1
|
Geng Y, Zou H, Li Z, Wu H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J Nanobiotechnology 2024; 22:120. [PMID: 38500178 PMCID: PMC10949774 DOI: 10.1186/s12951-024-02370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.
Collapse
Affiliation(s)
- Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Huwei Zou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China
| | - Zhaowei Li
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, 271000, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
2
|
Zhu X, Zheng W, Wang X, Li Z, Shen X, Chen Q, Lu Y, Chen K, Ai S, Zhu Y, Guan W, Yao S, Liu S. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307870. [PMID: 38233204 DOI: 10.1002/advs.202307870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/19/2024]
Abstract
For tumor treatment, the ultimate goal in tumor therapy is to eliminate the primary tumor, manage potential metastases, and trigger an antitumor immune response, resulting in the complete clearance of all malignant cells. Tumor microenvironment (TME) refers to the local biological environment of solid tumors and has increasingly become an attractive target for cancer therapy. Neutrophils within TME of gastric cancer (GC) spontaneously undergo ferroptosis, and this process releases oxidized lipids that limit T cell activity. Enhanced photodynamic therapy (PDT) mediated by di-iodinated IR780 (Icy7) significantly increases the production of reactive oxygen species (ROS). Meanwhile, neutrophil ferroptosis can be triggered by increased ROS generation in the TME. In this study, a liposome encapsulating both ferroptosis inhibitor Liproxstatin-1 and modified photosensitizer Icy7, denoted LLI, significantly inhibits tumor growth of GC. LLI internalizes into MFC cells to generate ROS causing immunogenic cell death (ICD). Simultaneously, liposome-deliver Liproxstatin-1 effectively inhibits the ferroptosis of tumor neutrophils. LLI-based immunogenic PDT and neutrophil-targeting immunotherapy synergistically boost the anti-PD-1 treatment to elicit potent TME and systemic antitumor immune response with abscopal effects. In conclusion, LLI holds great potential for GC immunotherapy.
Collapse
Affiliation(s)
- Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xingzhou Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhiyan Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qi Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Chen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shichao Ai
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
3
|
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 193:106688. [PMID: 38171420 DOI: 10.1016/j.ejps.2023.106688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The limitations of conventional cancer treatment are driving the emergence and development of nanomedicines. Research in liposomal nanomedicine for cancer therapy is rapidly increasing, opening up new horizons for cancer treatment. Liposomal nanomedicine, which focuses on targeted drug delivery to improve the therapeutic effect of cancer while reducing damage to normal tissues and cells, has great potential in the field of cancer therapy. This review aims to clarify the advantages of liposomal delivery systems in cancer therapy. We describe the recent understanding of spatiotemporal fate of liposomes in the organism after different routes of drug administration. Meanwhile, various types of liposome-based drug delivery systems that exert their respective advantages in cancer therapy while reducing side effects were discussed. Moreover, the combination of liposomal agents with other therapies (such as photodynamic therapy and photothermal therapy) has demonstrated enhanced tumor-targeting efficiency and therapeutic efficacy. Finally, the opportunities and challenges faced by the field of liposome nanoformulations for entering the clinical treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianan Shi
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Kwon YJ, Seo EB, Jeong AJ, Lee SH, Noh KH, Lee S, Cho CH, Lee CH, Shin HM, Kim HR, Moon HG, Ye SK. The acidic tumor microenvironment enhances PD-L1 expression via activation of STAT3 in MDA-MB-231 breast cancer cells. BMC Cancer 2022; 22:852. [PMID: 35927628 PMCID: PMC9351117 DOI: 10.1186/s12885-022-09956-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor acidosis, a common phenomenon in solid cancers such as breast cancer, is caused by the abnormal metabolism of cancer cells. The low pH affects cells surrounding the cancer, and tumor acidosis has been shown to inhibit the activity of immune cells. Despite many previous studies, the immune surveillance mechanisms are not fully understood. We found that the expression of PD-L1 was significantly increased under conditions of extracellular acidosis in MDA-MB-231 cells. We also confirmed that the increased expression of PD-L1 mediated by extracellular acidosis was decreased when the pH was raised to the normal range. Gene set enrichment analysis (GSEA) of public breast cancer patient databases showed that PD-L1 expression was also highly correlated with IL-6/JAK/STAT3 signaling. Surprisingly, the expression of both phospho-tyrosine STAT3 and PD-L1 was significantly increased under conditions of extracellular acidosis, and inhibition of STAT3 did not increase the expression of PD-L1 even under acidic conditions in MDA-MB-231 cells. Based on these results, we suggest that the expression of PD-L1 is increased by tumor acidosis via activation of STAT3 in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kum Hee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sangsik Lee
- Department of Biomedical Engineering, Catholic Kwangdong University College of Medical Convergence, Gangneung, 25601, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chang-Han Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Zheng F, Huang X, Ding J, Bi A, Wang S, Chen F, Zeng W. NIR-I Dye-Based Probe: A New Window for Bimodal Tumor Theranostics. Front Chem 2022; 10:859948. [PMID: 35402374 PMCID: PMC8984032 DOI: 10.3389/fchem.2022.859948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shifen Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| |
Collapse
|