1
|
Getino L, Martín JL, Chamizo-Ampudia A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024; 12:2028. [PMID: 39458337 PMCID: PMC11510099 DOI: 10.3390/microorganisms12102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The search for alternatives to petrochemical plastics has intensified, with increasing attention being directed toward bio-based polymers (bioplastics), which are considered healthier and more environmentally friendly options. In this review, a comprehensive overview of polyhydroxyalkanoates (PHAs) is provided, including their characterization, applications, and the mechanisms underlying their biosynthesis. PHAs are natural polyesters produced by a wide range of prokaryotic and some eukaryotic organisms, positioning them as a significant and widely studied type of bioplastic. Various strategies for the production of PHAs from agroindustrial waste, such as cacao shells, cheese whey, wine, wood, and beet molasses, are reviewed, emphasizing their potential as sustainable feedstocks. Industrial production processes for PHAs, including the complexities associated with extraction and purification, are also examined. Although the use of waste materials offers promise in reducing costs and environmental impact, challenges remain in optimizing these processes to enhance efficiency and cost-effectiveness. The need for continued research and development to improve the sustainability and economic viability of PHA production is emphasized, positioning PHAs as a viable and eco-friendly alternative to conventional petroleum-based plastics.
Collapse
Affiliation(s)
- Luis Getino
- Área de Genética, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - José Luis Martín
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
| | - Alejandro Chamizo-Ampudia
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain;
- Institute of Molecular Biology, Genomics and Proteomics (INBIOMIC), Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
2
|
Costa P, Basaglia M, Casella S, Favaro L. Copolymers as a turning point for large scale polyhydroxyalkanoates applications. Int J Biol Macromol 2024; 275:133575. [PMID: 38960239 DOI: 10.1016/j.ijbiomac.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.
Collapse
Affiliation(s)
- Paolo Costa
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Marina Basaglia
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste-to-Bioproducts Lab, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| |
Collapse
|
3
|
Börner T, Zinn M. Key challenges in the advancement and industrialization of biobased and biodegradable plastics: a value chain overarching perspective. Front Bioeng Biotechnol 2024; 12:1406278. [PMID: 39055338 PMCID: PMC11269247 DOI: 10.3389/fbioe.2024.1406278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
At the International Symposium on Biodegradable Polymers (ISBP2022) in Sion, Switzerland, experts from academia and industry underscored the remarkable progress in biobased and biodegradable polymers (BBPs) since their initial commercialization around 50 years ago. Despite significant advancements, the technology readiness level (TRL), market adoption, and industrialization of BBPs is not yet competitive to conventional plastics. In this perspective, we summarize the challenges and requirements for advancing the development and industrialization of BBPs, drawing insights from international experts coming from academia and industry, who had participated in the survey and podium discussion during the ISBP2022. In fact, BBPs grapple with persistent and emerging challenges throughout the value chain. These challenges can be grouped into four areas and involve i) the pursuit of sustainable feedstocks together with efficient production and downstream processes as well as recycling technologies and infrastructure; ii) meeting or revisiting product requirements by industry, markets, and consumers; iii) navigating a non-level playing field in their sustainability assessment (LCA) compared to conventional plastics; and iv) struggling with underdeveloped and partially biased policy and financial frameworks as well as lacking clear definitions, terminologies and communication.
Collapse
Affiliation(s)
- Tim Börner
- Institute of Life Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
- Empa—Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Manfred Zinn
- Institute of Life Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|
4
|
Hahn T, Alzate MO, Leonhardt S, Tamang P, Zibek S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng Life Sci 2024; 24:2300211. [PMID: 38845815 PMCID: PMC11151071 DOI: 10.1002/elsc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) have gained interest recently due to their biodegradability and versatility. In particular, the chemical compositions of medium-chain-length (mcl)-PHAs are highly diverse, comprising different monomers containing 6-14 carbon atoms. This review summarizes different feedstocks and fermentation strategies to enhance mcl-PHA production and briefly discusses the downstream processing. This review also provides comprehensive details on analytical tools for determining the composition and properties of mcl-PHA. Moreover, this study provides novel information by statistically analyzing the data collected from several reports on mcl-PHA to determine the optimal fermentation parameters (specific growth rate, PHA productivity, and PHA yield from various structurally related and unrelated substrates), mcl-PHA composition, molecular weight (MW), and thermal and mechanical properties, in addition to other relevant statistical values. The analysis revealed that the median PHA productivity observed in the fed-batch feeding strategy was 0.4 g L-1 h-1, which is eight times higher than that obtained from batch feeding (0.05 g L-1 h-1). Furthermore, 3-hydroxyoctanoate and -decanoate were the primary monomers incorporated into mcl-PHA. The investigation also determined the median glass transition temperature (-43°C) and melting temperature (47°C), which indicated that mcl-PHA is a flexible amorphous polymer at room temperature with a median MW of 104 kDa. However, information on the monomer composition or heterogeneity and the associated physical and mechanical data of mcl-PHAs is inadequate. Based on their mechanical values, the mcl-PHAs can be classified as semi-crystalline polymers (median crystallinity 23%) with rubber-like properties and a median elongation at break of 385%. However, due to the limited mechanical data available for mcl-PHAs with known monomer composition, identifying suitable processing tools and applications to develop mcl-PHAs further is challenging.
Collapse
Affiliation(s)
- Thomas Hahn
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Melissa Ortega Alzate
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Department of Chemical EngineeringUniversity of AntioquiaEl Carmen de ViboralColombia
| | - Steven Leonhardt
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Pravesh Tamang
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Susanne Zibek
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Institute of Interfacial Engineering and Plasma Technology IGVPUniversity of StuttgartStuttgartGermany
| |
Collapse
|
5
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
6
|
Hoffmann A, Pacios K, Mühlemann R, Daumke R, Frank B, Kalman F. Application of a novel chemical assay for the quantification of endotoxins in bacterial bioreactor samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123839. [PMID: 37527605 DOI: 10.1016/j.jchromb.2023.123839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
A novel chemical assay, the so-called Kdo-DMB-liquid chromatography (LC) assay, was used for the accurate and cost-effective determination of the endotoxin content in supernatants of Gram-negative bacteria bioreactor samples. During mild acid hydrolysis, the endotoxin-specific sugar acid 3-deoxy-D-manno-oct-2-ulsonic acid (Kdo) is quantitatively released. Kdo is reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) to obtain the highly fluorescent derivate Kdo-DMB. It is separated from the reaction mixture by reversed phase-(U)HPLC and detected by fluorescence. From the Kdo content the endotoxin content of the sample is calculated. For three batch cultivations of Escherichia coli K12 and a fed-batch cultivation of Pseudomonas putida KT2440, the evolution of the endotoxin content in dependence on the cultivation time was monitored. Under optimal, constant cultivation conditions a linear correlation between the endotoxin content and the easy-to-access bioreactor parameters optical density at 600 nm and dry cell weight was found for both endotoxin kinds. Under stress cultivation conditions the E. coli K12 cultivation showed a stronger increase of the endotoxin content at harvest in comparison to optimal conditions. Optical density and dry cell weight may be used for production reactors as an economic real-time estimation tool to determine the endotoxin content at different cultivation time points and conditions. The optical density can further be used to establish straightforward sample dilution schemes for endotoxin quantification in samples of unknown endotoxin content. The endotoxin content [ng mL-1] measured by the Kdo-DMB-LC assay and the endotoxin activity [EU mL-1] obtained by the compendial Limulus Amoebocyte Lysate assay show a high correlation for the bacterial bioreactor samples tested.
Collapse
Affiliation(s)
- Anika Hoffmann
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Kevin Pacios
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Reto Mühlemann
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Franka Kalman
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland.
| |
Collapse
|
7
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
8
|
Utsunomia C, Ren Q, Zinn M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front Bioeng Biotechnol 2020; 8:257. [PMID: 32318554 PMCID: PMC7147479 DOI: 10.3389/fbioe.2020.00257] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
By the end of 1980s, for the first time polyhydroxyalkanoate (PHA) copolymers with incorporated 4-hydroxybutyrate (4HB) units were produced in the bacterium Cupriavidus necator (formally Ralstonia eutropha) from structurally related carbon sources. After that, production of PHA copolymers composed of 3-hydroxybutyrate (3HB) and 4HB [P(3HB-co-4HB)] was demonstrated in diverse wild-type bacteria. The P4HB homopolymer, however, was hardly synthesized because existing bacterial metabolism on 4HB precursors also generate and incorporate 3HB. The resulting material assumes the properties of thermoplastics and elastomers depending on the 4HB fraction in the copolyester. Given the fact that P4HB is biodegradable and yield 4HB, which is a normal compound in the human body and proven to be biocompatible, P4HB has become a prospective material for medical applications, which is the only FDA approved PHA for medical applications since 2007. Different from other materials used in similar applications, high molecular weight P4HB cannot be produced via chemical synthesis. Thus, aiming at the commercial production of this type of PHA, genetic engineering was extensively applied resulting in various production strains, with the ability to convert unrelated carbon sources (e.g., sugars) to 4HB, and capable of producing homopolymeric P4HB. In 2001, Metabolix Inc. filed a patent concerning genetically modified and stable organisms, e.g., Escherichia coli, producing P4HB and copolymers from inexpensive carbon sources. The patent is currently hold by Tepha Inc., the only worldwide producer of commercial P4HB. To date, numerous patents on various applications of P4HB in the medical field have been filed. This review will comprehensively cover the historical evolution and the most recent publications on P4HB biosynthesis, material properties, and industrial and medical applications. Finally, perspectives for the research and commercialization of P4HB will be presented.
Collapse
Affiliation(s)
- Camila Utsunomia
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|