1
|
Baker C, Willis A, Milestone W, Baker M, Garner AL, Joshi RP. Numerical assessments of geometry, proximity and multi-electrode effects on electroporation in mitochondria and the endoplasmic reticulum to nanosecond electric pulses. Sci Rep 2024; 14:23854. [PMID: 39394381 PMCID: PMC11470013 DOI: 10.1038/s41598-024-74659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Most simulations of electric field driven bioeffects have considered spherical cellular geometries or probed symmetrical structures for simplicity. This work assesses cellular transmembrane potential build-up and electroporation in a Jurkat cell that includes the endoplasmic reticulum (ER) and mitochondria, both of which have complex shapes, in response to external nanosecond electric pulses. The simulations are based on a time-domain nodal analysis that incorporates membrane poration utilizing the Smoluchowski model with angular-dependent changes in membrane conductivity. Consistent with prior experimental reports, the simulations show that the ER requires the largest electric field for electroporation, while the inner mitochondrial membrane (IMM) is the easiest membrane to porate. Our results suggest that the experimentally observed increase in intracellular calcium could be due to a calcium induced calcium release (CICR) process that is initiated by outer cell membrane breakdown. Repeated pulsing and/or using multiple electrodes are shown to create a stronger poration. The role of mutual coupling, screening, and proximity effects in bringing about electric field modifications is also probed. Finally, while including greater geometric details might refine predictions, the qualitative trends are expected to remain.
Collapse
Affiliation(s)
- C Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A Willis
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - W Milestone
- Nanohmics, Inc, 6201 E Oltorf St, Austin, TX, 78717, USA
| | - M Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - A L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, West Lafayette, IN, 47907, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Kumar M, Mishra A. A microdosimetry analysis of reversible electroporation in scattered, overlapping, and cancerous cervical cells. Biomed Phys Eng Express 2024; 10:035022. [PMID: 38479001 DOI: 10.1088/2057-1976/ad33a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| | - Ashutosh Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, India
| |
Collapse
|
3
|
Kumar M, Kumar S, Chakrabartty S, Poulose A, Mostafa H, Goyal B. Dispersive Modeling of Normal and Cancerous Cervical Cell Responses to Nanosecond Electric Fields in Reversible Electroporation Using a Drift-Step Rectifier Diode Generator. MICROMACHINES 2023; 14:2136. [PMID: 38138305 PMCID: PMC10745406 DOI: 10.3390/mi14122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
This paper creates an approximate three-dimensional model for normal and cancerous cervical cells using image processing and computer-aided design (CAD) tools. The model is then exposed to low-frequency electric pulses to verify the work with experimental data. The transmembrane potential, pore density, and pore radius evolution are analyzed. This work adds a study of the electrodeformation of cells under an electric field to investigate cytoskeleton integrity. The Maxwell stress tensor is calculated for the dispersive bi-lipid layer plasma membrane. The solid displacement is calculated under electric stress to observe cytoskeleton integrity. After verifying the results with previous experiments, the cells are exposed to a nanosecond pulsed electric field. The nanosecond pulse is applied using a drift-step rectifier diode (DSRD)-based generator circuit. The cells' transmembrane voltage (TMV), pore density, pore radius evolution, displacement of the membrane under electric stress, and strain energy are calculated. A thermal analysis of the cells under a nanosecond pulse is also carried out to prove that it constitutes a non-thermal process. The results showed differences in normal and cancerous cell responses to electric pulses due to changes in morphology and differences in the cells' electrical and mechanical properties. This work is a model-driven microdosimetry method that could be used for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Mayank Kumar
- Technical Research Analyst (TRA), Electronics/Biomedical Engineering, Aranca, Mumbai 400076, Maharastra, India;
| | - Sachin Kumar
- Department of Electronics and Communication Engineering, Galgotias College of Engineering and Technology, Greater Noida 201310, Uttar Pradesh, India;
| | - Shubhro Chakrabartty
- School of Computer Science Engineering and Applications, D Y Patil International University, Pune 411044, Maharastra, India
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Hala Mostafa
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Bhawna Goyal
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| |
Collapse
|
4
|
Fontana S, Caramazza L, Marracino P, Cuenca Ortolá I, Colella M, Dolciotti N, Paffi A, Gisbert Roca F, Ivashchenko S, Más Estellés J, Consales C, Balucani M, Apollonio F, Liberti M. Electric field bridging-effect in electrified microfibrils' scaffolds. Front Bioeng Biotechnol 2023; 11:1264406. [PMID: 37954020 PMCID: PMC10634785 DOI: 10.3389/fbioe.2023.1264406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction: The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils' scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds' electric functionalization, aimed at accelerating the cellular processes. In this context, the European RISEUP project aims to combine high intense microseconds pulses and DC stimulation with neurogenesis, supported by a PLA microfibrils' scaffold. Methods: In this paper a numerical study on the effect of microfibrils' scaffolds on the E-field distribution, in planar interdigitated electrodes, is presented. Realistic microfibrils' 3D CAD models have been built to carry out a numerical dosimetry study, through Comsol Multiphysics software. Results: Under a voltage of 10 V, microfibrils redistribute the E-field values focalizing the field streamlines in the spaces between the fibers, allowing the field to pass and reach maximum values up to 100 kV/m and values comparable with the bare electrodes' device (without fibers). Discussion: Globally the median E-field inside the scaffolded electrodes is the 90% of the nominal field, allowing an adequate cells' exposure.
Collapse
Affiliation(s)
- Sara Fontana
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Laura Caramazza
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | - Irene Cuenca Ortolá
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Micol Colella
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
| | - Noemi Dolciotti
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
| | - Alessandra Paffi
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
| | - Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Sergiy Ivashchenko
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Jorge Más Estellés
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Claudia Consales
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Francesca Apollonio
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Micaela Liberti
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
5
|
Jerbic K, Svejda JT, Sievert B, Rennings A, Fröhlich J, Erni D. The Importance of Subcellular Structures to the Modeling of Biological Cells in the Context of Computational Bioelectromagnetics Simulations. Bioelectromagnetics 2023; 44:26-46. [PMID: 36794844 DOI: 10.1002/bem.22436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Numerical investigation of the interaction of electromagnetic fields with eukaryotic cells requires specifically adapted computer models. Virtual microdosimetry, used to investigate exposure, requires volumetric cell models, which are numerically challenging. For this reason, a method is presented here to determine the current and volumetric loss densities occurring in single cells and their distinct compartments in a spatially accurate manner as a first step toward multicellular models within the microstructure of tissue layers. To achieve this, 3D models of the electromagnetic exposure of generic eukaryotic cells of different shape (i.e. spherical and ellipsoidal) and internal complexity (i.e. different organelles) are performed in a virtual, finite element method-based capacitor experiment in the frequency range from 10 Hz to 100 GHz. In this context, the spectral response of the current and loss distribution within the cell compartments is investigated and any effects that occur are attributed either to the dispersive material properties of these compartments or to the geometric characteristics of the cell model investigated in each case. In these investigations, the cell is represented as an anisotropic body with an internal distributed membrane system of low conductivity that mimics the endoplasmic reticulum in a simplified manner. This will be used to determine which details of the cell interior need to be modeled, how the electric field and the current density will be distributed in this region, and where the electromagnetic energy is absorbed in the microstructure regarding electromagnetic microdosimetry. Results show that for 5 G frequencies, membranes make a significant contribution to the absorption losses. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kevin Jerbic
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Jan T Svejda
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Benedikt Sievert
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Andreas Rennings
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | | | - Daniel Erni
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| |
Collapse
|
6
|
Rao X, Chen S, Alfadhl Y, Chen X, Sun L, Yu L, Zhou J. Pulse width and intensity effects of pulsed electric fields on cancerous and normal skin cells. Sci Rep 2022; 12:18039. [PMID: 36302879 PMCID: PMC9613658 DOI: 10.1038/s41598-022-22874-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Microsecond pulsed electric fields (PEF) have previously been used for various tumour therapies, such as gene therapy, electrochemotherapy and irreversible electroporation (IRE), due to its demonstrated ability. However, recently nanosecond pulsed electric fields (nsPEF) have also been used as a potential tumor therapy via inducing cell apoptosis or immunogenic cell death to prevent recurrence and metastasis by interacting with intracellular organelles. A large proportion of the existing in-vitro studies of nsPEF on cells also suggests cell necrosis and swelling/blebbing can be induced, but the replicability and potential for other effects on cells suggesting a complicated process which requires further investigation. Therefore, this study investigated the effects of pulse width and intensity of nsPEF on the murine melanoma cells (B16) and normal murine fibroblast cells (L929) through electromagnetic simulation and in-vitro experiments. Through examining the evolution patterns of potential difference and electric fields on the intracellular compartments, the simulation has shown a differential effect of nsPEF on normal and cancerous skin cells, which explains well the results observed in the reported experiments. In addition, the modelling has provided a clear evidence that a few hundreds of ns PEF may have caused a mixed mode of effects, i.e. a 'cocktail effect', including cell electroporation and IRE due to an over their threshold voltage induced on the plasma membrane, as well as cell apoptosis and other biological effects caused by its interaction with the intracellular compartments. The in-vitro experiments in the pulse range of the hundreds of nanoseconds showed a possible differential cytotoxicity threshold of electric field intensity between B16 cells and L929 cells.
Collapse
Affiliation(s)
- Xin Rao
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Sophia Chen
- grid.7445.20000 0001 2113 8111School of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Yasir Alfadhl
- grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS UK
| | - Xiaodong Chen
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China ,grid.4868.20000 0001 2171 1133School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS UK
| | - Lingling Sun
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Liyang Yu
- grid.411963.80000 0000 9804 6672School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Jun Zhou
- grid.54549.390000 0004 0369 4060School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|
7
|
Kumar M, Mishra A. Reversible electroporation study of realistic normal and cancerous cervical cells model using avalanche transistor-based nano pulse generator. Biomed Phys Eng Express 2021; 7. [PMID: 34488195 DOI: 10.1088/2057-1976/ac240b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022]
Abstract
In this paper, we study the reversible electroporation process on normal and cancerous cervical cells. The 2D contour of the cervical cells is extracted using image processing techniques from the Pap smear images. The conductivity change in the cancer cell model has been used to differentiate the effects of the high-frequency electric field on normal and cancerous cells. The cells' dielectric constant modulates when this high-frequency pulse is applied based on the Debye relaxation. To computationally visualize the effects of the electroporation on the cell membrane, the Smoluchowski equation is employed to estimate pore density, and Maxwell equations are used to determine the electric potential developed across the membrane of the cervical cell. The results demonstrate the suitability of this mathematical model for studying the response of normal and cancerous cells under electric stress. The electric field is supplied with the help of a realistic pulse generator which is designed on the principle of Marx circuit and avalanche transistor-based operations to produce a Gaussian pulse. The paper here uses a strength-duration curve to differentiate the electric field and time in nanoseconds required to electroporate normal and cancerous cells.
Collapse
Affiliation(s)
- Mayank Kumar
- Indian Institute of Information Technology Allahabad, Department of Applied Sciences (Biomedical Engineering), India
| | - Ashutosh Mishra
- Indian Institute of Information Technology Allahabad, Department of Applied Sciences (Biomedical Engineering), India
| |
Collapse
|