1
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
2
|
De Simone M, Choucha A, Ciaglia E, Conti V, Pecoraro G, Santurro A, Puca AA, Cascella M, Iaconetta G. Discogenic Low Back Pain: Anatomic and Pathophysiologic Characterization, Clinical Evaluation, Biomarkers, AI, and Treatment Options. J Clin Med 2024; 13:5915. [PMID: 39407975 PMCID: PMC11477864 DOI: 10.3390/jcm13195915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Discogenic low back pain (LBP) is a significant clinical condition arising from degeneration of the intervertebral disc, a common yet complex cause of chronic pain, defined by fissuring in the annulus fibrosus resulting in vascularization of growing granulation tissue and growth of nociceptive nerve fibers along the laceration area. This paper delves into the anatomical and pathophysiological underpinnings of discogenic LBP, emphasizing the role of intervertebral disc degeneration in the onset of pain. The pathogenesis is multifactorial, involving processes like mitochondrial dysfunction, accumulation of advanced glycation end products, and pyroptosis, all contributing to disc degeneration and subsequent pain. Despite its prevalence, diagnosing discogenic LBP is challenging due to the overlapping symptoms with other forms of LBP and the absence of definitive diagnostic criteria. Current diagnostic approaches include clinical evaluations, imaging techniques, and the exploration of potential biomarkers. Treatment strategies range from conservative management, such as physical therapy and pharmacological interventions, to more invasive procedures such as spinal injections and surgery. Emerging therapies targeting molecular pathways involved in disc degeneration are under investigation and hold potential for future clinical application. This paper highlights the necessity of a multidisciplinary approach combining clinical, imaging, and molecular data to enhance the accuracy of diagnosis and the effectiveness of treatment for discogenic LBP, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- BrainLab S.R.L., Mercato San Severino, 84085 Salerno, Italy;
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Anis Choucha
- Department of Neurosurgery, Aix Marseille University, APHM, UH Timone, 13005 Marseille, France;
- Laboratory of Biomechanics and Application, UMRT24, Gustave Eiffel University, Aix Marseille University, 13005 Marseille, France
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- Clinical Pharmacology Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | | | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- BrainLab S.R.L., Mercato San Severino, 84085 Salerno, Italy;
- Legal Medicine Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Marco Cascella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (E.C.); (V.C.); (A.S.); (A.A.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
3
|
Rudnik‐Jansen I, van Kruining Kodele S, Creemers L, Joosten B. Biomolecular therapies for chronic discogenic low back pain: A narrative review. JOR Spine 2024; 7:e1345. [PMID: 39114580 PMCID: PMC11303450 DOI: 10.1002/jsp2.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic low back pain caused by intervertebral disc (IVD) degeneration, also termed chronic discogenic low back pain (CD-LBP), is one of the most prevalent musculoskeletal diseases. Degenerative processes in the IVD, such as inflammation and extra-cellular matrix breakdown, result in neurotrophin release. Local elevated neurotrophin levels will stimulate sprouting and innervation of sensory neurons. Furthermore, sprouted sensory nerves that are directly connected to adjacent dorsal root ganglia have shown to increase microglia activation, contributing to the maintenance and chronification of pain. Current pain treatments have shown to be insufficient or inadequate for long-term usage. Furthermore, most therapeutic approaches aimed to target the underlying pathogenesis of disc degeneration focus on repair and regeneration and neglect chronic pain. How biomolecular therapies influence the degenerative IVD environment, pain signaling cascades, and innervation and excitability of the sensory neurons often remains unclear. This review addresses the relatively underexplored area of chronic pain treatment for CD-LBP and summarizes effects of therapies aimed for CD-LBP with special emphasis on chronic pain. Approaches based on blocking pro-inflammatory mediators or neurotrophin activity have been shown to hamper neuronal ingrowth into the disc. Furthermore, the tissue regenerative and neuro inhibitory properties of extracellular matrix components or transplanted mesenchymal stem cells are potentially interesting biomolecular approaches to not only block IVD degeneration but also impede pain sensitization. At present, most biomolecular therapies are based on acute IVD degeneration models and thus do not reflect the real clinical chronic pain situation in CD-LBP patients. Future studies should aim at investigating the effects of therapeutic interventions applied in chronic degenerated discs containing established sensory nerve ingrowth. The in-depth understanding of the ramifications from biomolecular therapies on pain (chronification) pathways and pain relief in CD-LBP could help narrow the gap between the pre-clinical bench and clinical bedside for novel CD-LBP therapeutics and optimize pain treatment.
Collapse
Affiliation(s)
- Imke Rudnik‐Jansen
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Sanda van Kruining Kodele
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Laura Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Bert Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| |
Collapse
|
4
|
Zhou J, Wang J, Li J, Zhu Z, He Z, Li J, Tang T, Chen H, Du Y, Li Z, Gao M, Zhou Z, Xi Y. Repetitive strikes loading organ culture model to investigate the biological and biomechanical responses of the intervertebral disc. JOR Spine 2024; 7:e1314. [PMID: 38249719 PMCID: PMC10797252 DOI: 10.1002/jsp2.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Background Disc degeneration is associated with repetitive violent injuries. This study aims to explore the impact of repetitive strikes loading on the biology and biomechanics of intervertebral discs (IVDs) using an organ culture model. Methods IVDs from the bovine tail were isolated and cultured in a bioreactor, with exposure to various loading conditions. The control group was subjected to physiological loading, while the model group was exposed to either one strike loading (compression at 38% of IVD height) or repetitive one strike loading (compression at 38% of IVD height). Disc height and dynamic compressive stiffness were measured after overnight swelling and loading. Furthermore, histological morphology, cell viability, and gene expression were analyzed on Day 32. Glycosaminoglycan (GAG) and nitric oxide (NO) release in conditioned medium were also analyzed. Results The repetitive one strike group exhibited early disc degeneration, characterized by decreased dynamic compression stiffness, the presence of annulus fibrosus clefts, and degradation of the extracellular matrix. Additionally, this group demonstrated significantly higher levels of cell death (p < 0.05) and glycosaminoglycan (GAG) release (p < 0.05) compared to the control group. Furthermore, upregulation of MMP1, MMP13, and ADAMTS5 was observed in both nucleus pulposus (NP) and annulus fibrosus (AF) tissues of the repetitive one strike group (p < 0.05). The one strike group exhibited annulus fibrosus clefts but showed no gene expression changes compared to the control group. Conclusions This study shows that repetitive violent injuries lead to the degeneration of a healthy bovine IVDs, thereby providing new insights into early-stage disc degeneration.
Collapse
Affiliation(s)
- Jiaxiang Zhou
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Junhong Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Yukun Du
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Sport Medicine, Inst Translat MedThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
- Shenzhen Key Laboratory of Anti‐aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences CenterShenzhen UniversityShenzhenChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yongming Xi
- Department of Spinal SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
5
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
6
|
Lazaro-Pacheco D, Mohseni M, Rudd S, Cooper-White J, Holsgrove TP. The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales. APL Bioeng 2023; 7:021501. [PMID: 37180733 PMCID: PMC10168717 DOI: 10.1063/5.0137698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Low back pain is the leading cause of disability, producing a substantial socio-economic burden on healthcare systems worldwide. Intervertebral disc (IVD) degeneration is a primary cause of lower back pain, and while regenerative therapies aimed at full functional recovery of the disc have been developed in recent years, no commercially available, approved devices or therapies for the regeneration of the IVD currently exist. In the development of these new approaches, numerous models for mechanical stimulation and preclinical assessment, including in vitro cell studies using microfluidics, ex vivo organ studies coupled with bioreactors and mechanical testing rigs, and in vivo testing in a variety of large and small animals, have emerged. These approaches have provided different capabilities, certainly improving the preclinical evaluation of these regenerative therapies, but challenges within the research environment, and compromises relating to non-representative mechanical stimulation and unrealistic test conditions, remain to be resolved. In this review, insights into the ideal characteristics of a disc model for the testing of IVD regenerative approaches are first assessed. Key learnings from in vivo, ex vivo, and in vitro IVD models under mechanical loading stimulation to date are presented alongside the merits and limitations of each model based on the physiological resemblance to the human IVD environment (biological and mechanical) as well as the possible feedback and output measurements for each approach. When moving from simplified in vitro models to ex vivo and in vivo approaches, the complexity increases resulting in less controllable models but providing a better representation of the physiological environment. Although cost, time, and ethical constraints are dependent on each approach, they escalate with the model complexity. These constraints are discussed and weighted as part of the characteristics of each model.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| | - Mina Mohseni
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Timothy Patrick Holsgrove
- Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
7
|
Chen JX, Li YH, Wen J, Li Z, Yu BS, Huang YC. Annular Defects Impair the Mechanical Stability of the Intervertebral Disc. Global Spine J 2023; 13:724-729. [PMID: 33783245 DOI: 10.1177/21925682211006061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN A biomechanical study. OBJECTIVES The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. METHODS Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen's annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. RESULTS Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens (P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision (P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. CONCLUSIONS The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.
Collapse
Affiliation(s)
- Jun-Xin Chen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun-He Li
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Wen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhen Li
- 161930AO Research Institute Davos, Davos, Switzerland
| | - Bin-Sheng Yu
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yong-Can Huang
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
8
|
Widmayer F, Neidlinger-Wilke C, Witz F, Jansen JU, Ignatius A, Haffner-Luntzer M, Teixeira GQ. Oestrogen and Vibration Improve Intervertebral Disc Cell Viability and Decrease Catabolism in Bovine Organ Cultures. Int J Mol Sci 2023; 24:ijms24076143. [PMID: 37047116 PMCID: PMC10094023 DOI: 10.3390/ijms24076143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17β-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.
Collapse
Affiliation(s)
- Franziska Widmayer
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Fiona Witz
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Jan U Jansen
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
9
|
Accumulation of NCOA1 dependent on HERC3 deficiency transactivates matrix metallopeptidases and promotes extracellular matrix degradation in intervertebral disc degeneration. Life Sci 2023; 320:121555. [PMID: 36878279 DOI: 10.1016/j.lfs.2023.121555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Matrix metallopeptidases (MMPs) are critical matrix-degrading molecules and they are frequently overexpressed in degenerative discs. This study aimed to investigate the mechanism for MMP upregulation. METHODS Immunoblot and RT-qPCR were used for detecting protein and gene expression levels. 4-month-old and 24-month-old C57BL/6 mice were used for evaluating intervertebral disc degeneration (IDD). An ubiquitination assay was used to determine protein modification. Immunoprecipitation and mass spectrometry were used for identifying protein complex members. RESULTS We identified the elevation of 14 MMPs among 23 members in aged mice with IDD. Eleven of these 14 MMP gene promoters contained a Runx2 (runt-related transcription factor 2) binding site. Biochemical analyses revealed that Runx2 recruited a histone acetyltransferase p300 and a coactivator NCOA1 (nuclear receptor coactivator 1) to assemble a complex, transactivating MMP expression. The deficiency of an E3 ligase called HERC3 (HECT and RLD domain containing E3 ubiquitin-protein ligase 3) resulted in the accumulation of NCOA1 in the inflammatory microenvironment. High throughput screening of small molecules that specifically target the NCOA1-p300 interaction identified a compound SMTNP-191, which showed an inhibitory effect on suppressing MMP expression and attenuating the IDD process in aged mice. CONCLUSION Our data support a model in which deficiency of HERC3 fails to ubiquitinate NCOA1, leading to the assembly of NCOA1-p300-Runx2 and causing the transactivation of MMPs. These findings offer new insight into inflammation-mediated MMP accumulation and also provide a new therapeutic strategy to retard the IDD process.
Collapse
|
10
|
Tang SN, Bonilla AF, Chahine NO, Colbath AC, Easley JT, Grad S, Haglund L, Le Maitre CL, Leung V, McCoy AM, Purmessur D, Tang SY, Zeiter S, Smith LJ. Controversies in spine research: Organ culture versus in vivo models for studies of the intervertebral disc. JOR Spine 2022; 5:e1235. [PMID: 36601369 PMCID: PMC9799089 DOI: 10.1002/jsp2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | | | | | | | - Victor Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongHong KongSARChina
| | - Annette M. McCoy
- Department of Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | | - Lachlan J. Smith
- Departments of Orthopaedic Surgery and NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
11
|
Injectable Cell-Laden Nanofibrous Matrix for Treating Annulus Fibrosus Defects in Porcine Model: An Organ Culture Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111866. [PMID: 36431001 PMCID: PMC9694927 DOI: 10.3390/life12111866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.
Collapse
|
12
|
Wei B, Zhao Y, Li W, Zhang S, Yan M, Hu Z, Gao B. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1023877. [PMID: 36299288 PMCID: PMC9588944 DOI: 10.3389/fbioe.2022.1023877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the basic pathological process of many degenerative diseases of the spine, characterized by series of symptoms, among which low back pain (LBP) is the most common symptom that patients suffer a lot, which not only makes patients and individual families bear a huge pain and psychological burden, but also consumes a lot of medical resources. IDD is usually thought to be relevant with various factors such as genetic predisposition, trauma and aging, and IDD progression is tightly relevant with structural and functional alterations. IDD processes are caused by series of pathological processes, including oxidative stress, matrix decomposition, inflammatory reaction, apoptosis, abnormal proliferation, cell senescence, autophagy as well as sepsis process, among which the oxidative stress and inflammatory response are considered as key link in IDD. The production and clearance of ROS are tightly connected with oxidative stress, which would further simulate various signaling pathways. The phenotype of disc cells could change from matrix anabolism-to matrix catabolism- and proinflammatory-phenotype during IDD. Recent decades, with the relevant reports about oxidative stress and inflammatory response in IDD increasing gradually, the mechanisms researches have attracted much more attention. Consequently, this study focused on the indispensable roles of the oxidative stress and inflammatory response (especially macrophages and cytokines) to illustrate the origin, development, and deterioration of IDD, aiming to provide novel insights in the molecular mechanisms as well as significant clinical values for IDD.
Collapse
Affiliation(s)
- Bingqian Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Basic Medical College, Air Force Medical University, Xi’an, China
| | - Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weihang Li
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ming Yan
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Ming Yan, ; Zebing Hu, ; Bo Gao,
| |
Collapse
|
13
|
McKinley JP, Montes AR, Wang MN, Kamath AR, Jimenez G, Lim J, Marathe SA, Mofrad MRK, O’Connell GD. Design of a flexing organ-chip to model in situ loading of the intervertebral disc. BIOMICROFLUIDICS 2022; 16:054111. [PMID: 36330201 PMCID: PMC9625834 DOI: 10.1063/5.0103141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The leading cause of disability of all ages worldwide is severe lower back pain. To address this untreated epidemic, further investigation is needed into the leading cause of back pain, intervertebral disc degeneration. In particular, microphysiological systems modeling critical tissues in a degenerative disc, like the annulus fibrosus (AF), are needed to investigate the effects of complex multiaxial strains on AF cells. By replicating these mechanobiological effects unique to the AF that are not yet understood, we can advance therapies for early-stage degeneration at the cellular level. To this end, we designed, fabricated, and collected proof-of-concept data for a novel microphysiological device called the flexing annulus-on-a-chip (AoC). We used computational models and experimental measurements to characterize the device's ability to mimic complex physiologically relevant strains. As a result, these strains proved to be controllable, multi-directional, and uniformly distributed with magnitudes ranging from - 10 % to 12% in the axial, radial, and circumferential directions, which differ greatly from applied strains possible in uniaxial devices. Furthermore, after withstanding accelerated life testing (66 K cycles of 10% strain) and maintaining 2000 bovine AF cells without loading for more than three weeks the AoC proved capable of long-term cell culture. Additionally, after strain (3.5% strain for 75 cycles at 0.5 Hz) was applied to a monolayer of AF cells in the AoC, a population remained adhered to the channel with spread morphology. The AoC can also be tailored for other annular structures in the body such as cardiovascular vessels, lymphatic vessels, and the cervix.
Collapse
Affiliation(s)
- Jonathan P. McKinley
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Andre R. Montes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Maple N. Wang
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Anuya R. Kamath
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Gissell Jimenez
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Jianhua Lim
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Siddharth A. Marathe
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Mohammad R. K. Mofrad
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Chen X, Chen H, Li BL, Xiao Z, Zhou Y, Tian W, Chen D, Liu X, Zhou Z, Liu S. Dynamic elastic modulus assessment of the early degeneration model of an intervertebral disc in cynomolgus monkeys with one strike loading. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:106982. [PMID: 35797747 DOI: 10.1016/j.cmpb.2022.106982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Disc degeneration has long been associated with excessive mechanical loading or acute disc injury. Our goal is to perform a shock load on the functional units of the cynomolgus monkey intervertebral disc and analyze the degree of degeneration of the intervertebral disc through image analysis and comprehensive analysis. The organ model establishes a standard organ culture model and a non-invasive biomechanical evaluation protocol close to the early degeneration of the human intervertebral disc. METHODS After modeling, the cynomolgus monkey intervertebral discs were collected and loaded into the dynamic mechanical culture system. The physiological group was loaded with 10% high compressive deformation load for one second, the injury group was punctured with annulus fibrosus, the model group was loaded with 20-50% high compressive deformation, and the nutritional components were a high-glucose group and low-glucose group. After day 3 (short term) and day 10 (long term), samples were collected to analyze cell viability, histomorphology, image analysis for imaging and biomechanical changes. RESULTS Both the injury group and the 30-50% strain model group showed signs of early degeneration, including decreased instantaneous compressive stiffness, percent change in gray value, decreased cell viability, AF fissure, and percent increase in dynamic elastic modulus. The glucose-restricted group also showed signs of early disc degeneration in long-term cultures. CONCLUSION This study shows that a single shock load can induce early degeneration of healthy cynomolgus monkey intervertebral discs, and 30% strain may be the nociceptive threshold for early degeneration of healthy intervertebral discs. More importantly, a non-invasive biomechanical evaluation scheme of Percentage change in dynamic modulus of elasticity is established, which solves the key scientific problem of how to non-invasively, quantitatively and sensitively detect the development process of early intervertebral disc degeneration and its degree of degeneration in an in vitro organ model.
Collapse
Affiliation(s)
- Xu Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hongkun Chen
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bao-Liang Li
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiffiffiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhijie Xiao
- Sun Yat-sen University School of Medicine, Guangzhou 510080, China
| | - Yuxi Zhou
- Sun Yat-sen University School of Medicine, Guangzhou 510080, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiffiffiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhiyu Zhou
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiffiffiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiffiffiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Cui S, Li W, Teixeira GQ, Neidlinger‐Wilke C, Wilke H, Haglund L, Ouyang H, Richards RG, Grad S, Alini M, Li Z. Neoepitope fragments as biomarkers for different phenotypes of intervertebral disc degeneration. JOR Spine 2022; 5:e1215. [PMID: 36203866 PMCID: PMC9520770 DOI: 10.1002/jsp2.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background During the intervertebral disc (IVD) degeneration process, initial degenerative events occur at the extracellular matrix level, with the appearance of neoepitope peptides formed by the cleavage of aggrecan and collagen. This study aims to elucidate the spatial and temporal alterations of aggrecan and collagen neoepitope level during IVD degeneration. Methods Bovine caudal IVDs were cultured under four different conditions to mimic different degenerative situations. Samples cultured after 1- or 8-days were collected for analysis. Human IVD samples were obtained from patients diagnosed with lumbar disc herniation (LDH) or adolescent idiopathic scoliosis (AIS). After immunohistochemical (IHC) staining of Aggrecanase Cleaved C-terminus Aggrecan Neoepitope (NB100), MMP Cleaved C-terminus Aggrecan Neoepitope (MMPCC), Collagen Type 1α1 1/4 fragment (C1α1) and Collagenase Cleaved Type I and II Collagen Neoepitope (C1,2C), staining optical density (OD)/area in extracellular matrix (OECM) and pericellular zone (OPCZ) were analyzed. Conditioned media of the bovine IVD was collected to measure protein level of inflammatory cytokines and C1,2C. Results For the bovine IVD sections, the aggrecan MMPCC neoepitope was accumulated in nucleus pulposus (NP) and cartilage endplate (EP) regions following mechanical overload in the one strike model after long-term culture; as for the TNF-α induced degeneration, the OECM and OPCZ of collagen C1,2C neoepitope was significantly increased in the outer AF region after long-term culture; moreover, the C1,2C was only detected in conditioned medium from TNF-α injection + Degenerative loading group after 8 days of culture. LDH patients showed higher MMPCC OECM in NP and higher C1,2C OECM in AF region compared with AIS patients. Conclusions In summary, aggrecan and collagen neoepitope profiles showed degeneration induction trigger- and region-specific differences in the IVD organ culture models. Different IVD degeneration types are correlated with specific neoepitope expression profiles. These neoepitopes may be helpful as biomarkers of ECM degradation in early IVD degeneration and indicators of different degeneration phenotypes.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wenyue Li
- AO Research Institute DavosDavosSwitzerland
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHainingChina
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Cornelia Neidlinger‐Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Hans‐Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Lisbet Haglund
- Department of Surgery and Shriners Hospital for ChildrenMcGill UniversityMontrealCanada
| | - Hongwei Ouyang
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHainingChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
16
|
Šećerović A, Ristaniemi A, Cui S, Li Z, Soubrier A, Alini M, Ferguson SJ, Weder G, Heub S, Ledroit D, Grad S. Toward the Next Generation of Spine Bioreactors: Validation of an Ex Vivo Intervertebral Disc Organ Model and Customized Specimen Holder for Multiaxial Loading. ACS Biomater Sci Eng 2022; 8:3969-3976. [PMID: 35977717 PMCID: PMC9472220 DOI: 10.1021/acsbiomaterials.2c00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
A new generation of bioreactors with integrated six degrees
of
freedom (6 DOF) aims to mimic more accurately the natural intervertebral
disc (IVD) load. We developed and validated in a biological and mechanical
study a specimen holder and corresponding ex vivo IVD organ model
according to the bioreactor requirements for multiaxial loading and
a long-term IVD culture. IVD height changes and cell viability were
compared between the 6 DOF model and the standard 1 DOF model throughout
the 3 weeks of cyclic compressive loading in the uniaxial bioreactor.
Furthermore, the 6 DOF model and holder were loaded for 9 days in
the multiaxial bioreactor under development using the same conditions,
and the IVDs were evaluated for cell viability. The interface of the
IVD model and specimen holder, enhanced with fixation screws onto
the bone, was tested in compression, torsion, lateral bending, and
tension. Additionally, critical motions such as tension and bending
were assessed for a combination of side screws and top screws or side
screws and adhesive. The 6 DOF model loaded in the uniaxial bioreactor
maintained similar cell viability in the IVD regions as the 1 DOF
model. The viability was high after 2 weeks throughout the whole IVD
and reduced by more than 30% in the inner annulus fibrous after 3
weeks. Similarly, the IVDs remained highly viabile when cultured in
the multiaxial bioreactor. In both models, IVD height changes after
loading were in the range of typical physiological conditions. When
differently directed motions were applied, the holder-IVD interface
remained stable under hyper-physiological loading levels using a side
screw approach in compression and torsion and the combination of side
and top screws in tension and bending. We thus conclude that the developed
holding system is mechanically reliable and biologically compatible
for application in a new generation of multiaxial bioreactors.
Collapse
Affiliation(s)
- Amra Šećerović
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Aapo Ristaniemi
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Shangbin Cui
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Li
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Astrid Soubrier
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | | | - Gilles Weder
- CSEM, Swiss Center for Electronics and Microtechnology, Rue Jaquet-Droz 1, Neuchatel 2002, Switzerland
| | - Sarah Heub
- CSEM, Swiss Center for Electronics and Microtechnology, Rue Jaquet-Droz 1, Neuchatel 2002, Switzerland
| | - Diane Ledroit
- CSEM, Swiss Center for Electronics and Microtechnology, Rue Jaquet-Droz 1, Neuchatel 2002, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| |
Collapse
|
17
|
Varden LJ, Turner EJ, Coon AT, Michalek AJ. Establishing a through-puncture model for assessing post-injection leakage in the intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:865-873. [PMID: 35179651 DOI: 10.1007/s00586-022-07140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Needle injection through the outer annulus fibrosus of the intervertebral disc (IVD) is the most practical approach for delivery of therapeutic agents, which have been shown to potentially leak following needle retraction. The goal of this work was to establish a protocol for quantifying post-injection leakage and test its sensitivity to factors believed to affect needle track geometry. METHODS A through-puncture defect procedure, followed by controlled injection, was performed on bovine caudal IVDs. Sensitivity to needle size was tested by injection of saline into unconstrained discs with either a 30G, 26G, or 21G hypodermic needle. Sensitivity to axial load was tested by repeated injection via a 26G needle with either no constraint, fixed height, or 10% axial compressive strain. Sensitivity to flexion was tested by applying combined 0.2 MPa compression and 15° of flexion following injection of 5% of disc volume. RESULTS Needle diameter significantly affected maximum volume prior to leakage, ranging from 34.6 ± 31.9 µL when using 21G to 115.6 ± 23.6 µL when using 30G. While all unloaded discs leaked, axial compression decreased the incidence of leakage events by 50-100% depending on load history. Forward flexion resulted in a 22% incidence of leakage. CONCLUSION Fluid injected into IVDs is at significant risk of leakage following needle retraction. This risk depends on factors which alter the geometry of the needle track, including needle size, pinching due to axial compression, and stretching as a result of forward flexion.
Collapse
Affiliation(s)
- Lara J Varden
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Evan J Turner
- Department of Mechanical and Aerospace Engineering, Clarkson University, 8 Clarkson Ave, Box 5725, Potsdam, NY, USA
| | - Allison T Coon
- Department of Mechanical and Aerospace Engineering, Clarkson University, 8 Clarkson Ave, Box 5725, Potsdam, NY, USA
| | - Arthur J Michalek
- Department of Mechanical and Aerospace Engineering, Clarkson University, 8 Clarkson Ave, Box 5725, Potsdam, NY, USA.
| |
Collapse
|
18
|
Zhang F, Wang S, Li B, Tian W, Zhou Z, Liu S. Intradiscal injection for the management of low back pain. JOR Spine 2022; 5:e1186. [PMID: 35386759 PMCID: PMC8966879 DOI: 10.1002/jsp2.1186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) is a common clinical problem and a major cause of physical disability, imposing a prominent socioeconomic burden. Intervertebral disc degeneration (IDD) has been considered the main cause of LBP. The current treatments have limited efficacy because they cannot address the underlying degeneration. With an increased understanding of the complex pathological mechanism of IDD, various medications and biological reagents have been used for intradiscal injection for the treatment of LBP. There is increasing clinical evidence showing the benefits of these therapies on symptomatic relief and their potential for disc repair and regeneration by targeting the disrupted pathways underlying the cause of the disease. A brief overview of the potential and limitations for these therapies are provided in this review, based on the recent and available data from clinical trials and systematic reviews. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Fu Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Songjuan Wang
- Department of Medical UltrasonicThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Wei Tian
- Laboratory of Bone Tissue EngineeringBeijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan HospitalBeijingChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Chen Y, Hua Q, Wan H, Xi Y. Long Noncoding RNA SLC20A1-1 Induces Nucleus Pulposus Apoptosis by Sponging miR-146a-5p. Genet Test Mol Biomarkers 2022; 26:127-132. [PMID: 35349375 DOI: 10.1089/gtmb.2021.0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yongjun Chen
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen University, Xiamen, P.R. China
| | - Qiang Hua
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen University, Xiamen, P.R. China
| | - Huijuan Wan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, P.R. China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Zhou M, He SJ, Liu W, Yang MJ, Hou ZY, Meng Q, Qian ZL. EZH2 upregulates the expression of MAPK1 to promote intervertebral disc degeneration via suppression of miR-129-5p. J Gene Med 2021; 24:e3395. [PMID: 34668273 DOI: 10.1002/jgm.3395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was designed to verify whether enhancer of zeste homolog 2 (EZH2) affects intervertebral disc degeneration (IVDD) development through regulation of microRNA (miR)-129-5p/MAPK1. METHODS Initially, we collected lumbar nucleus pulposus (NP) tissue samples from patients with juvenile idiopathic scoliosis (n = 14) and IVDD (n = 34). We measured the expression of related genes in clinical IVDD tissues and a lipopolysaccharide (LPS)-induced NP cell model. After loss- and gain- function assays, NP cell proliferation and senescence were examined. The targeting relationship between miR-129-5p and MAPK1 was explored by dual luciferase reporter gene and RIP assays. The enrichment of EZH2 and H3K27me3 in miR-129-5p promoter was verified by ChIP. Finally, an IVDD rat model was established to test the effects of transduction with lentiviral vector carrying miR-129-5p agomir and/or oe-EZH2 in vivo. RESULTS miR-129-5p was underexpressed, and EZH2 and MAPK1 levels are overexpressed in lumbar nucleus pulposus from human IVDD patients and in LPS-induced NP cells. miR-129-5p overexpression or silencing of MAPK1 promoted proliferation of NP cells, while inhibiting their senescence. EZH2 inhibited miR-129-5p through H3K27me3 modification in the miR-129-5p promoter. miR-129-5p could targeted the downregulation of MAPK1 expression. EZH2 overexpression increased the release of inflammatory factors and cell senescence factors, which was reversed by miR-129-5p agomir in vivo. CONCLUSIONS Taken together, EZH2 inhibits miR-129-5p through H3K27me3 modification, which upregulates MAPK1, thereby promoting the development of IVDD.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Shuang-Jun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Danyang, Jiangsu, P. R. China
| | - Wei Liu
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Mao-Jie Yang
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhen-Yang Hou
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Qian Meng
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhong-Lai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
22
|
Zhao Y, Li A. miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging (Albany NY) 2021; 13:22459-22473. [PMID: 34554926 PMCID: PMC8507280 DOI: 10.18632/aging.203553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Emerging studies have revealed that non-coding RNAs contribute to regulating intervertebral disc degeneration (IVDD). Here, we intended to probe into the function of miR-19b-3p in IVDD evolvement. The miR-19b-3p level in the intervertebral disc (IVD) tissues of IVDD patients and IL-1β/TNF-α/hydrogen peroxide-treated human nucleus pulposus cells (HNPCs) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, qRT-PCR was conducted to examine the profiles of MMP-3, MMP-9, MMP-13, ADAMTS-4 and ADAMTS-5. The PTEN/PI3K/Akt/mTOR pathway was examined by Western blot (WB). The miR-19b-3p overexpression assay was carried out, and HNPC proliferation and apoptosis were compared by the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). In addition, the mechanism of action of miR-19b-3p was clarified using the PTEN inhibitor (VO-Ohpic triphosphate) or the mTOR inhibitor (Rapamycin) on the basis of IL-1β intervention and miR-19b-3p mimics transfection. Our results testified that miR-19b-3p expression was curbed in IVD tissues of the IVDD patients (vs. normal IVD tissues) and IL-1β-, TNF-α, or hydrogen peroxide-treated HNPCs. Up-regulating miR-19b-3p enhanced HNPC proliferation and hampered its apoptosis. Moreover, miR-19b-3p dampened the PTEN profile and activated the PI3K/Akt/mTOR pathway. Interestingly, attenuating PTEN reduced IL-1β-, TNF-α-, or hydrogen peroxide-mediated HNPC apoptosis and up-regulated PI3K/Akt/mTOR, while inhibiting the mTOR pathway offset the protective function of miR-19b-3p. Further mechanism studies illustrated that miR-19b-3p targeted the 3'untranslated region (UTR) of PTEN and abated the PTEN level. This research confirmed that miR-19b-3p suppressed HNPC apoptosis in the in-vitro model of IVDD by regulating PTEN/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| | - Aimin Li
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| |
Collapse
|
23
|
Programmed NP Cell Death Induced by Mitochondrial ROS in a One-Strike Loading Disc Degeneration Organ Culture Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5608133. [PMID: 34512867 PMCID: PMC8426058 DOI: 10.1155/2021/5608133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Increasing evidence has indicated that mitochondrial reactive oxygen species (ROS) play critical roles in mechanical stress-induced lumbar degenerative disc disease (DDD). However, the detailed underlying pathological mechanism needs further investigation. In this study, we utilized a one-strike loading disc degeneration organ culture model to explore the responses of intervertebral discs (IVDs) to mechanical stress. IVDs were subjected to a strain of 40% of the disc height for one second and then cultured under physiological loading. Mitoquinone mesylate (MitoQ) or other inhibitors were injected into the IVDs. IVDs subjected to only physiological loading culture were used as controls. Mitochondrial membrane potential was significantly depressed immediately after mechanical stress (P < 0.01). The percentage of ROS-positive cells significantly increased in the first 12 hours after mechanical stress and then declined to a low level by 48 hours. Pretreatment with MitoQ or rotenone significantly decreased the proportion of ROS-positive cells (P < 0.01). Nucleus pulposus (NP) cell viability was sharply reduced at 12 hours after mechanical stress and reached a stable status by 48 hours. While the levels of necroptosis- and apoptosis-related markers were significantly increased at 12 hours after mechanical stress, no significant changes were observed at day 7. Pretreatment with MitoQ increased NP cell viability and alleviated the marker changes by 12 hours after mechanical stress. Elevated mitochondrial ROS levels were also related to extracellular matrix (ECM) degeneration signs, including catabolic marker upregulation, anabolic marker downregulation, increased glycosaminoglycan (GAG) loss, IVD dynamic compressive stiffness reduction, and morphological degradation changes at the early time points after mechanical stress. Pretreatment with MitoQ alleviated some of these degenerative changes by 12 hours after mechanical stress. These changes were eliminated by day 7. Taken together, our findings demonstrate that mitochondrial ROS act as important regulators of programmed NP cell death and ECM degeneration in IVDs at early time points after mechanical stress.
Collapse
|
24
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
25
|
McDonnell EE, Buckley CT. Investigating the physiological relevance of ex vivo disc organ culture nutrient microenvironments using in silico modeling and experimental validation. JOR Spine 2021; 4:e1141. [PMID: 34337330 PMCID: PMC8313156 DOI: 10.1002/jsp2.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ex vivo disc organ culture systems have become a valuable tool for the development and pre-clinical testing of potential intervertebral disc (IVD) regeneration strategies. Bovine caudal discs have been widely selected due to their large availability and comparability to human IVDs in terms of size and biochemical composition. However, despite their extensive use, it remains to be elucidated whether their nutrient microenvironment is comparable to human degeneration. AIMS This work aims to create the first experimentally validated in silico model which can be used to predict and characterize the metabolite concentrations within ex vivo culture systems. MATERIALS & METHODS Finite element models of cultured discs governed by previously established coupled reaction-diffusion equations were created using COMSOL Multiphysics. Experimental validation was performed by measuring oxygen, glucose and pH levels within discs cultured for 7 days, in a static compression bioreactor. RESULTS The in silico model was successfully validated through good agreement between the predicted and experimentally measured concentrations. For an ex vivo organ cultured in high glucose medium (4.5 g/L or 25 mM) and normoxia, a larger bovine caudal disc (Cd1-2 to Cd3-4) had a central concentration of ~2.6 %O2, ~8 mM of glucose and a pH value of 6.7, while the smallest caudal discs investigated (Cd6-7 and Cd7-8), had a central concentration of ~6.5 %O2, ~12 mM of glucose and a pH value of 6.9. DISCUSSION This work advances the knowledge of ex vivo disc culture microenvironments and highlights a critical need for optimization and standardization of culturing conditions. CONCLUSION Ultimately, for assessment of cell-based therapies and successful clinical translation based on nutritional demands, it is imperative that the critical metabolite values within organ cultures (minimum glucose, oxygen and pH values) are physiologically relevant and comparable to the stages of human degeneration.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
26
|
Ren W, Cui S, Alini M, Grad S, Zhou Q, Li Z, Razansky D. Noninvasive multimodal fluorescence and magnetic resonance imaging of whole-organ intervertebral discs. BIOMEDICAL OPTICS EXPRESS 2021; 12:3214-3227. [PMID: 34221655 PMCID: PMC8221942 DOI: 10.1364/boe.421205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Low back pain (LBP) is a commonly experienced symptom posing a tremendous healthcare burden to individuals and society at large. The LBP pathology is strongly linked to degeneration of the intervertebral disc (IVD), calling for development of early-stage diagnostic tools for visualizing biomolecular changes in IVD. Multimodal measurements of fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) were performed on IVD whole organ culture model using an in-house built FMT system and a high-field MRI scanner. The resulted multimodal images were systematically validated through epifluorescence imaging of the IVD sections at a microscopic level. Multiple image contrasts were exploited, including fluorescence distribution, anatomical map associated with T1-weighted MRI contrast, and water content related with T2 relaxation time. The developed multimodality imaging approach may thus serve as a new assessment tool for early diagnosis of IVD degeneration and longitudinal monitoring of IVD organ culture status using fluorescence markers.
Collapse
Affiliation(s)
- Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, 8093 Zurich, Switzerland
- equal contribution
| | - Shangbin Cui
- AO Research Institute Davos, 7270 Davos, Switzerland
- The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
- equal contribution
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, 8093 Zurich, Switzerland
| | - Zhen Li
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, University of Zurich and ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
27
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|