1
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
2
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| |
Collapse
|
3
|
Jourdain MA, Eyer J. Recent advances in liposomes and peptide-based therapeutics for glioblastoma treatment. J Control Release 2024; 376:732-752. [PMID: 39437968 DOI: 10.1016/j.jconrel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In the context of glioblastoma treatment, the penetration of drugs is drastically limited by the blood-brain-barrier (BBB). Emerging therapies have focused on the field of therapeutic peptides for their excellent BBB targeting properties that promote a deep tumor penetration. Peptide-based strategies are also renowned for their abilities of driving cargo such as liposomal system allowing an active targeting of receptors overexpressed on GBM cells. This review provides a detailed description of the internalization mechanisms of specific GBM homing and penetrating peptides as well as the latest in vitro/in vivo studies of liposomes functionalized with them. The purpose of this review is to summarize a selection of promising pre-clinical results that demonstrate the advantages of this nanosystem, including an increase of tumor cell targeting, triggering drug accumulation and thus a strong antitumor effect. Aware of the early stage of these studies, many challenges need to be overcome to promote peptide-directed liposome at clinical level. In particular, the lack of suitable production, the difficulty to characterize the nanosystem and therapeutic competition leaded by antibodies.
Collapse
Affiliation(s)
- M-A Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - J Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
4
|
Khoonkari M, Liang D, Kamperman M, van Rijn P, Kruyt FAE. The unfolded protein response sensor PERK mediates mechanical stress-induced maturation of focal adhesion complexes in glioblastoma cells. FEBS Lett 2024; 598:3021-3035. [PMID: 39152526 PMCID: PMC11665954 DOI: 10.1002/1873-3468.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/19/2024]
Abstract
Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-β1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Dong Liang
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| | - Marleen Kamperman
- Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering‐FB40University of Groningen, University Medical Center GroningenThe Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41, University of Groningen, University Medical Center GroningenThe Netherlands
| | - Frank A. E. Kruyt
- Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenThe Netherlands
| |
Collapse
|
5
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Hassani Najafabadi A, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405511. [PMID: 39535474 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, 27705, USA
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101, India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
6
|
Shmelev ME, Pilnik AA, Shved NA, Penkova AO, Gulaia VS, Kumeiko VV. IDH1 R132H and TP53 R248Q Mutations Modulate Glioma Cell Migration and Adhesion on Different ECM Components. Int J Mol Sci 2024; 25:12178. [PMID: 39596246 PMCID: PMC11594609 DOI: 10.3390/ijms252212178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in IDH1 and TP53 have a significant impact on glioma prognosis and progression; however, their roles in tumor cell invasion in terms of interactions with particular components of the extracellular matrix (ECM) are still unclear. Using gene editing protocol based on CRISPR-Cas 9 with cytidine deaminase, we introduced point mutations into U87MG glioblastoma cells to establish modified cell lines with heterozygous IDH1 R132H, homozygous TP53 R248Q and heterozygous IDH1 R132H, homozygous TP53 R248Q genotypes. A comparative study of cell migration on major ECM components was carried out by high-content microscopy. IDH1 R132H mutation introduced to U87MG glioblastoma cells was shown to decrease the migration speed on Matrigel and collagen IV substrates compared to the wild-type. This data were supported by cell adhesion quantification via the lateral shift assay performed by atomic force microscopy (AFM). TP53 R248Q mutation increased cell adhesion to various substrates and significantly promoted cell migration on hyaluronic acid and chondroitin sulfate but did not change the migration rates on laminin and collagens IV and I. A double-mutant genotype produced by consequently introducing IDH1 R132H and TP53 R248Q to parental glioblastoma cells was characterized by the highest migration among all the cell lines, with particularly faster motility on chondroitin sulfate. These findings underscore the complex interactions between glioma cells, with the most important driver mutations and specific ECM components regulating cancer cell migration, offering valuable insights for potential therapeutic targets in glioma treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Andrei A. Pilnik
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Nikita A. Shved
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Alina O. Penkova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Valeriia S. Gulaia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Vadim V. Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
7
|
Yang Y, Yuan T, Panaitescu C, Li R, Wu K, Zhou Y, Pokrajac D, Dini D, Zhan W. Exploring tissue permeability of brain tumours in different grades: Insights from pore-scale fluid dynamics analysis. Acta Biomater 2024:S1742-7061(24)00656-1. [PMID: 39522625 DOI: 10.1016/j.actbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Interstitial fluid (ISF) flow is identified as an essential physiological process that plays an important role in the development and progression of brain tumours. However, the relationship between the permeability of the tumour tissue, a complex porous medium, and the interstitial fluid flow around the tumour cells at the microscale is not well understood. To shed light on this issue, and in the absence of experimental techniques that can provide direct measurements, we develop a computational model to predict the tissue permeability of brain tumours in different grades by analysing the ISF flow at the pore scale. The 3-D geometrical models of tissue extracellular spaces are digitally reconstructed for each grade tumour based on their morphological properties measured from microscopic images. The predictive accuracy of the framework is validated by experimental results reported in the literature. Our results indicate that high-grade brain tumours are less permeable despite their higher porosity, whereas necrotic areas of glioblastoma are more permeable than the viable tumour areas. This implies that tissue permeability is primarily governed by both tissue porosity and the deposition of hyaluronic acid (HA), a key component of the extracellular matrix, while the HA deposition can have a greater effect than macro-level porosity. Parametric studies show that tissue permeability falls exponentially with increasing HA concentration in all grades of brain tumours, and this can be captured using an empirically derived relationship in a quantitative manner. These findings provide an improved understanding of the hydraulic properties of brain tumours and their intrinsic links to tumour microstructure. This work can be used to reveal the intratumoural physiochemical processes that rely on fluid flow and offer a powerful tool to tune textured and porous biomaterials for desired transport properties. STATEMENT OF SIGNIFICANCE: Interstitial fluid flow in the extracellular space of brain tumours plays a crucial role in their progression, development, and response to drug treatments. However, the mechanisms of interstitial fluid transport around tumour cells and the characterization of these microscale transports at the tissue scale to meet clinical requirements are largely unknown. In the absence of advanced experimental techniques to capture these pore-scale transport phenomena, we have developed and validated a computational framework to successfully reveal these phenomena across all grades of brain tumours. For the first time, we have quantitatively determined the tissue permeability of all grades of brain tumours as a function of the concentration of hyaluronic acid, a key component of the extracellular matrix. This framework will enhance our ability to capture the intratumoural physicochemical processes in brain tumours and correlate them with tumour tissue-scale behaviours.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Rui Li
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Kejian Wu
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Yingfang Zhou
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Dubravka Pokrajac
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
8
|
Liu Z, Fan H, Liu X, Liu C. Angiogenesis related genes based prognostic model of glioma patients developed by multi-omics approach. Discov Oncol 2024; 15:296. [PMID: 39033204 PMCID: PMC11264614 DOI: 10.1007/s12672-024-01126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Glioma, particularly glioblastoma (GBM), is a highly malignant brain tumor with poor prognosis despite current therapeutic approaches. The tumor microenvironment (TME), plays a crucial role in glioma progression by promoting invasion and drug resistance. Angiogenesis, the formation of new blood vessels, is a tightly regulated process involving endothelial cell activation, proliferation, and migration. In cancer, angiogenesis becomes dysregulated, leading to excessive blood vessel formation. METHODS We enrolled bulk data of TCGA-LGG/GBM, CGGA-693, and CGGA-325 cohorts, scRNA data of GSE162631, GSE84465, and GSE138794 cohorts. Identification of malignant cells was conducted by "copycat" R package. The "AUCell" R package scored the activity of target gene set of each single cell. Consensus clustering was applied using the "ConsensusClusterPlus" R package, while tumor-infiltrating immune cells were determined using "IOBR" R package. To construct a prognostic model, we used LASSO and multiCOX algorithms based on the expression levels of the 15 hub genes, the efficacy of which was verified by KM and ROC analysis. RESULTS We identified 4 different malignant cell subclusters in glioma and disclosed their distinct gene expression patterns and interactions within TME. We identified differentially expressed immune-related genes (DE-ARGs) in glioma and found 15 genes that were specifically expressed in the malignant glioma cell populations. Glioma cells with higher expression of these DE-ARGs were associated with gliogenesis, glial cell development, and vasculature development. We found that tumor-infiltrating monocytes were the main interacting cell type within glioma TME. Using the expression patterns of the 15 screened DE-ARGs, we categorized glioma samples into 2 molecular clusters with distinct immune features, suggesting a possible relationship between angiogenesis and immune activation and recruitment. We constructed a prognostic model based on the expression levels of the 15 DE-ARGs and evaluated its predictive ability for glioma patient outcomes, which displayed exceedingly high efficacy. CONCLUSION We characterized different malignant cell subclusters in glioma and investigate their gene expression patterns and interactions within TME. We constructed a prognostic model based on the expression levels of the 15 DE-ARGs and evaluated its predictive ability for glioma patient outcomes, which displayed exceedingly high efficacy.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Hongjun Fan
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - XuKai Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China.
| |
Collapse
|
9
|
Kaynar A, Ozcan M, Li X, Turkez H, Zhang C, Uhlén M, Shoaie S, Mardinoglu A. Discovery of a Therapeutic Agent for Glioblastoma Using a Systems Biology-Based Drug Repositioning Approach. Int J Mol Sci 2024; 25:7868. [PMID: 39063109 PMCID: PMC11277330 DOI: 10.3390/ijms25147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zongudak TR-67100, Turkey
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum TR-25240, Turkey;
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| |
Collapse
|
10
|
Li X, Gou W, Zhang X. Neuroinflammation in Glioblastoma: Progress and Perspectives. Brain Sci 2024; 14:687. [PMID: 39061427 PMCID: PMC11274945 DOI: 10.3390/brainsci14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, with high morbidity and mortality. Despite an aggressive, multimodal treatment regimen, including surgical resection followed by chemotherapy and radiotherapy, the prognosis of glioblastoma patients remains poor. One formidable challenge to advancing glioblastoma therapy is the complexity of the tumor microenvironment. The tumor microenvironment of glioblastoma is a highly dynamic and heterogeneous system that consists of not only cancerous cells but also various resident or infiltrating inflammatory cells. These inflammatory cells not only provide a unique tumor environment for glioblastoma cells to develop and grow but also play important roles in regulating tumor aggressiveness and treatment resistance. Targeting the tumor microenvironment, especially neuroinflammation, has increasingly been recognized as a novel therapeutic approach in glioblastoma. In this review, we discuss the components of the tumor microenvironment in glioblastoma, focusing on neuroinflammation. We discuss the interactions between different tumor microenvironment components as well as their functions in regulating glioblastoma pathogenesis and progression. We will also discuss the anti-tumor microenvironment interventions that can be employed as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
12
|
Silant’ev VE, Belousov AS, Trukhin FO, Struppul NE, Shmelev ME, Patlay AA, Shatilov RA, Kumeiko VV. Rational Design of Pectin-Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy. Biomedicines 2024; 12:1393. [PMID: 39061967 PMCID: PMC11273711 DOI: 10.3390/biomedicines12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have developed polymer nanoparticles (NPs) with improved temozolomide (TMZ) delivery for promising brain tumor therapy, performing a rational design of polyelectrolyte complexes of oppositely charged polysaccharides of cationic chitosan and anionic pectin. The NPs' diameter (30 to 330 nm) and zeta-potential (-29 to 73 mV) varied according to the initial mass ratios of the biopolymers. The evaluation of nanomechanical parameters of native NPs demonstrated changes in Young's modulus from 58 to 234 kPa and adhesion from -0.3 to -3.57 pN. Possible mechanisms of NPs' formation preliminary based on ionic interactions between ionogenic functional groups were proposed by IR spectroscopy and dynamic rheology. The study of the parameters and kinetics of TMZ sorption made it possible to identify compounds that most effectively immobilize and release the active substance in model liquids that simulate the internal environment of the body. A polyelectrolyte carrier based on an equal ratio of pectin-chitosan (0.1% by weight) was selected as the most effective for the delivery of TMZ among a series of obtained NPs, which indicates a promising approach to the treatment of brain tumors.
Collapse
Affiliation(s)
- Vladimir E. Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Andrei S. Belousov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Fedor O. Trukhin
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Nadezhda E. Struppul
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Mikhail E. Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Aleksandra A. Patlay
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Roman A. Shatilov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Vadim V. Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
13
|
Cui X, Huo D, Wang Q, Wang Y, Liu X, Zhao K, You Y, Zhang J, Kang C. RUNX1/NPM1/H3K4me3 complex contributes to extracellular matrix remodeling via enhancing FOSL2 transcriptional activation in glioblastoma. Cell Death Dis 2024; 15:98. [PMID: 38286983 PMCID: PMC10825180 DOI: 10.1038/s41419-024-06481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Extracellular matrix (ECM) remodeling has been implicated in the tumor malignant progression and immune escape in glioblastoma (GBM). Runt-related transcription factor 1 (RUNX1) is a vital transcriptional factor for promoting tumorigenesis and invasion in mesenchymal subtype of GBM. But the correlation between RUNX1 and ECM genes expression and regulatory mechanism of RUNX1 on ECM genes expression remain poorly understood to date. In this study, by using integral analysis of chromatin immunoprecipitation-sequencing and RNA sequencing, we reported that RUNX1 positively regulated the expression of various ECM-related genes, including Fibronectin 1 (FN1), Collagen type IV alpha 1 chain (COL4A1), and Lumican (LUM), in GBM. Mechanistically, we demonstrated that RUNX1 interacted with Nucleophosmin 1 (NPM1) to maintain the chromatin accessibility and facilitate FOS Like 2, AP-1 Transcription Factor Subunit (FOSL2)-mediated transcriptional activation of ECM-related genes, which was independent of RUNX1's transcriptional function. ECM remodeling driven by RUNX1 promoted immunosuppressive microenvironment in GBM. In conclusion, this study provides a novel mechanism of RUNX1 binding to NPM1 in driving the ECM remodeling and GBM progression.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Institute of Hematology, Zhejiang University, Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310003, China
| | - Qixue Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yunfei Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Kai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Chunsheng Kang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
14
|
Molina-Peña R, Ferreira NH, Roy C, Roncali L, Najberg M, Avril S, Zarur M, Bourgeois W, Ferreirós A, Lucchi C, Cavallieri F, Hindré F, Tosi G, Biagini G, Valzania F, Berger F, Abal M, Rousseau A, Boury F, Alvarez-Lorenzo C, Garcion E. Implantable SDF-1α-loaded silk fibroin hyaluronic acid aerogel sponges as an instructive component of the glioblastoma ecosystem: Between chemoattraction and tumor shaping into resection cavities. Acta Biomater 2024; 173:261-282. [PMID: 37866725 DOI: 10.1016/j.actbio.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | | | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Loris Roncali
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mathie Najberg
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Sylvie Avril
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William Bourgeois
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Alba Ferreirós
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Hindré
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Giovani Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Berger
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Miguel Abal
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Audrey Rousseau
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Frank Boury
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emmanuel Garcion
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
15
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
17
|
Patlay AA, Belousov AS, Silant’ev VE, Shatilov RA, Shmelev ME, Kovalev VV, Perminova IV, Baklanov IN, Kumeiko VV. Preparation and Characterization of Hydrogel Films and Nanoparticles Based on Low-Esterified Pectin for Anticancer Applications. Polymers (Basel) 2023; 15:3280. [PMID: 37571174 PMCID: PMC10422365 DOI: 10.3390/polym15153280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prospective adjuvant anticancer therapy development includes the establishing of drug delivery systems based on biocompatible and biodegradable carriers. We have designed films and nanoparticles (NPs) based on low-esterified pectin hydrogel using the ionic gelation method. We investigated morphology, nanomechanical properties, biocompatibility and anticancer activity. Hydrogel films are characterized by tunable viscoelastic properties and surface nanoarchitectonics through pectin concentration and esterification degree (DE), expressed in variable pore frequency and diameter. An in vitro study showed a significant reduction in metabolic activity and the proliferation of the U87MG human glioblastoma cell line, probably affected via the adhesion mechanism. Glioma cells formed neurosphere-like conglomerates with a small number of neurites when cultured on fully de-esterified pectin films and they did not produce neurites on the films prepared on 50% esterified pectin. Pectin NPs were examined in terms of size distribution and nanomechanical properties. The NPs' shapes were proved spherical with a mean diameter varying in the range of 90-115 nm, and a negative zeta potential from -8.30 to -7.86 mV, which indicated their stability. The NPs did not demonstrate toxic effect on cells or metabolism inhibition, indicating good biocompatibility. Nanostructured biomaterials prepared on low-esterified pectins could be of interest for biomedical applications in adjuvant anticancer therapy and for designing drug delivery systems.
Collapse
Affiliation(s)
- Aleksandra A. Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Vladimir E. Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Roman A. Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia;
| | - Ivan N. Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
18
|
Gallus M, Kwok D, Lakshmanachetty S, Yamamichi A, Okada H. Immunotherapy Approaches in Isocitrate-Dehydrogenase-Mutant Low-Grade Glioma. Cancers (Basel) 2023; 15:3726. [PMID: 37509387 PMCID: PMC10378701 DOI: 10.3390/cancers15143726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Low-grade gliomas (LGGs) are slow-growing tumors in the central nervous system (CNS). Patients characteristically show the onset of seizures or neurological deficits due to the predominant LGG location in high-functional brain areas. As a molecular hallmark, LGGs display mutations in the isocitrate dehydrogenase (IDH) enzymes, resulting in an altered cellular energy metabolism and the production of the oncometabolite D-2-hydroxyglutarate. Despite the remarkable progress in improving the extent of resection and adjuvant radiotherapy and chemotherapy, LGG remains incurable, and secondary malignant transformation is often observed. Therefore, novel therapeutic approaches are urgently needed. In recent years, immunotherapeutic strategies have led to tremendous success in various cancer types, but the effect of immunotherapy against glioma has been limited due to several challenges, such as tumor heterogeneity and the immunologically "cold" tumor microenvironment. Nevertheless, recent preclinical and clinical findings from immunotherapy trials are encouraging and offer a glimmer of hope for treating IDH-mutant LGG patients. Here, we aim to review the lessons learned from trials involving vaccines, T-cell therapies, and IDH-mutant inhibitors and discuss future approaches to enhance the efficacy of immunotherapies in IDH-mutant LGG.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Sokolov DK, Shevelev OB, Khotskina AS, Tsidulko AY, Strokotova AV, Kazanskaya GM, Volkov AM, Kliver EE, Aidagulova SV, Zavjalov EL, Grigorieva EV. Dexamethasone Inhibits Heparan Sulfate Biosynthetic System and Decreases Heparan Sulfate Content in Orthotopic Glioblastoma Tumors in Mice. Int J Mol Sci 2023; 24:10243. [PMID: 37373391 DOI: 10.3390/ijms241210243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.
Collapse
Affiliation(s)
- Dmitry K Sokolov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | | | - Alexandra Y Tsidulko
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Anastasia V Strokotova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander M Volkov
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Evgenii E Kliver
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Svetlana V Aidagulova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Laboratory of Cell Biology, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
20
|
Behrooz AB, Latifi-Navid H, Nezhadi A, Świat M, Los M, Jamalpoor Z, Ghavami S. Molecular mechanisms of microRNAs in glioblastoma pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119482. [PMID: 37146725 DOI: 10.1016/j.bbamcr.2023.119482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is human's most prevalent and severe brain cancer. Epigenetic regulators, micro(mi)RNAs, significantly impact cellular health and disease because of their wide range of targets and functions. The "epigenetic symphony" in which miRNAs perform is responsible for orchestrating the transcription of genetic information. The discovery of regulatory miRNA activities in GBM biology has shown that various miRNAs play a vital role in disease onset and development. Here, we summarize our current understanding of the current state-of-the-art and latest findings regarding the interactions between miRNAs and molecular mechanisms commonly associated with GBM pathogenesis. Moreover, by literature review and reconstruction of the GBM gene regulatory network, we uncovered the connection between miRNAs and critical signaling pathways such as cell proliferation, invasion, and cell death, which provides promising hints for identifying potential therapeutic targets for the treatment of GBM. In addition, the role of miRNAs in GBM patient survival was investigated. The present review, which contains new analyses of the previous literature, may lead to new avenues to explore in the future for the development of multitargeted miRNA-based therapies for GBM.
Collapse
Affiliation(s)
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Akram Nezhadi
- Cognitive Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maciej Świat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Marek Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Rafii S, Ghouzlani A, Naji O, Ait Ssi S, Kandoussi S, Lakhdar A, Badou A. A 2AR as a Prognostic Marker and a Potential Immunotherapy Target in Human Glioma. Int J Mol Sci 2023; 24:6688. [PMID: 37047660 PMCID: PMC10095519 DOI: 10.3390/ijms24076688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Gliomas are considered one of the most malignant tumors in the body. The immune system has the ability to control the initiation and development of tumors, including gliomas. Thus, immune cells find themselves controlled by various molecular pathways, inhibiting their activation, such as the immunosuppressive adenosine 2A receptor (A2AR). Our objective was to establish the expression profile and role of A2AR at the transcriptomic level, using real-time RT-PCR in Moroccan glioma patients, in addition to TCGA and CGGA cohorts. The real-time RT-PCR results in Moroccan patients showed that high expression of this gene was associated with poor survival in males. Our study on the CGGA cohort corroborated these results. In addition, there was a positive association of A2AR with T-cell exhaustion genes. A2AR also correlated strongly with genes that are primarily enriched in focal adhesion and extracellular matrix interactions, inducing epithelial mesenchymal transition, angiogenesis, and glioma growth. However, in the TCGA cohort, the A2AR showed results that were different from the two previously examined cohorts. In fact, this gene was instead linked to a good prognosis in patients with the astrocytoma histological type. The correlation and enrichment results reinforced the prognostic role of A2AR in this TCGA cohort, in which its high expression was shown to be related to lymphocyte differentiation and a successful cytolytic response, suggesting a more efficient anti-tumor immune response. Correlations and differential analyses based on A2AR gene expression, to understand the cause of the association of this gene with two different prognoses (CGGA males and TCGA Astrocytoma), showed that the overexpression of A2AR in Chinese male patients could be associated with the overexpression of extracellular adenosine, which binds to A2AR to induce immunosuppression and consequently a poor prognosis. However, in the second group (TCGA astrocytomas), the overexpression of the gene could be associated with an adenosine deficiency, and therefore this receptor does not undergo activation. The absence of A2AR activation in these patients may have protected them from immunosuppression, which could reflect the good prognosis. A2AR can be considered a promising therapeutic target in male CGGA and Moroccan patients with gliomas.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
| | - Saadia Ait Ssi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
| | | | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20000, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca 82403, Morocco
| |
Collapse
|
22
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
24
|
Wang C, Zhao Q, Zheng X, Li S, Chen J, Zhao H, Chen F, Cui L, Li W. Decellularized brain extracellular matrix slice glioblastoma culture model recapitulates the interaction between cells and the extracellular matrix without a nutrient-oxygen gradient interference. Acta Biomater 2023; 158:132-150. [PMID: 36565784 DOI: 10.1016/j.actbio.2022.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Decellularized extracellular matrix (dECM) is a valuable tool for generating three-dimensional in vitro tumor models that effectively recapitulate tumor-extracellular matrix (ECM) interactions. However, in current culture models, the components and structures of dECM are enzymatically disrupted to form hydrogels, making it difficult to recapitulate the native ECM. Additionally, when studying ECM-cell interactions, large-volume tumor culture models are incompatible with traditional experimental techniques and the nutrient-oxygen concentration gradient, which is a significant confounding factor. To address these issues, we developed a decellularized brain extracellular matrix slice (dBECMS) glioblastoma (GBM) culture model. This model possesses good light transmittance and substance diffusivity, making it compatible with traditional experimental techniques without forming nutrient-oxygen concentration gradients. Through transcriptomic analysis, we found that native brain ECM has a broad impact on glioma cells; the impact involves the ECM-ECM receptor interactions and the ECM and metabolic reprogramming. Further experiments demonstrated that dBECMS promoted glucose consumption and lactate production in GBM cells. Silver staining experiments revealed abundant proteins in the media of dBECMS, suggesting the degradation of the brain ECM by GBM cells. Transcriptome analysis also showed that the dBECMS-GBM culture model more accurately recapitulated the transcriptional profile of GBM than the two-dimensional culture. We experimentally demonstrated that the dBECMS-GBM model enhanced the resistance of GBM cells to temozolomide and increased the stemness of GBM cells. Additionally, we demonstrated the feasibility of the dBECMS-GBM model as a platform for drug response modeling. STATEMENT OF SIGNIFICANCE: The decellularized brain extracellular matrix (ECM) slice glioblastoma culture model mimics the interaction between native brain ECM and glioblastoma when glioblastoma infiltrates the brain and reveals the effects of native brain ECM on glioblastoma metabolism, ECM reprogramming, drug responsiveness, and stemness.
Collapse
Affiliation(s)
- Can Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Qiannan Zhao
- Evidence Based Medicine Center, Xuanwu Hospital of Capital Medical University, Xicheng District, Beijing 100053, China
| | - Xiaohong Zheng
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Jinyi Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Hanyun Zhao
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China
| | - Lei Cui
- Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Key Laboratory of spine and spinal cord injury repair and regeneration, Ministry of Education of the People's Republic of China & Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200062, China.
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China.
| |
Collapse
|
25
|
Belousov A, Patlay A, Silant’ev V, Kovalev VV, Kumeiko V. Preparation of Hydrogels Based on Modified Pectins by Tuning Their Properties for Anti-Glioma Therapy. Int J Mol Sci 2022; 24:ijms24010630. [PMID: 36614073 PMCID: PMC9820215 DOI: 10.3390/ijms24010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) of the central nervous system (CNS), characterized by low stiffness and predominance of carbohydrates on protein components, mediates limited cell proliferation and migration. Pectins are polysaccharides derived from plants and could be very promising for a tunable hydrogel design that mimics the neural ECM. Aiming to regulate gel structure and viscoelastic properties, we elaborated 10 variants of pectin-based hydrogels via tuning the concentration of the polymer and the number of free carboxyl groups expressed in the degree of esterification (DE). Viscoelastic properties of hydrogels varied in the range of 3 to 900 Pa for G' and were chosen as the first criteria for the selection of variants suitable for CNS remodeling. For extended reciprocal characterization, two pairs of hydrogels were taken to test pectins with opposite DEs close to 0% and 50%, respectively, but with a similar rheology exceeding 100 Pa (G'), which was achieved by adjusting the concentration of pectin. Hydrogel swelling properties and in vitro stability, together with structure characterization using SEM and FTIR spectroscopy, displayed some differences that may sense for biomedical application. Bioassays on C6 and U87MG glioblastoma cultures testified the potential prospects of the anti-glioma activity of hydrogels developed by decreasing cell proliferation and modulating migration but supporting the high viability of neural cells.
Collapse
Affiliation(s)
- Andrei Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Aleksandra Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Vladimir Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, Vladivostok 690022, Russia
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok 690041, Russia
- Correspondence:
| |
Collapse
|
26
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
27
|
Yao L, Tran K, Nguyen D. Collagen Matrices Mediate Glioma Cell Migration Induced by an Electrical Signal. Gels 2022; 8:gels8090545. [PMID: 36135257 PMCID: PMC9498326 DOI: 10.3390/gels8090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma cells produce an increased amount of collagen compared with normal astrocytes. The increasing amount of collagen in the extracellular matrix (ECM) modulates the matrix structure and the mechanical properties of the microenvironment, thereby regulating tumor cell invasion. Although the regulation of tumor cell invasion mainly relies on cell–ECM interaction, the electrotaxis of tumor cells has attracted great research interest. The growth of glioma cells in a three-dimensional (3D) collagen hydrogel creates a relevant tumor physiological condition for the study of tumor cell invasion. In this study, we tested the migration of human glioma cells, fetal astrocytes, and adult astrocytes in a 3D collagen matrix with different collagen concentrations. We report that all three types of cells demonstrated higher motility in a low concentration of collagen hydrogel (3 mg/mL and 5 mg/mL) than in a high concentration of collagen hydrogel (10 mg/mL). We further show that human glioma cells grown in collagen hydrogels responded to direct current electric field (dcEF) stimulation and migrated to the anodal pole. The tumor cells altered their morphology in the gels to adapt to the anodal migration. The directedness of anodal migration shows a field strength-dependent response. EF stimulation increased the migration speed of tumor cells. This study implicates the potential role of an dcEF in glioma invasion and as a target of treatment.
Collapse
Affiliation(s)
- Li Yao
- Correspondence: ; Tel.: +316-978-6766; Fax: +316-978-3772
| | | | | |
Collapse
|
28
|
Nanomechanical and Morphological AFM Mapping of Normal Tissues and Tumors on Live Brain Slices Using Specially Designed Embedding Matrix and Laser-Shaped Cantilevers. Biomedicines 2022; 10:biomedicines10071742. [PMID: 35885046 PMCID: PMC9313344 DOI: 10.3390/biomedicines10071742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cell and tissue nanomechanics has been intriguingly introduced into biomedical research, not only complementing traditional immunophenotyping and molecular analysis, but also bringing unexpected new insights for clinical diagnostics and bioengineering. However, despite the progress in the study of individual cells in culture by atomic force microscopy (AFM), its application for mapping live tissues has a number of technical limitations. Here, we elaborate a new technique to study live slices of normal brain tissue and tumors by combining morphological and nanomechanical AFM mapping in high throughput scanning mode, in contrast to the typically utilized force spectroscopy mode based on single-point probe application. This became possible due to the combined use of an appropriate embedding matrix for vibratomy and originally modified AFM probes. The embedding matrix composition was carefully developed by regulating the amounts of agar and collagen I to reach optimal viscoelastic properties for obtaining high-quality live slices that meet AFM requirements. AFM tips were rounded by irradiating them with focused nanosecond laser pulses, while the resulting tip morphology was verified by scanning electron microscopy. Live slices preparation and AFM investigation take only 55 min and could be combined with a vital cell tracer analysis or immunostaining, thus making it promising for biomedical research and clinical diagnostics.
Collapse
|
29
|
Norton ES, Whaley LA, Ulloa-Navas MJ, García-Tárraga P, Meneses KM, Lara-Velazquez M, Zarco N, Carrano A, Quiñones-Hinojosa A, García-Verdugo JM, Guerrero-Cázares H. Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids Barriers CNS 2022; 19:58. [PMID: 35821139 PMCID: PMC9277938 DOI: 10.1186/s12987-022-00354-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and common type of primary brain tumor in adults. Tumor location plays a role in patient prognosis, with tumors proximal to the lateral ventricles (LVs) presenting with worse overall survival, increased expression of stem cell genes, and increased incidence of distal tumor recurrence. This may be due in part to interaction of GBM with factors of the subventricular zone (SVZ), including those contained within the cerebrospinal fluid (CSF). However, direct interaction of GBM tumors with CSF has not been proved and would be hindered in the presence of an intact ependymal cell layer. Methods Here, we investigate the ependymal cell barrier and its derived extracellular matrix (ECM) fractones in the vicinity of a GBM tumor. Patient-derived GBM cells were orthotopically implanted into immunosuppressed athymic mice in locations distal and proximal to the LV. A PBS vehicle injection in the proximal location was included as a control. At four weeks post-xenograft, brain tissue was examined for alterations in ependymal cell health via immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. Results We identified local invading GBM cells within the LV wall and increased influx of CSF into the LV-proximal GBM tumor bulk compared to controls. In addition to the physical disruption of the ependymal cell barrier, we also identified increased signs of compromised ependymal cell health in LV-proximal tumor-bearing mice. These signs include increased accumulation of lipid droplets, decreased cilia length and number, and decreased expression of cell channel proteins. We additionally identified elevated numbers of small fractones in the SVZ within this group, suggesting increased indirect CSF-contained molecule signaling to tumor cells. Conclusions Our data is the first to show that LV-proximal GBMs physically disrupt the ependymal cell barrier in animal models, resulting in disruptions in ependymal cell biology and increased CSF interaction with the tumor bulk. These findings point to ependymal cell health and CSF-contained molecules as potential axes for therapeutic targeting in the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00354-8.
Collapse
Affiliation(s)
- Emily S Norton
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia García-Tárraga
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Kayleah M Meneses
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
30
|
Khoonkari M, Liang D, Lima MT, van der Land T, Liang Y, Sun J, Dolga A, Kamperman M, van Rijn P, Kruyt FAE. The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23126520. [PMID: 35742966 PMCID: PMC9223606 DOI: 10.3390/ijms23126520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults. In addition to genetic causes, the tumor microenvironment (TME), including stiffening of the extracellular matrix (ECM), is a main driver of GBM progression. Mechano-transduction and the unfolded protein response (UPR) are essential for tumor-cell adaptation to harsh TME conditions. Here, we studied the effect of a variable stiff ECM on the morphology and malignant properties of GBM stem cells (GSCs) and, moreover, examined the possible involvement of the UPR sensor PERK herein. For this, stiffness-tunable human blood plasma (HBP)/alginate hydrogels were generated to mimic ECM stiffening. GSCs showed stiffness-dependent adaptation characterized by elongated morphology, increased proliferation, and motility which was accompanied by F-Actin cytoskeletal remodeling. Interestingly, in PERK-deficient GSCs, stiffness adaptation was severely impaired, which was evidenced by low F-Actin levels, the absence of F-Actin remodeling, and decreased cell proliferation and migration. This impairment could be linked with Filamin-A (FLN-A) expression, a known interactor of PERK, which was strongly reduced in PERK-deficient GSCs. In conclusion, we identified a novel PERK/FLNA/F-Actin mechano-adaptive mechanism and found a new function for PERK in the cellular adaptation to ECM stiffening.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.); (Y.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (J.S.); (M.K.)
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.); (Y.L.)
| | - Marina Trombetta Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; (M.T.L.); (A.D.)
| | - Tjitze van der Land
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Yuanke Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.); (Y.L.)
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, China
| | - Jianwu Sun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (J.S.); (M.K.)
| | - Amalia Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; (M.T.L.); (A.D.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (J.S.); (M.K.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (P.v.R.); (F.A.E.K.); Tel.: +31-50-3615531 (F.A.E.K.)
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.); (Y.L.)
- Correspondence: (P.v.R.); (F.A.E.K.); Tel.: +31-50-3615531 (F.A.E.K.)
| |
Collapse
|
31
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
32
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
33
|
Kabir F, Apu MNH. Multi-omics analysis predicts fibronectin 1 as a prognostic biomarker in glioblastoma multiforme. Genomics 2022; 114:110378. [PMID: 35513291 DOI: 10.1016/j.ygeno.2022.110378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is one of the most malignant and intractable central nervous system tumors with high recurrence, low survival rate, and poor prognosis. Despite the advances of aggressive, multimodal treatment, a successful treatment strategy is still elusive, often leading to therapeutic resistance and fatality. Thus, it is imperative to search for and identify novel markers critically associated with GBM pathogenesis to improve the existing trend of diagnosis, prognosis, and treatment. Seven publicly available GEO microarray datasets containing 409 GBM samples were integrated and further data mining was conducted using several bioinformatics tools. A total of 209 differentially expressed genes (DEGs) were identified in the GBM tissue samples compared to the normal brains. Gene Ontology (GO) enrichment analysis of the DEGs revealed association of the upregulates genes with extracellular matrix (ECM), conceivably contributing to the invasive nature of GBM while downregulated DEGs were found to be predominantly related to neuronal processes and structures. Alongside, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway analyses described the involvement of the DEGs with various crucial contributing pathways (PI3K-Akt signaling pathway, p53 signaling pathway, insulin secretion, etc.) in GBM progression and pathogenesis. Protein-protein interaction (PPI) network containing 879 nodes and 1237 edges revealed 3 significant modules and consecutive KEGG pathway analysis of these modules showed a significant connection to gliomagenesis. Later, 10 hub genes were screened out based on degree and their expressions were externally validated. Surprisingly, only fibronectin 1 (FN1) high expression appeared to be related to poor prognosis. Subsequently, 109 transcription factors and 211 miRNAs were detected to be involved with the hub genes where FN1 demonstrated the highest number of interactions. Considering its high connectivity and potential prognostic value FN1 could be a novel biomarker providing new insights into the prognosis and treatment for GBM, although experimental validation is required.
Collapse
Affiliation(s)
- Farzana Kabir
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
34
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
36
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
37
|
The Advances in Glioblastoma On-a-Chip for Therapy Approaches. Cancers (Basel) 2022; 14:cancers14040869. [PMID: 35205617 PMCID: PMC8870462 DOI: 10.3390/cancers14040869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This systematic review showed different therapeutic approaches to glioblastoma on-a-chip with varying levels of complexity, answering, from the simplest question to the most sophisticated questions, in a biological system integrated in an efficient way. With advances in manufacturing protocols, soft lithography in PDMS material was the most used in the studies, applying different strategy geometrics in device construction. The microenvironment showed the relevant elaborations in co-culture between mainly human tumor cells and support cells involved in the collagen type I matrix; remaining an adequate way to assess the therapeutic approach. The most complex devices showed efficient intersection between different systems, allowing in vitro studies with major human genetic similarity, reproducibility, and low cost, on a highly customizable platform. Abstract This systematic review aimed to verify the use of microfluidic devices in the process of implementing and evaluating the effectiveness of therapeutic approaches in glioblastoma on-a-chip, providing a broad view of advances to date in the use of this technology and their perspectives. We searched studies with the variations of the keywords “Glioblastoma”, “microfluidic devices”, “organ-on-a-chip” and “therapy” of the last ten years in PubMed and Scopus databases. Of 446 articles identified, only 22 articles were selected for analysis according to the inclusion and exclusion criteria. The microfluidic devices were mainly produced by soft lithography technology, using the PDMS material (72%). In the microenvironment, the main extracellular matrix used was collagen type I. Most studies used U87-MG glioblastoma cells from humans and 31.8% were co-cultivated with HUVEC, hCMEC/D3, and astrocytes. Chemotherapy was the majority of therapeutic approaches, assessing mainly the cellular viability and proliferation. Furthermore, some alternative therapies were reported in a few studies (22.6%). This study identified a diversity of glioblastoma on-a-chip to assess therapeutic approaches, often using intermediate levels of complexity. The most advanced level implemented the intersection between different biological systems (liver–brain or intestine–liver–brain), BBB model, allowing in vitro studies with greater human genetic similarity, reproducibility, and low cost, in a highly customizable platform.
Collapse
|
38
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
39
|
Shmelev ME, Titov SI, Belousov AS, Farniev VM, Zhmenia VM, Lanskikh DV, Penkova AO, Kumeiko VV. Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines 2022; 10:345. [PMID: 35203554 PMCID: PMC8961777 DOI: 10.3390/biomedicines10020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cell and tissue nanomechanics, being inspired by progress in high-resolution physical mapping, has recently burst into biomedical research, discovering not only new characteristics of normal and diseased tissues, but also unveiling previously unknown mechanisms of pathological processes. Some parallels can be drawn between early development and carcinogenesis. Early embryogenesis, up to the blastocyst stage, requires a soft microenvironment and internal mechanical signals induced by the contractility of the cortical actomyosin cytoskeleton, stimulating quick cell divisions. During further development from the blastocyst implantation to placenta formation, decidua stiffness is increased ten-fold when compared to non-pregnant endometrium. Organogenesis is mediated by mechanosignaling inspired by intercellular junction formation with the involvement of mechanotransduction from the extracellular matrix (ECM). Carcinogenesis dramatically changes the mechanical properties of cells and their microenvironment, generally reproducing the structural properties and molecular organization of embryonic tissues, but with a higher stiffness of the ECM and higher cellular softness and fluidity. These changes are associated with the complete rearrangement of the entire tissue skeleton involving the ECM, cytoskeleton, and the nuclear scaffold, all integrated with each other in a joint network. The important changes occur in the cancer stem-cell niche responsible for tumor promotion and metastatic growth. We expect that the promising concept based on the natural selection of cancer cells fixing the most invasive phenotypes and genotypes by reciprocal regulation through ECM-mediated nanomechanical feedback loop can be exploited to create new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Sergei I. Titov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vladislav M. Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Valeriia M. Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Daria V. Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Alina O. Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
40
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
41
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
42
|
The Interplay between Glioblastoma and Its Microenvironment. Cells 2021; 10:cells10092257. [PMID: 34571905 PMCID: PMC8469987 DOI: 10.3390/cells10092257] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences f the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.
Collapse
|
43
|
Cui X, Wang Q, Zhou J, Wang Y, Xu C, Tong F, Wang H, Kang C. Single-Cell Transcriptomics of Glioblastoma Reveals a Unique Tumor Microenvironment and Potential Immunotherapeutic Target Against Tumor-Associated Macrophage. Front Oncol 2021; 11:710695. [PMID: 34434898 PMCID: PMC8382282 DOI: 10.3389/fonc.2021.710695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background The main immune cells in GBM are tumor-associated macrophages (TAMs). Thus far, the studies investigating the activation status of TAM in GBM are mainly limited to bulk RNA analyses of individual tumor biopsies. The activation states and transcriptional signatures of TAMs in GBM remain poorly characterized. Methods We comprehensively analyzed single-cell RNA-sequencing data, covering a total of 16,201 cells, to clarify the relative proportions of the immune cells infiltrating GBMs. The origin and TAM states in GBM were characterized using the expression profiles of differential marker genes. The vital transcription factors were examined by SCENIC analysis. By comparing the variable gene expression patterns in different clusters and cell types, we identified components and characteristics of TAMs unique to each GBM subtype. Meanwhile, we interrogated the correlation between SPI1 expression and macrophage infiltration in the TCGA-GBM dataset. Results The expression patterns of TMEM119 and MHC-II can be utilized to distinguish the origin and activation states of TAMs. In TCGA-Mixed tumors, almost all TAMs were bone marrow-derived macrophages. The TAMs in TCGA-proneural tumors were characterized by primed microglia. A different composition was observed in TCGA-classical tumors, which were infiltrated by repressed microglia. Our results further identified SPI1 as a crucial regulon and potential immunotherapeutic target important for TAM maturation and polarization in GBM. Conclusions We describe the immune landscape of human GBM at a single-cell level and define a novel categorization scheme for TAMs in GBM. The immunotherapy against SPI1 would reprogram the immune environment of GBM and enhance the treatment effect of conventional chemotherapy drugs.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qixue Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Junhu Zhou
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Can Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Fei Tong
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongjun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunsheng Kang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
44
|
Bruns J, Zustiak SP. Hydrogel-Based Spheroid Models of Glioblastoma for Drug Screening Applications. MISSOURI MEDICINE 2021; 118:346-351. [PMID: 34373670 PMCID: PMC8343644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with median patient survival of 12-15 months even after treatment. To facilitate basic research as well as treatment development, bioengineered GBM models that adequately recapitulate aspects of the in vivo tumor microenvironment are greatly needed. Multicellular spheroids are a well-accepted model in tumor biology as well as drug screening because they recapitulate many of the solid tumor characteristics, such as hypoxic core and cell-cell communication. There are multiple approaches for growing GBM cells into tumor spheroids - non-adherent plastic dishes, hanging drop, bioreactors, and hydrogels, amongst others. Suspension spheroid models offer ease of growth, uniformity, and overall lower cost, but neglect the cell-matrix interactions, while hydrogel-based spheroids capture cell-matrix interactions and allow co-cultures with stromal cells. In this review, we summarize various approaches to fabricate GBM spheroid models as well as GBM spheroid characteristics and chemotherapeutic responsiveness as a function of hydrogel matrix encapsulation and properties, in order to advance therapies.
Collapse
Affiliation(s)
| | - Silviya Petrova Zustiak
- Program of Biomedical Engineering and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
45
|
Uzer-Yilmaz B. In vitro contact guidance of glioblastoma cells on metallic biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:35. [PMID: 33779848 PMCID: PMC8007516 DOI: 10.1007/s10856-021-06503-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Cancer cells' ability to sense their microenvironment and interpret these signals for the regulation of directional adhesion plays crucial role in cancer invasion. Furthermore, given the established influence of mechanical properties of the substrate on cell behavior, the present study aims to elucidate the relationship between the contact guidance of glioblastoma cell (GBM) and evolution of microstructural and mechanical properties of the implants. SEM analyses of the specimens subjected to 5 and 25% of plastic strains revealed directional groove-like structures in micro and submicro-sizes, respectively. Microscale cytoplasmic protrusions of GBMs showed elongation favored along the grooves created via deformation markings on 5% deformed sample. Whereas filopodia, submicro-sized protrusions facilitating cancer invasion, elongated in the direction perpendicular to the deformation markings on the 25% deformed sample, which might lead to easy and rapid retraction. Furthermore, number of cell attachment was 1.7-fold greater on 25% deformed sample, where these cells showed the greatest cellular aspect ratio. The directional attachment and contact guidance of GBMs was reported for the first time on metallic implants and these findings propose the idea that GBM response could be regulated by controlling the spacing of the deformation markings, namely the degree of plastic deformation. These findings can be applied in the design of cell-instructive implants for therapeutic purposes to suppress cancer dissemination.
Collapse
Affiliation(s)
- B Uzer-Yilmaz
- Department of Mechanical Engineering, Abdullah Gül University, 38080, Kayseri, Turkey.
| |
Collapse
|
46
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
47
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
48
|
Tao B, Song Y, Wu Y, Yang X, Peng T, Peng L, Xia K, Xia X, Chen L, Zhong C. Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling. Aging (Albany NY) 2021; 13:5284-5296. [PMID: 33535177 PMCID: PMC7950305 DOI: 10.18632/aging.202449] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Matrix stiffness is a key physical characteristic of the tumor microenvironment and correlates tightly with tumor progression. Here, we explored the association between matrix stiffness and glioma development. Using atomic force microscopy, we observed higher matrix stiffness in highly malignant glioma tissues than in low-grade/innocent tissues. In vitro and in vivo analyses revealed that culturing glioma cells on stiff polyacrylamide hydrogels enhanced their proliferation, tumorigenesis and CD133 expression. Greater matrix stiffness could obviously up-regulated the expression of BCL9L, thereby promoting the activation of Wnt/β-catenin signaling and ultimately increasing the stemness of glioma cells. Inhibiting Wnt/β-catenin signaling using gigantol consistently improved the anticancer effects of chemotherapy and radiotherapy in mice with subcutaneous glioma tumors. These findings demonstrate that a stiffer matrix increases the stemness of glioma cells by activating BCL9L/Wnt/β-catenin signaling. Moreover, we have provided a potential strategy for clinical glioma treatment by demonstrating that gigantol can improve the effectiveness of traditional chemotherapy/radiotherapy by suppressing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Bei Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Song
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yao Wu
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiaobo Yang
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tangming Peng
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiguo Xia
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiangguo Xia
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chuanhong Zhong
- Sichuan Clinic Research Center for Neurosurgery, Luzhou, China.,Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
49
|
Anderson AR, Segura T. Injectable biomaterials for treatment of glioblastoma. ADVANCED MATERIALS INTERFACES 2020; 7:2001055. [PMID: 34660174 PMCID: PMC8513688 DOI: 10.1002/admi.202001055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/13/2023]
Abstract
Despite ongoing advancements in the field of medicine, glioblastoma multiforme (GBM) is presently incurable, making this advanced brain tumor the deadliest tumor type in the central nervous system. The primary treatment strategies for GBM (i.e. surgical resection, radiation therapy, chemotherapy, and newly incorporated targeted therapies) fail to overcome the challenging characteristics of highly aggressive GBM tumors and are presently given with the goal of increasing the quality of life for patients. With the aim of creating effective treatment solutions, research has shifted toward utilizing injectable biomaterial adjuncts to minimize invasiveness of treatment, provide spatiotemporal control of therapeutic delivery, and engage with cells through material-cell interfaces. This review aims to summarize the limitations of the current standard of care for GBM, discuss how these limitations can be addressed by local employment of injectable biomaterial systems, and highlight developments in the field of biomaterials for these applications.
Collapse
Affiliation(s)
- Alexa R. Anderson
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| | - Tatiana Segura
- Duke University Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27708, U.S.A
| |
Collapse
|
50
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|