1
|
Kim D, Lee JW, Kim YT, Choe J, Kim G, Ha CM, Kim JG, Song KH, Yang S. Minimally Invasive Syringe-Injectable Hydrogel with Angiogenic Factors for Ischemic Stroke Treatment. Adv Healthc Mater 2024:e2403119. [PMID: 39520382 DOI: 10.1002/adhm.202403119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke (IS) accounts for most stroke incidents and causes intractable damage to brain tissue. This condition manifests as diverse aftereffects, such as motor impairment, emotional disturbances, and dementia. However, a fundamental approach to curing IS remains unclear. This study proposes a novel approach for treating IS by employing minimally invasive and injectable jammed gelatin-norbornene nanofibrous hydrogels (GNF) infused with growth factors (GFs). The developed GNF/GF hydrogels are administered to the motor cortex of a rat IS model to evaluate their therapeutic effects on IS-induced motor dysfunction. GNFs mimic a natural fibrous extracellular matrix architecture and can be precisely injected into a targeted brain area. The syringe-injectable jammed nanofibrous hydrogel system increased angiogenesis, inflammation, and sensorimotor function in the IS-affected brain. For clinical applications, the biocompatible GNF hydrogel has the potential to efficiently load disease-specific drugs, enabling targeted therapy for treating a wide range of neurological diseases.
Collapse
Affiliation(s)
- Donggue Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yang Tae Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Junhyeok Choe
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Gaeun Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- gBrain Inc., Incheon, 21984, Republic of Korea
| |
Collapse
|
2
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
3
|
Zhang J, Mosier JA, Wu Y, Waddle L, Taufalele PV, Wang W, Sun H, Reinhart‐King CA. Cellular Energy Cycle Mediates an Advection-Like Forward Cell Flow to Support Collective Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400719. [PMID: 39189477 PMCID: PMC11348062 DOI: 10.1002/advs.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/25/2024] [Indexed: 08/28/2024]
Abstract
Collective cell migration is a model for nonequilibrium biological dynamics, which is important for morphogenesis, pattern formation, and cancer metastasis. The current understanding of cellular collective dynamics is based primarily on cells moving within a 2D epithelial monolayer. However, solid tumors often invade surrounding tissues in the form of a stream-like 3D structure, and how biophysical cues are integrated at the cellular level to give rise to this collective streaming remains unclear. Here, it is shown that cell cycle-mediated bioenergetics drive a forward advective flow of cells and energy to the front to support 3D collective invasion. The cell division cycle mediates a corresponding energy cycle such that cellular adenosine triphosphate (ATP) energy peaks just before division. A reaction-advection-diffusion (RAD) type model coupled with experimental measurements further indicates that most cells enter an active division cycle at rear positions during 3D streaming. Once the cells progress to a later stage toward division, the high intracellular energy allows them to preferentially stream toward the tip and become leader cells. This energy-driven cellular flow may be a fundamental characteristic of 3D collective dynamics based on thermodynamic principles important for not only cancer invasion but also tissue morphogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
- Department of Biomedical EngineeringUniversity of Arkansas790 W. Dickson StFayettevilleAR72701USA
| | - Jenna A. Mosier
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Yusheng Wu
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Logan Waddle
- Department of Biomedical EngineeringUniversity of Arkansas790 W. Dickson StFayettevilleAR72701USA
| | - Paul V. Taufalele
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Wenjun Wang
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Heng Sun
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| | - Cynthia A. Reinhart‐King
- Department of Biomedical EngineeringVanderbilt University2301 Vanderbilt PlaceNashvilleTN37235USA
| |
Collapse
|
4
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Yoodee S, Peerapen P, Plumworasawat S, Malaitad T, Thongboonkerd V. Identification and characterization of ARID1A-interacting proteins in renal tubular cells and their molecular regulation of angiogenesis. J Transl Med 2023; 21:862. [PMID: 38017409 PMCID: PMC10683333 DOI: 10.1186/s12967-023-04750-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Defects and deficiency of AT-rich interactive domain-containing protein 1A (ARID1A) encoded by a tumor suppressor gene ARID1A have recently been suggested to get involved in angiogenesis, a crucial process in carcinogenesis. However, molecular mechanisms of ARID1A deficiency to induce angiogenesis in kidney cancer remain underinvestigated. METHODS We performed large-scale identification of ARID1A protein interactors in renal tubular epithelial cells (RTECs) using immunoprecipitation (IP) followed by nanoLC-ESI-LTQ-Orbitrap tandem mass spectrometry (MS/MS). Their roles in angiogenesis were investigated using various assays. RESULTS A total of 74 ARID1A-interacting proteins were identified. Protein-protein interactions analysis revealed that these identified proteins interacted directly or indirectly with ARID1A. Among them, the direct interaction between ARID1A and β-actin was validated by IP and reciprocal IP followed by Western blotting. Small interfering RNA (siRNA) was used for single and double knockdowns of ARID1A and ACTB. Semi-quantitative RT-PCR demonstrated that deficiency of ARID1A, but not ACTB, significantly affected expression of angiogenesis-related genes in RTECs (VEGF and FGF2 were increased, whereas PDGF and EGF were decreased). However, the knockdowns did not affect TGFB1 and FGF1 levels. The quantitative mRNA expression data of VEGF and TGFB1 were consistent with the secreted levels of their protein products as measured by ELISA. Only secreted products derived from ARID1A-deficient RTECs significantly increased endothelial cells (ECs) migration and tube formation. Some of the other carcinogenic features could also be confirmed in the ARID1A-deficient RTECs, including increased cell migration and chemoresistance. Double knockdowns of both ARID1A and ACTB did not enhance the effects of single ARID1A knockdown in all assays. CONCLUSIONS We report herein a large dataset of the ARID1A-interacting proteins in RTECs using an IP-MS/MS approach and confirm the direct interaction between ARID1A and β-actin. However, the role of ARID1A deficiency in angiogenesis is independent of β-actin.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Xiao P, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Wang J, Zhang Y, Zhou Z, Zhong X, Yan W. Impaired angiogenesis in ageing: the central role of the extracellular matrix. J Transl Med 2023; 21:457. [PMID: 37434156 PMCID: PMC10334673 DOI: 10.1186/s12967-023-04315-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Each step in angiogenesis is regulated by the extracellular matrix (ECM). Accumulating evidence indicates that ageing-related changes in the ECM driven by cellular senescence lead to a reduction in neovascularisation, reduced microvascular density, and an increased risk of tissue ischaemic injury. These changes can lead to health events that have major negative impacts on quality of life and place a significant financial burden on the healthcare system. Elucidating interactions between the ECM and cells during angiogenesis in the context of ageing is neceary to clarify the mechanisms underlying reduced angiogenesis in older adults. In this review, we summarize ageing-related changes in the composition, structure, and function of the ECM and their relevance for angiogenesis. Then, we explore in detail the mechanisms of interaction between the aged ECM and cells during impaired angiogenesis in the older population for the first time, discussing diseases caused by restricted angiogenesis. We also outline several novel pro-angiogenic therapeutic strategies targeting the ECM that can provide new insights into the choice of appropriate treatments for a variety of age-related diseases. Based on the knowledge gathered from recent reports and journal articles, we provide a better understanding of the mechanisms underlying impaired angiogenesis with age and contribute to the development of effective treatments that will enhance quality of life.
Collapse
Affiliation(s)
- Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dehong Yang
- Department of Orthopedics Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jilei Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Ferre-Torres J, Noguera-Monteagudo A, Lopez-Canosa A, Romero-Arias JR, Barrio R, Castaño O, Hernandez-Machado A. Modelling of chemotactic sprouting endothelial cells through an extracellular matrix. Front Bioeng Biotechnol 2023; 11:1145550. [PMID: 37362221 PMCID: PMC10285466 DOI: 10.3389/fbioe.2023.1145550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.
Collapse
Affiliation(s)
- Josep Ferre-Torres
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | | | - Adrian Lopez-Canosa
- Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Spain
| | - J Roberto Romero-Arias
- Institute for Research in Applied Mathematics and Systems, National Autonomous University of Mexico , Mexico City, Mexico
| | - Rafael Barrio
- Institute of Physics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Oscar Castaño
- Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona, Spain
| | - Aurora Hernandez-Machado
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
Abstract
Collagen provides mechanical and biological support for virtually all human tissues in the extracellular matrix (ECM). Its defining molecular structure, the triple-helix, could be damaged and denatured in disease and injuries. To probe collagen damage, the concept of collagen hybridization has been proposed, revised, and validated through a series of investigations reported as early as 1973: a collagen-mimicking peptide strand may form a hybrid triple-helix with the denatured chains of natural collagen but not the intact triple-helical collagen proteins, enabling assessment of proteolytic degradation or mechanical disruption to collagen within a tissue-of-interest. Here we describe the concept and development of collagen hybridization, summarize the decades of chemical investigations on rules underlying the collagen triple-helix folding, and discuss the growing biomedical evidence on collagen denaturation as a previously overlooked ECM signature for an array of conditions involving pathological tissue remodeling and mechanical injuries. Finally, we propose a series of emerging questions regarding the chemical and biological nature of collagen denaturation and highlight the diagnostic and therapeutic opportunities from its targeting.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
9
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541626. [PMID: 37293049 PMCID: PMC10245839 DOI: 10.1101/2023.05.22.541626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. Here we characterized and decoupled the effects of the GAG molecules chondroitin sulfate (CS) dermatan sulfate (DS) and hyaluronic acid (HA) on the stiffness (indentation modulus), transport (hydraulic permeability), and matrix microarchitecture (pore size and fiber radius) properties of collagen-based hydrogels. We complement these biophysical measurements of collagen hydrogels with turbidity assays to profile collagen aggregate formation. Here we show that CS, DS, and HA differentially regulate the biophysical properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs play significant roles in defining key physical properties of the ECM, this work shows new ways in which stiffness measurements, microscopy, microfluidics, and turbidity kinetics can be used complementary to reveal details of collagen self-assembly and structure.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210
| |
Collapse
|
10
|
Chang CW, Shih HC, Cortes-Medina MG, Beshay PE, Avendano A, Seibel AJ, Liao WH, Tung YC, Song JW. Extracellular Matrix-Derived Biophysical Cues Mediate Interstitial Flow-Induced Sprouting Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15047-15058. [PMID: 36916875 PMCID: PMC11078157 DOI: 10.1021/acsami.2c15180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sprouting angiogenesis is orchestrated by an intricate balance of biochemical and mechanical cues in the local tissue microenvironment. Interstitial flow has been established as a potent regulator of angiogenesis. Similarly, extracellular matrix (ECM) physical properties, such as stiffness and microarchitecture, have also emerged as important mediators of angiogenesis. However, the interplay between interstitial flow and ECM physical properties in the initiation and control of angiogenesis is poorly understood. Using a three-dimensional (3D) microfluidic tissue analogue of angiogenic sprouting with defined interstitial flow superimposed over ECM with well-characterized physical properties, we found that the addition of hyaluronan (HA) to collagen-based matrices significantly enhances sprouting induced by interstitial flow compared to responses in collagen-only hydrogels. We confirmed that both the stiffness and matrix pore size of collagen-only hydrogels were increased by the addition of HA. Interestingly, interstitial flow-potentiated sprouting responses in collagen/HA matrices were not affected when functionally blocking the HA receptor CD44. In contrast, enzymatic depletion of HA in collagen/HA matrices with hyaluronidase (HAdase) resulted in decreased stiffness, pore size, and interstitial flow-mediated sprouting to the levels observed in collagen-only matrices. Taken together, these results suggest that HA enhances interstitial flow-mediated angiogenic sprouting through its alterations to collagen ECM stiffness and pore size.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hsiu-Chen Shih
- Research Center for Applied Science, Academia Sinica, Taipei 115-29, Taiwan
| | - Marcos G Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei-Hao Liao
- Research Center for Applied Science, Academia Sinica, Taipei 115-29, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Science, Academia Sinica, Taipei 115-29, Taiwan
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
12
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
13
|
Tran KA, Baldwin-Leclair A, DeOre BJ, Antisell M, Galie PA. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model. J Cell Physiol 2022; 237:3872-3882. [PMID: 35901247 DOI: 10.1002/jcp.30840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
A variety of biophysical properties are known to regulate angiogenic sprouting, and in vitro systems can parse the individual effects of these factors in a controlled setting. Here, a three-dimensional brain microvascular model interrogates how variables including extracellular matrix composition, fluid shear stress, and radius of curvature affect angiogenic sprouting of cerebral endothelial cells. Tracking endothelial migration over several days reveals that application of fluid shear stress and enlarged vessel radius of curvature both attenuate sprouting. Computational modeling informed by oxygen consumption assays suggests that sprouting correlates to reduced oxygen concentration: both fluid shear stress and vessel geometry alter the local oxygen levels dictated by both ambient conditions and cellular respiration. Moreover, increasing cell density and consequently lowering the local oxygen levels yields significantly more sprouting. Further analysis reveals that the magnitude of oxygen concentration is not as important as its spatial concentration gradient: decreasing ambient oxygen concentration causes significantly less sprouting than applying an external oxygen gradient to the vessels. In contrast, barriergenesis is dictated by shear stress independent of local oxygen concentrations, suggesting that different mechanisms mediate angiogenesis and barrier formation and that angiogenic sprouting can occur without compromising the barrier. Overall, these results improve our understanding of how specific biophysical variables regulate the function and activation of cerebral vasculature, and identify spatial oxygen gradients as the driving factor of angiogenesis in the brain.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | | | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Morgan Antisell
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
14
|
Electrospun multifaceted nanocomposites for promoting angiogenesis in curing burn wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
He X, Lee B, Jiang Y. Extracellular matrix in cancer progression and therapy. MEDICAL REVIEW (2021) 2022; 2:125-139. [PMID: 37724245 PMCID: PMC10471113 DOI: 10.1515/mr-2021-0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/31/2022] [Indexed: 09/20/2023]
Abstract
The tumor ecosystem with heterogeneous cellular compositions and the tumor microenvironment has increasingly become the focus of cancer research in recent years. The extracellular matrix (ECM), the major component of the tumor microenvironment, and its interactions with the tumor cells and stromal cells have also enjoyed tremendously increased attention. Like the other components of the tumor microenvironment, the ECM in solid tumors differs significantly from that in normal organs and tissues. We review recent studies of the complex roles the tumor ECM plays in cancer progression, from tumor initiation, growth to angiogenesis and invasion. We highlight that the biomolecular, biophysical, and mechanochemical interactions between the ECM and cells not only regulate the steps of cancer progression, but also affect the efficacy of systemic cancer treatment. We further discuss the strategies to target and modify the tumor ECM to improve cancer therapy.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Wang WY, Kent RN, Huang SA, Jarman EH, Shikanov EH, Davidson CD, Hiraki HL, Lin D, Wall MA, Matera DL, Shin JW, Polacheck WJ, Shikanov A, Baker BM. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomater 2021; 135:260-273. [PMID: 34469789 PMCID: PMC8595798 DOI: 10.1016/j.actbio.2021.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States
| | - Evan H Jarman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eve H Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher D Davidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daphne Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica A Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine & Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|