1
|
Agarwal R, Dittmar T, Beer HD, Kunz M, Müller S, Kappos EA, Contassot E, Navarini AA. Human epidermis organotypic cultures, a reproducible system recapitulating the epidermis in vitro. Exp Dermatol 2023. [PMID: 37114406 DOI: 10.1111/exd.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The translatability of research is highly dependent on models that recapitulate human tissues and organs. Here, we describe a procedure for the generation of human epidermis organotypic cultures (HEOCs) from primary keratinocytes isolated from foreskin and adult skin as well as from an immortalized keratinocyte cell line (KerTr). We tested several media conditions to develop a defined HEOC growing and expansion media. We characterized the HEOCs and show that in optimal culture conditions they express the proliferation marker Ki67, the basement membrane protein collagen 17 (col17) and the epidermal differentiation markers keratin 15 (K15), keratin 14 (K14), keratin 5 (K5), keratin 10 (K10), keratin 1 (K1), transglutaminase 1 (TGM1), transglutaminase 3 (TGM3) and filaggrin (FLG). Thus, they recapitulate the human epidermis and are stratified from the basal layer to the stratum corneum. These HEOC can be generated reproducibly on a large scale, making it an invaluable model for screening therapeutic compounds and also for the study of pathologies affecting the epidermis.
Collapse
Affiliation(s)
- Rishika Agarwal
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tanja Dittmar
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hans-Dietmar Beer
- Dermatology Department, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Kunz
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
| | - Simon Müller
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
| | - Elisabeth A Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Emmanuel Contassot
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Yan X, Wang C, Ma Y, Wang Y, Song F, Zhong J, Wu X. Development of air-assisted atomization device for the delivery of cells in viscous biological ink prepared with sodium alginate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:044101. [PMID: 38081259 DOI: 10.1063/5.0102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/19/2023] [Indexed: 12/18/2023]
Abstract
Skin wounds, especially large-area skin trauma, would bring great pain and even fatal risk to patients. In recent years, local autologous cell transplantation has shown great potential for wound healing and re-epithelialization. However, when the cell suspension prepared with normal saline is delivered to the wound, due to its low viscosity, it is easy to form big drops in the deposition and lose them from the wound bed, resulting in cell loss and uneven coverage. Here, we developed a novel air-assisted atomization device (AAAD). Under proper atomization parameters, 1% (w/v) sodium alginate (SA) solution carrier could be sprayed uniformly. Compared with normal saline, the run-off of the SA on the surface of porcine skin was greatly reduced. In theory, the spray height of AAAD could be set to achieve the adjustment of a large spray area of 1-12 cm2. In the measurement of droplet velocity and HaCaT cell viability, the spray height of AAAD would affect the droplet settling velocity and then the cell delivery survival rate (CSR). Compared with the spray height of 50 mm, the CSR of 100 mm was significantly higher and could reach 91.09% ± 1.82% (92.82% ± 2.15% in control). For bio-ink prepared with 1% (w/v) SA, the viability remained the same during the 72-h incubation. Overall, the novel AAAD uniformly atomized bio-ink with high viscosity and maintained the viability and proliferation rate during the delivery of living cells. Therefore, AAAD has great potential in cell transplantation therapy, especially for large-area or irregular skin wounds.
Collapse
Affiliation(s)
- Xintao Yan
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Xiaodong Wu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| |
Collapse
|
3
|
Wood FM. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J Burn Care Res 2023; 44:S42-S47. [PMID: 36567469 DOI: 10.1093/jbcr/irac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue engineering solutions for skin have been developed over the last few decades with a focus initially on a two-layered structure with epithelial and dermal repair. An essential element of skin restoration is a source of cells capable of differentiating into the appropriate phenotype. The need to repair areas of skin when traditional techniques were not adequate addressed led to cell based therapies being developed initially as a laboratory-based tissue expansion opportunity, both as sheets of cultured epithelial autograft and in composite laboratory-based skin substitutes. The time to availability of the cell-based therapies has been solved in a number of ways, from using allograft cell-based solutions to the use of point of care skin cell harvesting for immediate clinical use. More recently pluripotential cells have been explored providing a readily available source of cells and cells which can express the broad range of phenotypes seen in the mature skin construct. The lessons learnt from the use of cell based techniques has driven the exploration of the use of 3D printing technology, with controlled accurate placement of the cells within a specific printed construct to optimise the phenotypic expression and tissue generation.
Collapse
Affiliation(s)
- Fiona M Wood
- University of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Burns Service of WA, Level 4 Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Western, Australia 6150
| |
Collapse
|
4
|
Jorgensen AM, Mahajan N, Atala A, Murphy SV. Advances in Skin Tissue Engineering and Regenerative Medicine. J Burn Care Res 2023; 44:S33-S41. [PMID: 36567474 PMCID: PMC9790899 DOI: 10.1093/jbcr/irac126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are an estimated 500,000 patients treated with full-thickness wounds in the United States every year. Fire-related burn injuries are among the most common and devastating types of wounds that require advanced clinical treatment. Autologous split-thickness skin grafting is the clinical gold standard for the treatment of large burn wounds. However, skin grafting has several limitations, particularly in large burn wounds, where there may be a limited area of non-wounded skin to use for grafting. Non-cellular dermal substitutes have been developed but have their own challenges; they are expensive to produce, may require immunosuppression depending on design and allogenic cell inclusion. There is a need for more advanced treatments for devastating burns and wounds. This manuscript provides a brief overview of some recent advances in wound care, including the use of advanced biomaterials, cell-based therapies for wound healing, biological skin substitutes, biological scaffolds, spray on skin and skin bioprinting. Finally, we provide insight into the future of wound care and technological areas that need to be addressed to support the development and incorporation of these technologies.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Naresh Mahajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
5
|
Motamedi S, Esfandpour A, Babajani A, Jamshidi E, Bahrami S, Niknejad H. The Current Challenges on Spray-Based Cell Delivery to the Skin Wounds. Tissue Eng Part C Methods 2021; 27:543-558. [PMID: 34541897 DOI: 10.1089/ten.tec.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell delivery through spray instruments is a promising and effective method in tissue engineering and regenerative medicine. It is used for treating different acute and chronic wounds, including burns with different etiologies, chronic diabetic or venous wounds, postcancer surgery, and hypopigmentation disorders. Cell spray can decrease the needed donor site area compared with conventional autologous skin grafting. Keratinocytes, fibroblasts, melanocytes, and mesenchymal stem cells are promising cell sources for cell spray procedures. Different spray instruments are designed and utilized to deliver the cells to the intended skin area. In an efficient spray instrument, cell viability and wound coverage are two determining parameters influenced by various physical and biological factors such as air pressure, spraying distance, viscosity of suspension, stiffness of the wound surface, and velocity of impact. Besides, to improve cell delivery by spray instruments, some matrices and growth factors can be added to cell suspensions. This review focuses on the different types of cells and spray instruments used in cell delivery procedures. It also discusses physical and biological parameters associated with cell viability and wound coverage in spray instruments. Moreover, the recent advances in codelivery of cells with biological glues and growth factors, as well as clinical translation of cell spraying, have been reviewed. Impact statement Skin wounds are a group of prevalent injuries that can lead to life-threatening complexities. As a focus of interest, stem cell therapy and spray-based cell delivery have effectively decreased associated morbidity and mortality. This review summarizes a broad scope of recent evidence related to spray-based cell therapy, instruments, and approaches adopted to make the process more efficient in treating skin wounds. An overview including utilized cell types, clinical cases, and current challenges is also provided.
Collapse
Affiliation(s)
- Shiva Motamedi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Esfandpour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang L, Yan X, An L, Wang M, Xu X, Ma Z, Nie M, Du F, Zhang J, Yu S. Novel pneumatically assisted atomization device for living cell delivery: application of sprayed mesenchymal stem cells for skin regeneration. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00144-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|