PY, Chen MS, Mine Y, Wu SH, Chen CY, Lin DJ, Lin CK. Mesoporous Properties of Bioactive Glass Synthesized by Spray Pyrolysis with Various Polyethylene Glycol and Acid Additions. Polymers (Basel) 2021; 13:618. [PMID: 33670799 PMCID: PMC7922486 DOI: 10.3390/polym13040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Mesoporous bioactive glass (MBG) has a high specific surface area, promoting the reaction area, thereby improving the bioactivity; thus, MBG is currently gaining popularity in the biomaterial field. Spray pyrolysis (SP) is a one-pot process that has the advantages of shorter process time and better particle bioactivity, therefore, MBG was prepared by SP process with various polyethylene glycol (PEG, molecular weight ranged from 2000-12,000) and acid (HCl and CH3COOH) additions. In vitro bioactivity and mesoporous properties of the so-obtained MBG were investigated. The experimental results showed that all the MBG exhibited amorphous and mesoporous structure. Increasing the molecular weight of PEG can improve the mesoporous structure and bioactivity of MBG. Whereas optimized MBG was prepared with suitable concentration of PEG and CH3COOH. In the present work, MBG synthesized via spray pyrolysis by adding 5 g of PEG with a molecular weight of 12,000 and 50 mL of CH3COOH exhibited the best in vitro bioactivity and mesoporous structure.
Collapse
Affiliation(s)
- Tzu-Yu Peng
- School of Dentistry, College of Dentistry, China Medical University, Taichung 404, Taiwan; (T.-Y.P.); (P.-Y.T.); (D.-J.L.)
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (C.-Y.C.)
- Department of Anatomy and Functional Restorations, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Pei-Yun Tsai
- School of Dentistry, College of Dentistry, China Medical University, Taichung 404, Taiwan; (T.-Y.P.); (P.-Y.T.); (D.-J.L.)
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (C.-Y.C.)
| | - May-Show Chen
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (C.-Y.C.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yuichi Mine
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Shan-Hua Wu
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan;
| | - Chin-Yi Chen
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (C.-Y.C.)
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan;
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung 404, Taiwan; (T.-Y.P.); (P.-Y.T.); (D.-J.L.)
| | - Chung-Kwei Lin
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-S.C.); (C.-Y.C.)
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
48
|
How Surface Properties of Silica Nanoparticles Influence Structural, Microstructural and Biological Properties of Polymer Nanocomposites. MATERIALS 2021; 14:ma14040843. [PMID: 33578744 PMCID: PMC7916496 DOI: 10.3390/ma14040843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
The aim of this work was to study effect of the type of silica nanoparticles on the properties of nanocomposites for application in the guided bone regeneration (GBR). Two types of nanometric silica particles with different size, morphology and specific surface area (SSA) i.e., high specific surface silica (hss-SiO2) and low specific surface silica (lss-SiO2), were used as nano-fillers for a resorbable polymer matrix: poly(L-lactide-co-D,L-lactide), called PLDLA. It was shown that higher surface specific area and morphology (including pore size distribution) recorded for hss-SiO2 influences chemical activity of the nanoparticle; in addition, hydroxyl groups appeared on the surface. The nanoparticle with 10 times lower specific surface area (lss-SiO2) characterized lower chemical action. In addition, a lack of hydroxyl groups on the surface obstructed apatite nucleation (reduced zeta potential in comparison to hss-SiO2), where an apatite layer appeared already after 48 h of incubation in the simulated body fluid (SBF), and no significant changes in crystallinity of PLDLA/lss-SiO2 nanocomposite material in comparison to neat PLDLA foil were observed. The presence and type of inorganic particles in the PLDLA matrix influenced various physicochemical properties such as the wettability, and the roughness parameter note for PLDLA/lss-SiO2 increased. The results of biological investigation show that the bioactive nanocomposites with hss-SiO2 may stimulate osteoblast and fibroblast cells’proliferation and secretion of collagen type I. Additionally, both nanocomposites with the nanometric silica inducted differentiation of mesenchymal cells into osteoblasts at a proliferation stage in in vitro conditions. A higher concentration of alkaline phosphatase (ALP) was observed on the material modified with hss-SiO2 silica.
Collapse
|
49
|
Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. Pharmaceuticals (Basel) 2021; 14:ph14020075. [PMID: 33498229 PMCID: PMC7909272 DOI: 10.3390/ph14020075] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Regenerative medicine is a field that aims to influence and improvise the processes of tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue regeneration, bio-inert materials are being predominantly used, and there is a necessity to use bioactive materials that can help in better tissue-implant interactions and facilitate the healing and regeneration process. One such bioactive material that is being focused upon and studied extensively in the past few decades is bioactive glass (BG). The original bioactive glass (45S5) is composed of silicon dioxide, sodium dioxide, calcium oxide, and phosphorus pentoxide and is mainly referred to by its commercial name Bioglass. BG is mainly used for bone tissue regeneration due to its osteoconductivity and osteostimulation properties. The bioactivity of BG, however, is highly dependent on the compositional ratio of certain glass-forming system content. The manipulation of content ratio and the element compositional flexibility of BG-forming network developed other types of bioactive glasses with controllable chemical durability and chemical affinity with bone and bioactivity. This review article mainly discusses the basic information about silica-based bioactive glasses, including their composition, processing, and properties, as well as their medical applications such as in bone regeneration, as bone grafts, and as dental implant coatings.
Collapse
|
50
|
GP R, MR R. Strontium ion cross-linked alginate-g-poly (PEGMA) xerogels for wound healing applications: in vitro studies. Carbohydr Polym 2021; 251:117119. [DOI: 10.1016/j.carbpol.2020.117119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
|