1
|
Watanabe TM, Ueda S, Ishida S, Shioi G, Kaneshiro J, Magari M. Optical evaluation of internal damage to human hair based on second near-infrared window polarization microscopy. Int J Cosmet Sci 2024; 46:850-864. [PMID: 38802700 DOI: 10.1111/ics.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Hair beauty treatments glorify human life. As a side effect, there is a risk of deteriorating the health of the hair. Optically polarized microscopy has been used for many decades to evaluate hair conditions owing to its ease of use and low operating costs. However, the low biopermeability of light hinders the observation of detailed structures inside hair. The aim of this study is to establish an evaluation technique of internal damages in a hair by utilizing a near-infrared (NIR) light with a wavelength of 1000-1600 nm, called "second NIR window". METHODS We built a laser scanning transmission microscope system with an indium gallium arsenide detector, a 1064 nm laser source, and optical circular polarization to visualize the anisotropy characterization of keratin fibres in hair. Samples of Asian black hair before and after bleaching, after permanent-waving, after lithium bromide (LiBr) treatment, and after heating was observed. Some parameters reflecting intra-hair damage were quantitatively compared with the parameters in digitally recorded images with analytical developments. RESULTS The light transmittance of black hair was dramatically improved by utilizing the second NIR window. Numerical analysis of circular polarization in hair quantified the internal damage in chemically or thermally treated hair and found two different types of damage. The present method enabled quantitative evaluation of the condition changes in the cortex; for example, a decrease in circular polarizability by LiBr treatment and restoration by replacing the LiBr solution with water. In addition, black speckles were observed after the heat treatment. Longer heating and wetting times increased the appearance probability and size of the speckles. According to quantitative analyses, the emergence of black spots was independent of polarizability changes, indicating that they were not pores. CONCLUSION Circular polarization microscopy based on near-infrared optics in the second NIR window provides an effective evaluation method for quantifying intra-hair damage caused by cosmetic treatments. The present method provides noninvasive, easy, and inexpensive hair evaluation and has potential as a gold standard in hair care research/medical fields.
Collapse
Affiliation(s)
- Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Seiko Ueda
- Health & Beauty R&D, Sunstar Inc., Asia One Center, Kobe, Hyogo, Japan
| | - Saki Ishida
- Health & Beauty R&D, Sunstar Inc., Asia One Center, Kobe, Hyogo, Japan
| | - Go Shioi
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Michi Magari
- Health & Beauty R&D, Sunstar Inc., Asia One Center, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Yang H, Ping X, Zhou J, Ailifeire H, Wu J, Nadal-Nicolás FM, Miyagishima KJ, Bao J, Huang Y, Cui Y, Xing X, Wang S, Yao K, Li W, Shentu X. Reversible cold-induced lens opacity in a hibernator reveals a molecular target for treating cataracts. J Clin Invest 2024; 134:e169666. [PMID: 39286982 PMCID: PMC11405036 DOI: 10.1172/jci169666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/17/2024] [Indexed: 09/19/2024] Open
Abstract
Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this "cataract-reversing" phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress-related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.
Collapse
Affiliation(s)
- Hao Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiayue Zhou
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hailaiti Ailifeire
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Bao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxin Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Cui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xing
- College of Life Sciences, Peking University, Beijing, China
| | - Shiqiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Fan C, Shi J, Wei X, Xie Z, Cheng M, Cao X, Zhou Y, Zhan Y, Yan Y. Bioinspired peptides designed for hair perming and dyeing with potential for repair. Acta Biomater 2023; 168:440-457. [PMID: 37479159 DOI: 10.1016/j.actbio.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Cosmetics for perming hair are commonly used but have negative impacts on hair fibers. Repairing damaged hair with conditioners, hair oil, and hair masks can provide relief but cannot prevent injuries. Recent research has shown that proteins and amino acids can remodel hair's disulfide bonds. However, the permeation ability of proteins is limited, and amino acids may disrupt the secondary structure of hair keratins. Our study demonstrates that peptides can be safely, efficiently, and promisingly used for hair perming. A bioinspired peptide, PepACS (PepA-PepC-SPB), was designed through bioinformatics. It can interact with keratin's sulfhydryl group in situ to remodel disulfide bonds without affecting hair fiber's tensile properties. The potential of PepACS to repair cuticle injuries is also observed through scanning electron microscope visualization. Besides, linking PepACS with mCherry enables hair dyeing. This research suggests that biomaterials can be applied in the hair care industry. STATEMENT OF SIGNIFICANCE: Chemical perming products can have negative impacts on people's health and hair fibers, making it essential to explore alternative methods. Peptides treatment is a promising option, but synthesizing sulfur-rich short peptides for hair perming has not been demonstrated before. In this paper, we utilized bioinformatics to design bio-inspired peptides that can interact with hair keratins and form curled shapes. Our study demonstrates that bioinformatics tools can be utilized to design bioinspired peptides with unique functions. Sulfur-rich short peptides can be heterologously expressed with fusion strategies, and PepACS can securely bind hair fibers through disulfide bonds. Importantly, perming hair with 0.01% PepACS maintains the mechanical properties of hair, and dyeing hair with the fusion protein PepACS_mCh can be facilitated by ethanol. These findings suggest that the strategy of perming and dyeing hair through peptides is non-injurious, and the peptides used for repairing hair damage show tremendous potential.
Collapse
Affiliation(s)
- Changxin Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jiacheng Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xin Wei
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Ziqi Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Mingyuan Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xinghong Cao
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yu Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yi Zhan
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Yunjun Yan
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, 430074 Wuhan, China.
| |
Collapse
|
4
|
Tinoco A, Martins M, Cavaco-Paulo A, Ribeiro A. Biotechnology of functional proteins and peptides for hair cosmetic formulations. Trends Biotechnol 2021; 40:591-605. [PMID: 34666897 DOI: 10.1016/j.tibtech.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Cosmetics procedures and products combined with environmental insults and daily routines induce irreversible changes in hair. As result of damage, the hair loses some of its properties like strength, elasticity, and smoothness. Recent studies revealed the positive effects of protein-based cosmetics in providing protection to hair. Additionally, these cosmetic products have also shown a great ability to modify hair fibers. We review the effect of protein-based cosmetic formulations on hair properties like color, scent, strength, shape, and volume, highlighting the potential of keratin-based particles and keratin-fusion proteins. In the future, incorporating multifunctional proteins and peptides in the development of alternative hair formulations will result in advanced, sustainable, ecofriendly cosmetic products with a great impact on the cosmetic industry.
Collapse
Affiliation(s)
- Ana Tinoco
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Solfarcos, 4710-453, Braga, Portugal
| | - Madalena Martins
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Solfarcos, 4710-453, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Solfarcos, 4710-453, Braga, Portugal.
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
5
|
Ohmic heating as an innovative approach for the production of keratin films. Int J Biol Macromol 2020; 150:671-680. [PMID: 32061691 DOI: 10.1016/j.ijbiomac.2020.02.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Ohmic heating is a thermal processing method based on the application of electric fields directly into a semi-conductive medium. In this study, we explored for the first time the use of ohmic heating to obtain keratin films. The properties of the films prepared by ohmic heating and conventional heating were evaluated and compared under similar thermal profiles. A lower increase in free thiols' concentration was obtained for the keratin solutions and keratin films submitted to ohmic heating (16% increase for the keratin solution extracted from virgin hair, pH 9, submitted to ohmic heating and 23% when submitted to conventional heating). Significant differences in the swelling results were observed for the films prepared with keratin extracted from virgin hair, with a swelling decrease in about 55% for the films prepared by ohmic heating. Generally, the keratin films obtained by ohmic heating showed distinct properties comparatively to the films produced by conventional methods. The application of a fusion protein on the keratin films demonstrated their capacity to be used as substitutes to hair fibers when evaluating the potential of new cosmetic products. This work suggests that ohmic heating show potential to tailor keratin films properties depending on an intended application or functionality.
Collapse
|