1
|
Dou X, Liu X, Liu Y, Wang L, Jia F, Shen F, Ma Y, Liang C, Jin G, Wang M, Liu Z, Zhu B, Liu X. Biomimetic Porous Ti6Al4V Implants: A Novel Interbody Fusion Cage via Gel-Casting Technique to Promote Spine Fusion. Adv Healthc Mater 2024; 13:e2400550. [PMID: 39031096 DOI: 10.1002/adhm.202400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Indexed: 07/22/2024]
Abstract
An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Jia
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Fei Shen
- Laboratory Animal Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Liang
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Meina Wang
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
2
|
Mughal A, Gillani SMH, Ahmed S, Fatima D, Hussain R, Manzur J, Nawaz MH, Minhas B, Shoaib Butt M, Bodaghi M, Ur Rehman MA. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. J Mech Behav Biomed Mater 2024; 156:106581. [PMID: 38776740 DOI: 10.1016/j.jmbbm.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 μm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.
Collapse
Affiliation(s)
- Awab Mughal
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Syed Muneeb Haider Gillani
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Duaa Fatima
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan; School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rabia Hussain
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Badar Minhas
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Shoaib Butt
- School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
3
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Kelly MJ, Gelfand B, Radcliff K, Mo FF, Felix BA, Babak Kalantar S. Interim 1-Year Radiographic and Clinical Outcomes Following Anterior Cervical Discectomy and Fusion Using Hydroxyapatite-Infused Polyetheretherketone Interbody Cages. Int J Spine Surg 2024; 18:122-129. [PMID: 38378231 PMCID: PMC11292562 DOI: 10.14444/8585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND This is a multicenter observational registry analysis of 1-year radiographic and clinical outcomes following anterior cervical discectomy and fusion (ACDF) using hydroxyapatite (HA)-infused polyetheretherketone (PEEK) intervertebral cages. METHODS Radiographic and clinical outcome data were collected preoperatively and at 6 weeks, 3 months, 6 months, and 12 months postoperatively. To assess fusion, dynamic flexion-extension radiographs were independently evaluated with a validated method. Clinical outcomes were assessed using the following disease-specific measures: Neck Disability Index (NDI) and visual analog scale (VAS) for neck, left arm, and right arm pain. Patient satisfaction was also evaluated. RESULTS A total of 789 ACDF patients (men: 51.5%/women: 48.5%; mean body mass index: 29.9 kg/m2) were included at the time of analysis, and 1565 segments have been operated. Successful fusion was confirmed in 91.3% of all operated levels after 6 months and 92.2% after 12 months. Mean NDI scores improved significantly (P < 0.01) preoperatively (46.3, n = 771) to postoperatively (12 months: 25.2, n = 281). Consistently, mean VAS neck (preoperative: 64.2, n = 770; 12 months: 28.6, n = 278), VAS right arm (preoperative: 42.6, n = 766; 12 months: 20.4, n = 277), and VAS left arm (preoperative: 41.1, n = 768; 12 months: 20.8, n = 277) decreased significantly (P < 0.01). Patients reported high satisfaction rates after surgery with no significant changes in postoperative patient satisfaction between 6 weeks and 12 months (95.1%, n = 273). CONCLUSIONS ACDF with HA-infused PEEK cages demonstrates promising radiographic and clinical outcomes, supporting the potential benefits of incorporating HA into PEEK cages to enhance fusion rates and improve patient outcomes. CLINICAL RELEVANCE This study demonstrates a >90% fusion rate by level with reliable improvements in patient reported outcomes, along with a high rate of patient satisfaction, in a large patient cohort undergoing ACDF with HA-infused PEEK cages. LEVEL OF EVIDENCE 2 .
Collapse
Affiliation(s)
| | | | | | - Fred F Mo
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Brox A Felix
- Princeton University, Undergraduate Student, Princeton, NJ, USA
| | | |
Collapse
|
5
|
Chuchulska B, Dimitrova M, Vlahova A, Hristov I, Tomova Z, Kazakova R. Comparative Analysis of the Mechanical Properties and Biocompatibility between CAD/CAM and Conventional Polymers Applied in Prosthetic Dentistry. Polymers (Basel) 2024; 16:877. [PMID: 38611135 PMCID: PMC11013798 DOI: 10.3390/polym16070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Modern media often portray CAD/CAM technology as widely utilized in the fabrication of dental prosthetics. This study presents a comparative analysis of the mechanical properties and biocompatibility of CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) polymers and conventional polymers commonly utilized in prosthetic dentistry. With the increasing adoption of CAD/CAM technology in dental laboratories and practices, understanding the differences in material properties is crucial for informed decision-making in prosthodontic treatment planning. Through a narrative review of the literature and empirical data, this study evaluates the mechanical strength, durability, esthetics, and biocompatibility of CAD/CAM polymers in comparison to traditional polymers. Furthermore, it examines the implications of these findings on the clinical outcomes and long-term success of prosthetic restorations. The results provide valuable insights into the advantages and limitations of CAD/CAM polymers, informing clinicians and researchers about their suitability for various dental prosthetic applications. This study underscores the considerable advantages of CAD/CAM polymers over conventional ones in terms of mechanical properties, biocompatibility, and esthetics for prosthetic dentistry. CAD/CAM technology offers improved mechanical strength and durability, potentially enhancing the long-term performance of dental prosthetics, while the biocompatibility of these polymers makes them suitable for a broad patient demographic, reducing the risk of adverse reactions. The practical implications of these findings for dental technicians and dentists are significant, as understanding these material differences enables tailored treatment planning to meet individual patient needs and preferences. Integration of CAD/CAM technology into dental practices can lead to more predictable outcomes and heightened patient satisfaction with prosthetic restorations.
Collapse
Affiliation(s)
- Bozhana Chuchulska
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ilian Hristov
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Zlatina Tomova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (I.H.); (Z.T.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Aditya T, Mesa-Restrepo A, Civantos A, Cheng MK, Jaramillo-Correa C, Posada VM, Koyn Z, Allain JP. Ion Bombardment-Induced Nanoarchitectonics on Polyetheretherketone Surfaces for Enhanced Nanoporous Bioactive Implants. ACS APPLIED BIO MATERIALS 2023; 6:4922-4934. [PMID: 37932955 DOI: 10.1021/acsabm.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In spite of the biocompatible, nontoxic, and radiolucent properties of polyetheretherketone (PEEK), its biologically inert surface compromises its use in dental, orthopedic, and spine fusion industries. Many efforts have been made to improve the biological performance of PEEK implants, from bioactive coatings to composites using titanium alloys or hydroxyapatite and changing the surface properties by chemical and physical methods. Directed plasma nanosynthesis (DPNS) is an atomic-scale nanomanufacturing technique that changes the surface topography and chemistry of solids via low-energy ion bombardment. In this study, PEEK samples were nanopatterned by using argon ion irradiation by DPNS to yield active nanoporous biomaterial surface. PEEK surfaces modified with two doses of low and high fluence, corresponding to 1.0 × 1017 and 1.0 × 1018 ions/cm2, presented pore sizes of 15-25 and 60-90 nm, respectively, leaving exposed PEEK fibers and an increment of roughness of nearly 8 nm. The pores per unit area were closely related for high fluence PEEK and low fluence PEEK surfaces, with 129.11 and 151.72 pore/μm2, respectively. The contact angle significantly decreases in hydrophobicity-hydrophilicity tests for the irradiated PEEK surface to ∼46° from a control PEEK value of ∼74°. These super hydrophilic substrates had 1.6 times lower contact angle compared to the control sample revealing a rough surface of 20.5 nm only at higher fluences when compared to control and low fluences of 12.16 and 14.03 nm, respectively. These super hydrophilic surfaces in both cases reached higher cell viability with ∼13 and 34% increase, respectively, compared to unmodified PEEK, with an increased expression of alkaline phosphatase at 7 days on higher fluences establishing a higher affinity for preosteblasts with increased cellular activity, thus revealing successful and improved integration with the implant material, which can potentially be used in bone tissue engineering.
Collapse
Affiliation(s)
- Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Ming-Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Camilo Jaramillo-Correa
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Viviana M Posada
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Zachariah Koyn
- Editekk, Inc., State College, Pennsylvania 16803, United States
| | - Jean Paul Allain
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| |
Collapse
|
7
|
Shi X, Wang Z, Guo M, Wang Y, Bi Z, Li D, Zhang P, Liu J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front Bioeng Biotechnol 2023; 11:1283526. [PMID: 38026857 PMCID: PMC10655129 DOI: 10.3389/fbioe.2023.1283526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.
Collapse
Affiliation(s)
- Xiaotong Shi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiguo Bi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Dongsong Li
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianguo Liu
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| |
Collapse
|
8
|
Bruns S, Krüger D, Galli S, Wieland DF, Hammel JU, Beckmann F, Wennerberg A, Willumeit-Römer R, Zeller-Plumhoff B, Moosmann J. On the material dependency of peri-implant morphology and stability in healing bone. Bioact Mater 2023; 28:155-166. [PMID: 37250865 PMCID: PMC10212791 DOI: 10.1016/j.bioactmat.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability. We present a study in which screw implants made from titanium, polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four, eight and twelve weeks after implantation. Screws were 4 mm in length and with an M2 thread. The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5 μm resolution. Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences. Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization. Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized. Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer. Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized. This leaves the choice of biomaterial as situational depending on local tissue properties.
Collapse
Affiliation(s)
- Stefan Bruns
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Diana Krüger
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Silvia Galli
- University of Malmö, Faculty of Odontology, Department of Prosthodontics, Carl Gustafs Väg 34, Klerken, 20506, Malmö, Sweden
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Ann Wennerberg
- University of Gothenburg, Institute of Odontology, Department of Prosthodontics, Medicinaregatan 12 f, 41390, Göteborg, Sweden
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| |
Collapse
|
9
|
Liu C, Huang Z, Zhu J, Liu X, Zhu B, Zheng D, Yang B, Tao R, Cai C, Chen X, Liu J, Deng Z. Near-ultraviolet irradiation to stimulate unmodified polyether ether ketone to achieve stable and sustainable antibacterial activity. Colloids Surf B Biointerfaces 2023; 229:113441. [PMID: 37422990 DOI: 10.1016/j.colsurfb.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES This study aims to investigate the cytotoxicity and sustainable antibacterial activity of unmodified PEEK under specific wavelength light treatment (365 nm), and its antibacterial mechanism was also preliminarily discussed. METHODS A near-ultraviolet source with a wavelength of 365 nm and a power of 5 W were selected. The irradiation time was 30 min, and the distance was 100 mm. A water contact angle tester was used to characterize the surface of the PEEK after 1-15 light treatments. MC3TC-E1 cells were used to evaluate the cytotoxicity of the materials under light treatment. Five kinds of common oral bacteria were detected in vitro, and antibacterial efficiency was determined by colony-forming unit (CFU) and scanning electron microscope (SEM). The antibacterial mechanism of PEEK under light was preliminarily discussed by spectrophotometry. The membrane rupture of Staphylococcus aureus and Escherichia coli was detected by lactate dehydrogenase. Staphylococcus aureus and Staphylococcus mutans were selected for the cyclic antibacterial test. Statistical analysis was performed by one-way analysis of variance and Tukey multiple range test. A significance level of 0.05 was considered (α = 0.05). RESULTS The results of the cell experiment showed that PEEK had no cytotoxicity (P > 0.05). CFU results showed that PEEK had an obvious antibacterial effect on Staphylococcus aureus, Staphylococcus mutans, Staphylococcus gordonii and Staphylococcus sanguis, but had no antibacterial effect on Escherichia coli (P < 0.05). The SEM results also verified the above antibacterial effect. The existence of singlet oxygen was confirmed by spectrophotometry. Meanwhile, the rupture of Staphylococcus aureus membrane was verified by lactate dehydrogenase assay. The water contact angle of the PEEK surface did not change significantly after 15 cycles of light treatment. Cyclic antibacterial experiments showed that the antibacterial effect was sustainable. CONCLUSIONS This study showed that PEEK has good cytocompatibility with stable and sustainable antibacterial properties under near-ultraviolet. It provides a new idea to solve the non-antibacterial property of PEEK, and also provides a theoretical basis for its further application in dentistry.
Collapse
Affiliation(s)
- Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Huang
- Department of Stomatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Jinlei Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangzhi Liu
- Clinical medical college of Tianjin medical university, Tianjin 300010, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Dongyang Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingqian Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Ran Tao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Chenxi Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Cao J, Yang S, Liao Y, Wang Y, He J, Xiong C, Shi K, Hu X. Evaluation of polyetheretherketone composites modified by calcium silicate and carbon nanotubes for bone regeneration: mechanical properties, biomineralization and induction of osteoblasts. Front Bioeng Biotechnol 2023; 11:1271140. [PMID: 37711454 PMCID: PMC10497740 DOI: 10.3389/fbioe.2023.1271140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Desired orthopedic implant materials must have a good biological activity and possess appropriate mechanical property that correspond to those of human bone. Although polyetheretherketone (PEEK) has displayed a promising application prospect in musculoskeletal and dentistry reconstruction thanks to its non-biodegradability and good biocompatibility in the body, the poor osseointegration and insufficient mechanical strength have significantly limited its application in the repair of load-bearing bones and surgical operations. In this study, carbon nanotubes (CNT)/calcium silicate (CS)/polyetheretherketone ternary composites were fabricated for the first time. The addition of CS was mainly aimed at improving biological activities and surface hydrophilicity, but it inevitably compromised the mechanical strength of PEEK. CNT can reinforce the composites even when brittle CS was introduced and further upgraded the biocompatibility of PEEK. The CNT/CS/PEEK composites exhibited higher mechanical strengths in tensile and bending tests, 64% and 90% higher than those of brittle CS/PEEK binary composites. Besides, after incorporation of CNT and CS into PEEK, the hydrophilicity, surface roughness and ability to induce apatite-layer deposition were significantly enhanced. More importantly, the adhesion, proliferation, and osteogenic differentiation of mouse embryo osteoblasts were effectively promoted on CNT/CS/PEEK composites. In contrast to PEEK, these composites exhibited a more satisfactory biocompatibility and osteoinductive activity. Overall, these results demonstrate that ternary CNT/CS/PEEK composites have the potential to serve as a feasible substitute to conventional metal alloys in musculoskeletal regeneration and orthopedic implantation.
Collapse
Affiliation(s)
- Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Yijun Liao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Kun Shi
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Moiduddin K, Mian SH, Elseufy SM, Alkhalefah H, Ramalingam S, Sayeed A. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction. J Funct Biomater 2023; 14:429. [PMID: 37623673 PMCID: PMC10455463 DOI: 10.3390/jfb14080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) printing, medical imaging, and implant design have all advanced significantly in recent years, and these developments may change how modern craniomaxillofacial surgeons use patient data to create tailored treatments. Polyether-ether-ketone (PEEK) is often seen as an attractive option over metal biomaterials in medical uses, but a solid PEEK implant often leads to poor osseointegration and clinical failure. Therefore, the objective of this study is to demonstrate the quantitative assessment of a custom porous PEEK implant for cranial reconstruction and to evaluate its fitting accuracy. The research proposes an efficient process for designing, fabricating, simulating, and inspecting a customized porous PEEK implant. In this study, a CT scan is utilized in conjunction with a mirrored reconstruction technique to produce a skull implant. In order to foster cell proliferation, the implant is modified into a porous structure. The implant's strength and stability are examined using finite element analysis. Fused filament fabrication (FFF) is utilized to fabricate the porous PEEK implants, and 3D scanning is used to test its fitting accuracy. The results of the biomechanical analysis indicate that the highest stress observed was approximately 61.92 MPa, which is comparatively low when compared with the yield strength and tensile strength of the material. The implant fitting analysis demonstrates that the implant's variance from the normal skull is less than 0.4436 mm, which is rather low given the delicate anatomy of the area. The results of the study demonstrate the implant's endurance while also increasing the patient's cosmetic value.
Collapse
Affiliation(s)
- Khaja Moiduddin
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Syed Hammad Mian
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Hisham Alkhalefah
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry and Dental University Hospital, King Saud University Medical City, Riyadh 11545, Saudi Arabia
| | - Abdul Sayeed
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
12
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Moharil S, Reche A, Durge K. Polyetheretherketone (PEEK) as a Biomaterial: An Overview. Cureus 2023; 15:e44307. [PMID: 37779776 PMCID: PMC10536400 DOI: 10.7759/cureus.44307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Polyetheretherketone (PEEK) is a very powerful biomaterial that is increasingly used in dentistry. It has superior properties, which make it desirable in implantology. The applications of PEEK include finger prosthesis, RPD and FPD framework, and dental implants. Changes in the production of polyketone-based materials have been made to ensure consistent production of polymers for medical applications. PEEK is a high-performance semicrystalline material that has physical properties such as high resilience and strength. It is a tooth-colored material, making it desirable for its aesthetic appearance. Traditional manufacturing methods like injection molding, extrusion, and compression molding are used for PEEK. Despite the high price of the polymer, the additional value that PEEK materials bring by offering the possibility of manufacturing parts include lightweight, strength or toughness and able to survive longer in harsh environments. PEEK has trauma or shock cancelling abilities, fracture resisting abilities, stress distributing ability, osseointegrating abilities, With such great qualities PEEK has an increased demand in the market, and this biomaterial never failes to surprise with its amazing success rate. Even in dentistry PEEK has a wide range of applications which includes, as a dental implants biomaterial, prosthetic material, abutment material, post and core material, crowns, removable partial denture framework. With such a huge range of applications PEEK is said to have been providing an all in one package for dentistry. PEEK biomaterial shows great compatibility with bioactive materials which has proven to be of great help to mankind as not only it is involved in life sciences but also in automotives and aerodynamics as well. The main motto of this review is to know the qualities and the properties of PEEK as a capable implant prosthesis for its application focusing on dental implants. This review tells us about the challenges faced when using this material and benefits and advantages of this biomaterial.
Collapse
Affiliation(s)
- Shambhavi Moharil
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Khushboo Durge
- Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Li J, Li J, Yang Y, He X, Wei X, Tan Q, Wang Y, Xu S, Chang S, Liu W. Biocompatibility and osteointegration capability of β-TCP manufactured by stereolithography 3D printing: In vitro study. Open Life Sci 2023; 18:20220530. [PMID: 36742452 PMCID: PMC9883693 DOI: 10.1515/biol-2022-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 01/26/2023] Open
Abstract
Beta-tricalcium phosphate (β-TCP) bioceramics have an inorganic composition similar to the human bone. While conventional methods can only produce ceramic scaffolds with poor controllability, the advancement of 3D-printing, especially stereolithography, made it possible to manufacture controllable, highly precise, micropore ceramic scaffolds. In this study, the stereolithography was applied to produce β-TCP bioceramics, while ZrO2, Al2O3, Ti6Al4V, and polyetheretherketone (PEEK) were used as controls. Phase analysis, water contact angle tests, and Micro-CT were applied to evaluate the surface properties and scaffold. Hemolytic toxicity, cell proliferation, and morphological assessment were performed to evaluate the biocompatibility. Alkaline phosphatase (ALP) level, mineralization, and qRT-PCR were measured to evaluate the osteointegration. During the manufacturing of β-TCP, no evident impurity substance and hemolytic toxicity was found. Cells on β-TCP had good morphologies, and their proliferation capability was similar to Ti6Al4V, which was higher than the other materials. Cells on β-TCP had higher ALP levels than PEEK. The degree of mineralization was significantly higher on β-TCP. The expression of osteogenesis-related genes on β-TCP was similar to Ti6Al4V and higher than the other materials. In this study, the β-TCP produced by stereolithography had no toxicity, high accuracy, and excellent osteointegration capability, thus resulting as a good choice for bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiaxi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Qinghua Tan
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yiqun Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Siyue Xu
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Sue Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Weiwei Liu
- Department of Precision Medicine Group, Equipment Research Institute, National Innovation Institute of Additive Manufacturing, Xi’an, Shaanxi Province, China
| |
Collapse
|
15
|
Wang W, Liang X, Zheng K, Ge G, Chen X, Xu Y, Bai J, Pan G, Geng D. Horizon of exosome-mediated bone tissue regeneration: The all-rounder role in biomaterial engineering. Mater Today Bio 2022; 16:100355. [PMID: 35875196 PMCID: PMC9304878 DOI: 10.1016/j.mtbio.2022.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Bone injury repair has always been a tricky problem in clinic, the recent emergence of bone tissue engineering provides a new direction for the repair of bone injury. However, some bone tissue processes fail to achieve satisfactory results mainly due to insufficient vascularization or cellular immune rejection. Exosomes with the ability of vesicle-mediated intercellular signal transmission have gained worldwide attention and can achieve cell-free therapy. Exosomes are small vesicles that are secreted by cells, which contain genetic material, lipids, proteins and other substances. It has been found to play the function of material exchange between cells. It is widely used in bone tissue engineering to achieve cell-free therapy because it not only does not produce some immune rejection like cells, but also can play a cell-like function. Exosomes from different sources can bind to scaffolds in various ways and affect osteoblast, angioblast, and macrophage polarization in vivo to promote bone regeneration. This article reviews the recent research progress of exosome-loaded tissue engineering, focusing on the mechanism of exosomes from different sources and the application of exosome-loaded scaffolds in promoting bone regeneration. Finally, the existing deficiencies and challenges, future development directions and prospects are summarized.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xiaolong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Kai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China
| |
Collapse
|
16
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|
17
|
Polyetheretherketone/
Nano‐Ag‐TiO
2
composite with mechanical properties and antibacterial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Comparison of Titanium and PEEK Medical Plastic Implant Materials for Their Bacterial Biofilm Formation Properties. Polymers (Basel) 2022; 14:polym14183862. [PMID: 36146003 PMCID: PMC9504047 DOI: 10.3390/polym14183862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated two of the most commonly used CAD–CAM materials for patient-specific reconstruction in craniomaxillofacial surgery. The aim of this study was to access the biofilm formation of Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Escherichia coli on titanium and PEEK medical implant materials. Two titanium specimens (titanium grade 2 tooled with a Planmeca CAD–CAM milling device and titanium grade 5 tooled with a computer-aided design direct metal laser sintering device (CAD-DMLS)) and one PEEK specimen tooled with a Planmeca CAD–CAM milling device were studied. Bacterial adhesion on implants was evaluated in two groups (saliva-treated group and non-saliva-treated group) to imitate intraoral and extraoral surgical routes for implant placement. The PEEK medical implant material showed higher bacterial adhesion by S. aureus, S. mutans, and E. coli than titanium grade 2 and titanium grade 5, whereas E. faecalis showed higher adhesion to titanium as compared to PEEK. Saliva contamination of implants also effected bacterial attachment. Salivary coating enhanced biofilm formation by S. aureus, S. mutans, and E. faecalis. In conclusion, our findings imply that regardless of the implant material type or tooling techniques used, salivary coating plays a vital role in bacterial adhesion. In addition, the majority of the bacterial strains showed higher adhesion to PEEK than titanium.
Collapse
|
19
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
20
|
Mugilan T, Aezhisai Vallavi MS, Sugumar D. Materialistic characterization, thermal properties, and cytocompatibility investigations on acrylic acid-functionalized nSiO2-reinforced PEEK polymeric nanocomposite. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
22
|
Shi Y, Liu J, Du M, Zhang S, Liu Y, Yang H, Shi R, Guo Y, Song F, Zhao Y, Lan J. Customized Barrier Membrane (Titanium Alloy, Poly Ether-Ether Ketone and Unsintered Hydroxyapatite/Poly-l-Lactide) for Guided Bone Regeneration. Front Bioeng Biotechnol 2022; 10:916967. [PMID: 35837554 PMCID: PMC9273899 DOI: 10.3389/fbioe.2022.916967] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Sufficient bone volume is indispensable to achieve functional and aesthetic results in the fields of oral oncology, trauma, and implantology. Currently, guided bone regeneration (GBR) is widely used in reconstructing the alveolar ridge and repairing bone defects owing to its low technical sensitivity and considerable osteogenic effect. However, traditional barrier membranes such as collagen membranes or commercial titanium mesh cannot meet clinical requirements, such as lack of space-preserving ability, or may lead to more complications. With the development of digitalization and three-dimensional printing technology, the above problems can be addressed by employing customized barrier membranes to achieve space maintenance, precise predictability of bone graft, and optimization of patient-specific strategies. The article reviews the processes and advantages of three-dimensional computer-assisted surgery with GBR in maxillofacial reconstruction and alveolar bone augmentation; the properties of materials used in fabricating customized bone regeneration sheets; the promising bone regeneration potency of customized barrier membranes in clinical applications; and up-to-date achievements. This review aims to present a reference on the clinical aspects and future applications of customized barrier membranes.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jin Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mi Du
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shengben Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hu Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ruiwen Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yuanyuan Guo
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Feng Song
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yajun Zhao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
23
|
Naghavi SA, Sun C, Hejazi M, Tamaddon M, Zheng J, Wang L, Zhang C, Varma SN, Li D, Moazen M, Wang L, Liu C. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects. BIOMATERIALS TRANSLATIONAL 2022; 3:142-151. [PMID: 36105563 PMCID: PMC9465988 DOI: 10.12336/biomatertransl.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
Polyether-ether-ketone (PEEK) is widely used in producing prosthesis and have gained great attention for repair of large bone defect in recent years with the development of additive manufacturing. This is due to its excellent biocompatibility, good heat and chemical stability and similar mechanical properties which mimics natural bone. In this study, three replicates of rectilinear scaffolds were designed for compression, tension, three-point bending and torsion test with unit cell size of 0.8 mm, a pore size of 0.4 mm, strut thickness of 0.4 mm and nominal porosity of 50%. Stress-strain graphs were developed from experimental and finite element analysis models. Experimental Young's modulus and yield strength of the scaffolds were measured from the slop of the stress-strain graph to be 395 and 19.50 MPa respectively for compression, 427 and 6.96 MPa respectively for tension, 257 and 25.30 MPa respectively for three-point bending and 231 and 12.83 MPa respectively for torsion test. The finite element model was found to be in good agreement with the experimental results. Ductile fracture of the struct subjected to tensile strain was the main failure mode of the PEEK scaffold, which stems from the low crystallinity of additive manufacturing PEEK. The mechanical properties of porous PEEK are close to those of cancellous bone and thus are expected to be used in additive manufacturing PEEK bone implants in the future, but the lower yield strength poses a design challenge.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Changning Sun
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mahbubeh Hejazi
- Department of Mechanical Engineering, University College London, London, UK
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Jibao Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Leilei Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Swastina Nath Varma
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK
| | - Ling Wang
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China,Corresponding authors: Ling Wang, ; Chaozong Liu,
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK,Corresponding authors: Ling Wang, ; Chaozong Liu,
| |
Collapse
|
24
|
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022; 10:895288. [PMID: 35646862 PMCID: PMC9136111 DOI: 10.3389/fbioe.2022.895288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Due to excellent mechanical properties and similar elastic modulus compared with human cortical bone, polyetheretherketone (PEEK) has become one of the most promising orthopedic implant materials. However, implant-associated infections (IAIs) remain a challenging issue since PEEK is bio-inert. In order to fabricate an antibacterial bio-functional surface, modifications of PEEK had been widely investigated. This review summarizes the modification strategies to biofunctionalize PEEK for antibacterial. We will begin with reviewing different approaches, such as surface-coating modifications and controlled release of antimicrobials. Furthermore, blending modifications and 3D printing technology were discussed. Finally, we compare the effects among different approaches. We aimed to provide an in-depth understanding of the antibacterial modification and optimize the design of the PEEK orthopedic implant.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Yue,
| |
Collapse
|
25
|
Zheng Z, Hu L, Ge Y, Qi J, Sun Q, Li Z, Lin L, Tang B. Surface Modification of Poly(ether ether ketone) by Simple Chemical Grafting of Strontium Chondroitin Sulfate to Improve its Anti-Inflammation, Angiogenesis, Osteogenic Properties. Adv Healthc Mater 2022; 11:e2200398. [PMID: 35481900 DOI: 10.1002/adhm.202200398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Besides inducing osteogenic differentiation, the surface modification of poly(ether ether ketone) (PEEK) is highly expected to improve its angiogenic activity and reduce the inflammatory response in the surrounding tissue. Herein, strontium chondroitin sulfate is first attempted to be introduced into the surface of sulfonated PEEK (SPEEK-CS@Sr) based on the Schiff base reaction between PEEK and ethylenediamine (EDA) and the amidation reaction between EDA and chondroitin sulfate (CS). The surface characteristics of SPEEK-CS@Sr implant are systematically investigated, and its biological properties in vitro and in vivo are also evaluated. The results show that the surface of SPEEK-CS@Sr implant exhibits a 3D microporous structure and good hydrophilicity, and can steadily release Sr ions. Importantly, the SPEEK-CS@Sr not only displays excellent biocompatibility, but also can remarkably promote cell adhesion and spread, improve osteogenic activity and angiogenic activity, and reduce the inflammatory response compared to the original PEEK. Therefore, this study presents the surface modification of PEEK material by simple chemical grafting of strontium chondroitin sulfate to improve its angiogenesis, anti-inflammation, and osteogenic properties, and the as-fabricated SPEEK-CS@Sr has the potential to serve as a promising orthopedic implant in bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Liqiu Hu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Yongmei Ge
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Jianchao Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
- Department of Emergency surgery Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital Fuzhou P. R. China
| | - Qili Sun
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Zhenjian Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Lijun Lin
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Tang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research Shenzhen Guangdong P. R. China
- Shenzhen Key Laboratory of Cell Microenvironment Shenzhen Guangdong P. R. China
| |
Collapse
|
26
|
Immobilization of Collagen on the Surface of a PEEK Implant with Monolayer Nanopores. Polymers (Basel) 2022; 14:polym14091633. [PMID: 35566803 PMCID: PMC9102333 DOI: 10.3390/polym14091633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Polyetheretherketone (PEEK) is the only polymer material that can replace titanium implants in the field of orthopedics. This is because the mechanical properties of PEEK are similar to those of bone, and PEEK has natural radiolucency, chemical stability, and sterilization resistance. Despite these advantages, PEEK has a disadvantage—that it is bio-inert. Therefore, many studies have attempted to change the bio-inertness of PEEK into bioactivity. Among them, a method of forming pores by acid treatment is attracting attention. In this study, an attempt was made to form pores on the surface of PEEK implant using a mixed acid of sulfuric acid and nitric acid. As a result, it was found that the condition when the PEEK surface is in contact with the acid is very important. That is, it was possible to form single-layered nanopores on the surface by contacting PEEK with a mixed acid under ultrasound. Additionally, by immobilizing type I collagen on the porous PEEK surface through dopamine coating, it was possible to obtain collagen-immobilized porous PEEK (P-PEEK-Col) with high compatibility with osteoblasts. This P-PEEK-Col has high potential for use as a bone substitute that promotes bone formation.
Collapse
|
27
|
Liu M, Wang Y, Zhang S, Wei Q, Li X. Success Factors of Additive Manufactured Root Analogue Implants. ACS Biomater Sci Eng 2022; 8:360-378. [PMID: 34990114 DOI: 10.1021/acsbiomaterials.1c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dental implantation is an effective method for the treatment of loose teeth, but the threaded dental implants used in the clinic cannot match with the tooth extraction socket. A root analogue implant (RAI) has the congruence shape, which reduces the damage to bone and soft tissue. Additive manufacturing (AM) technologies have the advantages of high precision, flexibility, and easy operation, becoming the main manufacturing method of RAI in basic research. The purpose of this systematic review is to summarize AM technologies used for RAI manufacturing as well as the factors affecting successful implantation. First, it introduces the AM technologies according to different operating principles and summarizes the advantages and disadvantages of each method. Then the influences of materials, structure design, surface characteristics, implant site, and positioning are discussed, providing reference for designers and dentists. Finally, it addresses the gap between basic research and clinical application for additive manufactured RAIs and discusses the current challenges and future research directions for this field.
Collapse
Affiliation(s)
- Minyan Liu
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shan Zhang
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinpei Li
- Department of Industry Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Chin KR, Gohel NN, Aloise DM, Seale JA, Pandey DK, Pencle FJ. Effectiveness of a Fully Impregnated Hydroxyapatite Polyetheretherketone Cage on Fusion in Anterior Cervical Spine Surgery. Cureus 2021; 13:e17457. [PMID: 34603859 PMCID: PMC8475745 DOI: 10.7759/cureus.17457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction Anterior cervical discectomy and fusion (ACDF) is the gold standard for the treatment of cervical spondylosis. However, new techniques, technologies, and improved implants have aided surgeons in reducing operative time with enhanced patient outcomes. Impregnated hydroxyapatite polyetheretherketone (HA PEEK) cages (Arena-C HA®, LESspine Inc. Malden, MA) are one such option that has aimed to increase the fusion rate. The authors herein aimed to assess the use of HA PEEK interbody cages by looking at outcomes, complications, and radiographic fusion. Methods The medical records of 41 consecutive patients undergoing single-level ACDF with impregnated HA PEEK cages (group 1) were compared to the control group of 47 patients who had single-level ACDF without impregnated HA PEEK cages (group 2). Outcomes assessed included Visual Analog Scale (VAS) neck, Neck Disability Index (NDI) scores, radiographic fusion, and complication rates. Results Of the 41 patients in group 1 (HA PEEK), 48% were female population with a mean age of 58.5+/- 1.7 years and BMI 29.7+/-1.2 kg/m2. Of the 47 patients in group 2 (non-HA PEEK), 53% were female with a mean age of 54.3+/- 1.2 years and BMI 27.8+/-0.8 kg/m2. Using t-test, there was a statistically significant intergroup difference in two-year VAS neck and NDI scores, p=0.007, and p=0.001, respectively. Radiographic fusion occurred as early as three months in the HA PEEK group. Conclusions This study has demonstrated the equivalence of impregnated HA PEEK cages in single-level ACDF. Significant improvements were seen in VAS and NDI scores in the HA PEEK group. There was no incidence of heterotopic bone formation or reaction to HA PEEK cages. Additionally, a trend toward fusion was seen in HA PEEK patients as early as three to five months compared to seven to eight months for the ACDF group. We conclude that HA PEEK cages can be safely placed with excellent outcomes. However, further studies are required to look at added benefits.
Collapse
Affiliation(s)
- Kingsley R Chin
- Orthopedics, Florida International University, Miami, USA.,Orthopedics, Less Exposure Surgery (LES) Clinic, Hollywood, USA.,Faculty of Science and Sports, University of Technology, Kingston, JAM
| | - Nishant N Gohel
- Orthopedic Surgery, Florida International University, Herbert Wertheim College of Medicine, Miami, USA
| | - Daniel M Aloise
- Orthopedics, Florida International University, Herbert Wertheim College of Medicine, Miami, USA
| | - Jason A Seale
- Orthopedics, Less Exposure Surgery (LES) Clinic, Hollywood, USA
| | - Deepak K Pandey
- Orthopedics, Less Exposure Surgery (LES) Society, Hollywood, USA
| | - Fabio J Pencle
- Faculty of Science and Sports, University of Technology, Kingston, JAM.,Orthopedics, Less Exposure Surgery (LES) Society, Hollywood, USA
| |
Collapse
|
29
|
Frankenberger T, Graw CL, Engel N, Gerber T, Frerich B, Dau M. Sustainable Surface Modification of Polyetheretherketone (PEEK) Implants by Hydroxyapatite/Silica Coating-An In Vivo Animal Study. MATERIALS 2021; 14:ma14164589. [PMID: 34443112 PMCID: PMC8398357 DOI: 10.3390/ma14164589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022]
Abstract
Polyetheretherketone (PEEK) has the potential to overcome some of the disadvantages of titanium interbody implants in anterior cervical and discectomy and fusion (ACDF). However, PEEK shows an inferior biological behavior regarding osseointegration and bioactivity. Therefore, the aim of the study was to create a bioactive surface coating on PEEK implants with a unique nanopore structure enabling the generation of a long-lasting interfacial composite layer between coating material and implant. Seventy-two PEEK implants-each thirty-six pure PEEK implants (PI) and thirty-six PEEK implants with a sprayed coating consisting of nanocrystalline hydroxyapatite (ncHA) embedded in a silica matrix and interfacial composite layer (SPI)-were inserted in the femoral condyles of adult rats using a split-side model. After 2, 4 and 8 weeks, the femur bones were harvested. Half of the femur bones were used in histological and histomorphometrical analyses. Additionally, pull-out tests were performed in the second half. Postoperative healing was uneventful for all animals, and no postoperative complications were observed. Considerable crestal and medullary bone remodeling could be found around all implants, with faster bone formation around the SPI and fewer regions with fibrous tissue barriers between implant and bone. Histomorphometrical analyses showed a higher bone to implant contact (BIC) in SPI after 4 and 8 weeks (p < 0.05). Pull-out tests revealed higher pull-out forces in SPI at all time points (p < 0.01). The presented findings demonstrate that a combination of a bioactive coating and the permanent chemical and structural modified interfacial composite layer can improve bone formation at the implant surface by creating a sustainable bone-implant interface. This might be a promising way to overcome the bioinert surface property of PEEK-based implants.
Collapse
Affiliation(s)
- Thomas Frankenberger
- Institute of Physics, Rostock University, 18057 Rostock, Germany; (T.F.); (T.G.)
| | - Constantin Leon Graw
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (C.L.G.); (N.E.); (B.F.)
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (C.L.G.); (N.E.); (B.F.)
| | - Thomas Gerber
- Institute of Physics, Rostock University, 18057 Rostock, Germany; (T.F.); (T.G.)
| | - Bernhard Frerich
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (C.L.G.); (N.E.); (B.F.)
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (C.L.G.); (N.E.); (B.F.)
- Correspondence: ; Tel.: +49-381-494-6688
| |
Collapse
|
30
|
A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges. SURFACES 2021. [DOI: 10.3390/surfaces4030018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being used to deposit multifunctional coatings (i.e., bioactive, antibacterial, and biocompatible coatings). Recently, EPD was used to architect multi-structured coatings to improve mechanical and biological properties along with the controlled release of drugs/metallic ions. The key characteristics of EPD coatings in terms of inorganic bioactivity and their angiogenic potential coupled with antibacterial properties are the key elements enabling advanced applications of EPD in orthopedic applications. In the emerging field of EPD coatings for hard tissue and soft tissue engineering, an overview of such applications will be presented. The progress in the development of EPD-based polymeric or composite coatings, including their application in orthopedic and targeted drug delivery approaches, will be discussed, with a focus on the effect of different biologically active ions/drugs released from EPD deposits. The literature under discussion involves EPD coatings consisting of chitosan (Chi), zein, polyetheretherketone (PEEK), and their composites. Moreover, in vitro and in vivo investigations of EPD coatings will be discussed in relation to the current main challenge of orthopedic implants, namely that the biomaterial must provide good bone-binding ability and mechanical compatibility.
Collapse
|
31
|
Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 2021; 12:20417314211041428. [PMID: 34721831 PMCID: PMC8554547 DOI: 10.1177/20417314211041428] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|