1
|
Huang B, Xie H, Li Z. Microfluidic Methods for Generation of Submicron Droplets: A Review. MICROMACHINES 2023; 14:638. [PMID: 36985045 PMCID: PMC10056697 DOI: 10.3390/mi14030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Submicron droplets are ubiquitous in nature and widely applied in fields such as biomedical diagnosis and therapy, oil recovery and energy conversion, among others. The submicron droplets are kinetically stable, their submicron size endows them with good mobility in highly constricted pathways, and the high surface-to-volume ratio allows effective loading of chemical components at the interface and good heat transfer performance. Conventional generation technology of submicron droplets in bulk involves high energy input, or relies on chemical energy released from the system. Microfluidic methods are widely used to generate highly monodispersed micron-sized or bigger droplets, while downsizing to the order of 100 nm was thought to be challenging because of sophisticated nanofabrication. In this review, we summarize the microfluidic methods that are promising for the generation of submicron droplets, with an emphasize on the device fabrication, operational condition, and resultant droplet size. Microfluidics offer a relatively energy-efficient and versatile tool for the generation of highly monodisperse submicron droplets.
Collapse
|
2
|
Zhou T, Wu L, Ma N, Tang F, Chen J, Jiang Z, Li Y, Ma T, Yang N, Zong Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer. Bioeng Transl Med 2023; 8:e10368. [PMID: 36684111 PMCID: PMC9842049 DOI: 10.1002/btm2.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lili Wu
- Department of Medical UltrasonicsThird Affiliated Hospital of Sun Yat‐sen University, Guangdong Key Laboratory of Liver Disease ResearchGuangzhouGuangdongChina
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jialin Chen
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Na Yang
- Department of Clinical LaboratoryGuangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Zhen Zong
- Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Xu Y, Tan W, Chen M, Chen S, Tang K, Liao H, Niu C. MnO 2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer. Front Bioeng Biotechnol 2022; 10:955127. [PMID: 36338124 PMCID: PMC9627152 DOI: 10.3389/fbioe.2022.955127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Sonodynamic therapy (SDT) is a promising new anti-tumor therapy that inhibits tumor growth by ultrasound activation of sonosensitizers to produce reactive oxygen species (ROS). However, the problems of hypoxia in the microenvironment within solid tumors and the effectiveness of SDT will decrease due to the little accumulation of sonosensitizers at the tumor site, as well as tumor cell tolerance, have limited the development of SDT. To overcome these problems, a core-shell structured nanoparticle (IR780/PLGA@MnO2 NPs) loaded with IR780 and manganese dioxide (MnO2) was developed as a nanocarrier to transport the sonosensitizer IR780 and the generated oxygen into the tumor tissue. The MnO2 shell layer of IR780/PLGA@MnO2 NPs can prevent the premature release of IR780 in the blood and also it can react with acidic and high H2O2, the generated oxygen can relieve tumor tissue hypoxia, and the generated Mn can enhance magnetic resonance imaging (MRI) signal intensity by acting as a contrast agent for MRI. More importantly, the released IR780 can produce ROS to kill tumor cells under ultrasound excitation. This PH-responsive and H2O2-triggered SDT based on the IR780/PLGA@MnO2NPs is an effective platform to inhibit tumor growth with negligible systemic toxicity. This work develops a multifunctional therapeutic integrated nanoplatform for breast cancer treatment, which is expected to be used in the clinic.
Collapse
Affiliation(s)
- Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanlin Tan
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kui Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Vidallon MLP, Teo BM, Bishop AI, Tabor RF. Next-Generation Colloidal Materials for Ultrasound Imaging Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1373-1396. [PMID: 35641393 DOI: 10.1016/j.ultrasmedbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments. In this article, we review recent developments in new colloids with applications that use ultrasound contrast enhancement. This work also highlights the emergence of colloidal materials fabricated from or modified with biologically derived and bio-inspired materials, particularly in the form of biopolymers and biomembranes. Challenges, limitations, potential developments and future directions of these next-generation colloidal systems are also presented and discussed.
Collapse
Affiliation(s)
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Vidallon MLP, Salimova E, Crawford SA, Teo BM, Tabor RF, Bishop AI. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. ULTRASONICS SONOCHEMISTRY 2022; 86:106041. [PMID: 35617883 PMCID: PMC9136156 DOI: 10.1016/j.ultsonch.2022.106041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.
Collapse
Affiliation(s)
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Liu X, Xu N, Pu X, Wang J, Liao X, Huang Z, Yin G. Combined photothermal-photodynamic therapy by indocyanine green loaded polydopamine nanoparticles enhances anti-mammary gland tumor efficacy. J Mater Chem B 2022; 10:4605-4614. [DOI: 10.1039/d2tb00565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various nano-targeted drug delivery systems have been developed for combined photothermal-photodynamic (PTT-PDT) treatment for tumors due to the better outcomes compared with monomodality. Here, we constructed a facile two-step method...
Collapse
|
7
|
Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS NANO 2021; 15:19756-19770. [PMID: 34860006 DOI: 10.1021/acsnano.1c07180] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell-membrane-coated nanoparticles are widely studied due to their inherent cellular properties, such as immune escape and homologous homing. A cell membrane coating can also maintain the relative stability of nanoparticles during circulation in a complex blood environment through cell membrane encapsulation technology. In this study, we fused a murine-derived ID8 ovarian cancer cell membrane with a red blood cell (RBC) membrane to create a hybrid biomimetic coating (IRM), and hybrid IRM camouflaged indocyanine green (ICG)-loaded magnetic nanoparticles (Fe3O4-ICG@IRM) were fabricated for combination therapy of ovarian cancer. Fe3O4-ICG@IRM retained both ID8 and RBC cell membrane proteins and exhibited highly specific self-recognition of ID8 cells in vitro and in vivo as well as a prolonged circulation lifetime in blood. Interestingly, in the bilateral flank tumor model, the IRM-coated nanoparticles also activated specific immunity, which killed homologous ID8 tumor cells but had no effect on B16-F10 tumor cells. Furthermore, Fe3O4-ICG@IRM showed synergistic photothermal therapy, resulting in the release of whole-cell tumor antigens by photothermal-induced tumor necrosis, which further enhanced antitumor immunotherapy for primary tumor and metastatic tumor by activating CD8+ cytotoxic T cells and reducing regulatory Foxp3+ T cells. Together, the biomimetic Fe3O4-ICG@IRM nanoparticles showed synergistic photothermal-immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Jilei Chen
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaofa Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanlan Fan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenhua Wang
- Institute of Flexible Electronics, Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Separation Membranes and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Hybridized double-shell periodic mesoporous organosilica nanotheranostics for ultrasound imaging guided photothermal therapy. J Colloid Interface Sci 2021; 608:2964-2972. [PMID: 34799047 DOI: 10.1016/j.jcis.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 01/27/2023]
Abstract
Hybridized periodic mesoporous organosilica (PMO) nanoparticles are expected to provide a multifunctional theranostic platform for precision medicine by combining the advantages of different organic and inorganic components. In this work, double-shell-structured PMO nanotheranostics composed of ethane- and thioether-bridged organosilica shells were synthesized. Gold colloids were generated in situ by the thioether groups on the inner shell. The obtained double-shell PMO@Au (DSPA) has uniform size, large surface areas, ordered mesochannels and photothermal conversion capability. After being encapsulated with perfluorohexacene (PFH), DSPA-PFH produced a strong ultrasound signal upon laser irradiation due to the phase transit of PFH during hyperthermia. DSPA-PFH showed enhanced photothermal therapeutic efficacy, great ultrasound contrast, and minimal toxicity both in vitro and in vivo. These results demonstrated the distribution of different organosilica could be delicately adjusted in hybridized PMO nanoparticles. Furthermore, it showed the potential of using hybridized PMO nanoparticles as a theranostic platform for biomedical applications by combining unique characteristics of different organosilica through rational design.
Collapse
|
9
|
Qin D, Zhang L, Zhu H, Chen J, Wu D, Bouakaz A, Wan M, Feng Y. A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy. Int J Nanomedicine 2021; 16:3105-3119. [PMID: 33967577 PMCID: PMC8096805 DOI: 10.2147/ijn.s301734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation. MATERIALS AND METHODS Herein, a high efficient "one-for-all" nanodroplet with a simple composition but owning multiple capabilities was developed to achieve ultrasound (US) imaging-guided and cavitation-enhanced PTT. Perfluoropentane (PFP) nanodroplet with a polypyrrole (PPy) shell (PFP@PPy nanodroplet) was synthesized via ultrasonic emulsification and in situ oxidative polymerization. After characterization of the morphology, its photothermal effect, phase transition performance, as well as its capabilities of enhancing US imaging and acoustic cavitation were examined. Moreover, the antitumor efficacy of the combined therapy with PTT and acoustic cavitation via the PFP@PPy nanodroplets was studied both in vitro and in vivo. RESULTS The nanodroplets exhibited good stability, high biocompatibility, broad optical absorption over the visible and near-infrared (NIR) range, excellent photothermal conversion with an efficiency of 60.1% and activatable liquid-gas phase transition performance. Upon NIR laser and US irradiation, the phase transition of PFP cores into microbubbles significantly enhanced US imaging and acoustic cavitation both in vitro and in vivo. More importantly, the acoustic cavitation enhanced significantly the antitumor efficacy of PTT as compared to PTT alone thanks to the cavitation-mediated cell destruction, which demonstrated a substantial increase in cell detachment, 81.1% cell death in vitro and 99.5% tumor inhibition in vivo. CONCLUSION The PFP@PPy nanodroplet as a "one-for-all" theranostic agent achieved highly efficient US imaging-guided and cavitation-enhanced cancer therapy, and has considerable potential to provide cancer theranostics in the future.
Collapse
Affiliation(s)
- Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People’s Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, F-37032, France
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021; 9:113. [PMID: 33504015 PMCID: PMC7911939 DOI: 10.3390/biomedicines9020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical to randomized controlled clinical trials. However, there are still hurdles to overcome before entering clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential for broader clinical practice.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do 58128, Korea;
| | - Gyungseok Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Jin Chul Ahn
- Medical Laser Research Center and Department of Biomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|