1
|
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J Fungi (Basel) 2025; 11:77. [PMID: 39852495 DOI: 10.3390/jof11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression. Microbiome-based approaches include the design of synthetic microbial consortia and the transplant of entire or customized soil/plant microbiomes, potentially offering more resilient and adaptable biocontrol strategies. Nanotechnology has also advanced significantly, providing methods for the targeted delivery of biological control agents (BCAs) or compounds derived from them through different nanoparticles (NPs), including bacteriogenic, mycogenic, phytogenic, phycogenic, and debris-derived ones acting as carriers. The use of biodegradable polymeric and non-polymeric eco-friendly NPs, which enable the controlled release of antifungal agents while minimizing environmental impact, is also explored. Furthermore, artificial intelligence and machine learning can revolutionize crop protection through early disease detection, the prediction of disease outbreaks, and precision in BCA treatments. Other technologies such as genome editing, RNA interference (RNAi), and functional peptides can enhance BCA efficacy against pathogenic fungi. Altogether, these technologies provide a comprehensive framework for sustainable and precise management of fungal vascular diseases, redefining pathogen biocontrol in modern agriculture.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
2
|
Sadikiel Mmbando G, Ngongolo K. The recent genetic modification techniques for improve soil conservation, nutrient uptake and utilization. GM CROPS & FOOD 2024; 15:233-247. [PMID: 39008437 PMCID: PMC11253881 DOI: 10.1080/21645698.2024.2377408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, United Republic of Tanzania
| | - Kelvin Ngongolo
- Department of Biology, College of Natural and Mathematical Sciences, The University of Dodoma, Dodoma, United Republic of Tanzania
| |
Collapse
|
3
|
Hanif MS, Tayyab M, Baillo EH, Islam MM, Islam W, Li X. Plant microbiome technology for sustainable agriculture. Front Microbiol 2024; 15:1500260. [PMID: 39606113 PMCID: PMC11599219 DOI: 10.3389/fmicb.2024.1500260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Plants establish specific interactions with microorganisms, which are vital for promoting growth and resilience. Although advancements in microbiome modulation technologies show great potential for sustainable agriculture, several challenges have hindered the wider application of plant microbiomes in the field. These challenges may include inconsistent microbial colonization, competition with native microbiota, and environmental variability. Current strategies, while promising, often yield inconsistent results in real-world agricultural settings, highlighting the need for more refined approaches. Agricultural practices and plant genotypes significantly influence the composition and function of plant-associated microbiota. A data-driven strategy that incorporates genomic profiling, environmental assessments, and optimized delivery systems is essential for selecting effective microbial strains. Additionally, refining farming practices, such as crop rotation, intercropping, and reduced tillage, along with robust plant breeding programs, can greatly enhance crop health and productivity.
Collapse
Affiliation(s)
- Muhammad Sajid Hanif
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Elamin Hafiz Baillo
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Sudan
| | - M. Mominul Islam
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
4
|
Zai X, Cordovez V, Zhu F, Zhao M, Diao X, Zhang F, Raaijmakers JM, Song C. C4 cereal and biofuel crop microbiomes. Trends Microbiol 2024; 32:1119-1131. [PMID: 38772810 DOI: 10.1016/j.tim.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.
Collapse
Affiliation(s)
- Xiaoyu Zai
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China.
| |
Collapse
|
5
|
Clouse KM, Ellis ML, Ford NE, Hostetler R, Balint-Kurti PJ, Kleiner M, Wagner MR. The interaction between abiotic and biotic soil factors drive heterosis expression in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610574. [PMID: 39282322 PMCID: PMC11398361 DOI: 10.1101/2024.08.30.610574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Heterosis or hybrid vigor refers to the superior phenotypes of hybrids relative to their parental inbred lines. Recently, soil microbes were identified as an environmental driver of maize heterosis. While manipulation of the soil microbial community consistently altered heterosis, the direction of the effect appeared to be dependent on the microbiome composition, environment, or both. Abiotic factors are well-known modifiers of heterosis expression, however, how the interactive effects between the soil microbial community and abiotic factors contribute to heterosis are poorly understood. To disentangle the proposed mechanisms by which microbes influence heterosis, we characterize the variation in heterosis expression when maize was grown in soil inocula derived from active maize farms or prairies. While we did not observe consistent differences in heterosis among plants grown in these inocula, our observations reaffirm that microbial effects on heterosis are likely specific to the local microbial community. The introduction of a nutrient amendment resulted in greater heterosis expression in the presence of an agricultural inoculum but not a prairie inoculum. We also observed an effect of soil inocula and nutrient treatment on the composition of bacterial and fungal communities in the root endosphere. In addition, the interaction between soil and nutrient treatment significantly affected bacterial community composition, whereas fungal community composition was only marginally affected by this interaction. These results further suggest that the soil microbial community plays a role in maize heterosis expression but that the abiotic environment is likely a larger driver.
Collapse
Affiliation(s)
- Kayla M. Clouse
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, KS 66045
| | - Martel L. Ellis
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, KS 66045
| | - Natalie E. Ford
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802
| | - Rachel Hostetler
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
| | - Peter J. Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- Plant Science Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Maggie R. Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
- Kansas Biological Survey & Center for Ecological Research, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
6
|
Wei F, Feng Z, Yang C, Zhao L, Zhang Y, Zhou J, Feng H, Zhu H, Xu X. Genetic control of rhizosphere microbiome of the cotton plants under field conditions. Appl Microbiol Biotechnol 2024; 108:371. [PMID: 38861165 PMCID: PMC11166756 DOI: 10.1007/s00253-024-13143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Understanding the extent of heritability of a plant-associated microbiome (phytobiome) is critically important for exploitation of phytobiomes in agriculture. Two crosses were made between pairs of cotton cultivars (Z2 and J11, L1 and Z49) with differential resistance to Verticillium wilt. F2 plants were grown in a field, together with the four parents to study the heritability of cotton rhizosphere microbiome. Amplicon sequencing was used to profile bacterial and fungal communities in the rhizosphere. F2 offspring plants of both crosses had higher average alpha diversity indices than the two parents; parents differed significantly from F2 offspring in Bray-Curtis beta diversity indices as well. Two types of data were used to study the heritability of rhizosphere microbiome: principal components (PCs) and individual top microbial operational taxonomic units (OTUs). For the L1 × Z49 cross, the variance among the F2 progeny genotypes (namely, genetic variance, VT) was significantly greater than the random variability (VE) for 12 and 34 out of top 100 fungal and bacterial PCs, respectively. For the Z2 × J11 cross, the corresponding values were 10 and 20 PCs. For 29 fungal OTUs and 10 bacterial OTUs out of the most abundant 100 OTUs, genetic variance (VT) was significantly greater than VE for the L1 × Z49 cross; the corresponding values for the Z2 × J11 cross were 24 and one. The estimated heritability was mostly in the range of 40% to 60%. These results suggested the existence of genetic control of polygenic nature for specific components of rhizosphere microbiome in cotton. KEY POINTS: • F2 offspring cotton plants differed significantly from parents in rhizosphere microbial diversity. • Specific rhizosphere components are likely to be genetically controlled by plants. • Common PCs and specific microbial groups are significant genetic components between the two crosses.
Collapse
Affiliation(s)
- Feng Wei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zili Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Chuanzhen Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Jinglong Zhou
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | | |
Collapse
|
7
|
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. THE PLANT GENOME 2024; 17:e20461. [PMID: 38797919 DOI: 10.1002/tpg2.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
Collapse
Affiliation(s)
- Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Li X, Zheng X, Yadav N, Saha S, Salama ES, Li X, Wang L, Jeon BH. Rational management of the plant microbiome for the Second Green Revolution. PLANT COMMUNICATIONS 2024; 5:100812. [PMID: 38213028 PMCID: PMC11009158 DOI: 10.1016/j.xplc.2024.100812] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in environmental challenges. A new approach, the Second Green Revolution, seeks to enhance agricultural productivity while minimizing negative environmental impacts. Plant microbiomes play critical roles in plant growth and stress responses, and understanding plant-microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges, which are among the United Nations Sustainable Development Goals. This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies, including the host effect, the facilitator effect, and microbe-microbe interactions. A hierarchical framework for plant microbiome modulation is proposed to bridge the gap between basic research and agricultural applications. This framework emphasizes three levels of modulation: single-strain, synthetic community, and in situ microbiome modulation. Overall, rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.
Collapse
Affiliation(s)
- Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Hermantown, MN 55811, USA; Department of Biotechnology, Brainware University, Barasat, Kolkata 700125, West Bengal, India
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
9
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
10
|
Davis KM, Zeinert L, Byrne A, Davis J, Roemer C, Wright M, Parfrey LW. Successional dynamics of the cultivated kelp microbiome. JOURNAL OF PHYCOLOGY 2023; 59:538-551. [PMID: 37005360 DOI: 10.1111/jpy.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 06/15/2023]
Abstract
Kelp are important primary producers that are colonized by diverse microbes that can have both positive and negative effects on their hosts. The kelp microbiome could support the burgeoning kelp cultivation sector by improving host growth, stress tolerance, and resistance to disease. Fundamental questions about the cultivated kelp microbiome still need to be addressed before microbiome-based approaches can be developed. A critical knowledge gap is how cultivated kelp microbiomes change as hosts grow, particularly following outplanting to sites that vary in abiotic conditions and microbial source pools. In this study we assessed if microbes that colonize kelp in the nursery stage persist after outplanting. We characterized microbiome succession over time on two species of kelp, Alaria marginata and Saccharina latissima, outplanted to open ocean cultivation sites in multiple geographic locations. We tested for host-species specificity of the microbiome and the effect of different abiotic conditions and microbial source pools on kelp microbiome stability during the cultivation process. We found the microbiome of kelp in the nursery is distinct from that of outplanted kelp. Few bacteria persisted on kelp following outplanting. Instead, we identified significant microbiome differences correlated with host species and microbial source pools at each cultivation site. Microbiome variation related to sampling month also indicates that seasonality in host and/or abiotic factors may influence temporal succession and microbiome turnover in cultivated kelps. This study provides a baseline understanding of microbiome dynamics during kelp cultivation and highlights research needs for applying microbiome manipulation to kelp cultivation.
Collapse
Affiliation(s)
- Katherine M Davis
- Biodiversity Research Center and Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Logan Zeinert
- Centre for Applied Research, Technology and Innovation, North Island College, 1685 S Dogwood St, Campbell River, British Columbia, V9W 8C1, Canada
| | - Allison Byrne
- Centre for Applied Research, Technology and Innovation, North Island College, 1685 S Dogwood St, Campbell River, British Columbia, V9W 8C1, Canada
| | - Jonathan Davis
- School of Aquatic & Fishery Sciences, College of the Environment, University of Washington, 1122 NE Boat St, Box 355020, Seattle, Washington, 98195-5020, USA
| | - Cosmo Roemer
- M. C. Wright and Associates Ltd., 2231 Neil Drive, Nanaimo, British Columbia, V9R 6T5, Canada
| | - Michael Wright
- M. C. Wright and Associates Ltd., 2231 Neil Drive, Nanaimo, British Columbia, V9R 6T5, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Center, Department of Botany, and Department of Zoology University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
- Hakai Institute, PO Box 25039, Campbell River, British Columbia, V9W 0B7, Canada
| |
Collapse
|
11
|
Genome-Wide Association Studies across Environmental and Genetic Contexts Reveal Complex Genetic Architecture of Symbiotic Extended Phenotypes. mBio 2022; 13:e0182322. [PMID: 36286519 PMCID: PMC9765617 DOI: 10.1128/mbio.01823-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype-partner quality, or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.
Collapse
|
12
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
13
|
Carper DL, Appidi MR, Mudbhari S, Shrestha HK, Hettich RL, Abraham PE. The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms 2022; 10:microorganisms10102013. [PMID: 36296289 PMCID: PMC9609723 DOI: 10.3390/microorganisms10102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant–microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant–microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.
Collapse
Affiliation(s)
- Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Sameer Mudbhari
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence:
| |
Collapse
|
14
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|