1
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2025; 67:369-392. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
2
|
Lant JT, Frasheri J, Kwon T, Tsang CMN, Li BB, Decombe S, Sklavounos AA, Akbari S, Wheeler AR. A multimodal digital microfluidic testing platform for antibody-producing cell lines. LAB ON A CHIP 2024. [PMID: 39565292 DOI: 10.1039/d4lc00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In recent years, monoclonal antibodies (mAbs) have become a powerful tool in the treatment of human diseases. Currently, over 100 mAbs have received approval for therapeutic use in the US, with wide-ranging applications from cancer to infectious diseases. The predominant method of producing antibodies for therapeutics involves expression in mammalian cell lines. In the mAb production process, significant optimization is typically done to maximize antibody titres from cells grown in bioreactors. Therefore, systems that can miniaturize and automate cell line testing (e.g., viability and antibody production assays) are valuable in reducing therapeutic mAb development costs. Here we present a novel platform for cell line optimization for mAb production using digital microfluidics. The platform enables testing of cell culture samples in 6-8 μL droplets with semi-automated viability, media pH, and antibody production assays. This system provides a unique bridge between cell growth and productivity metrics, while minimizing culture volume requirements for daily testing. We propose that this technology and its future iterations has the potential to help reduce the time-to-market and development costs of antibody-producing cell lines.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Frasheri
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taehong Kwon
- Sartorius Stedim North America Inc., Marlborough, MA, USA
| | - Camille M N Tsang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Bingyu B Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon Decombe
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Samin Akbari
- Sartorius Stedim North America Inc., Marlborough, MA, USA
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Fu Y, Han Z, Cheng W, Niu S, Wang T, Wang X. Improvement strategies for transient gene expression in mammalian cells. Appl Microbiol Biotechnol 2024; 108:480. [PMID: 39365308 PMCID: PMC11452495 DOI: 10.1007/s00253-024-13315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Mammalian cells are suitable hosts for producing recombinant therapeutic proteins, with Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells being the most commonly used cell lines. Mammalian cell expression system includes stable and transient gene expression (TGE) system, with the TGE system having the advantages of short cycles and simple operation. By optimizing the TGE system, the expression of recombinant proteins has been significantly improved. Here, the TGE system and the detailed and up-to-date improvement strategies of mammalian cells, including cell line, expression vector, culture media, culture processes, transfection conditions, and co-expression of helper genes, are reviewed. KEY POINTS: • Detailed improvement strategies of transient gene expression system of mammalian cells are reviewed • The composition of transient expression system of mammalian cell are summarized • Proposed optimization prospects for transient gene expression systems.
Collapse
Affiliation(s)
- Yushun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zimeng Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wanting Cheng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuaichen Niu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Zhang J, Yang W, Zhang L, Li W, Zhang X, Wang X, Wang T. Novel and effective screening system for recombinant protein production in CHO cells. Sci Rep 2024; 14:20856. [PMID: 39242806 PMCID: PMC11379927 DOI: 10.1038/s41598-024-71915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Wenwen Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Bobrovsky PA, Grafskaia EN, Kharlampieva DD, Manuvera VA, Lazarev VN. Specific Activation of the Expression of Growth Factor Genes in Expi293F Human Cells Using CRISPR/Cas9-SAM Technology Increases Their Proliferation. Acta Naturae 2024; 16:25-37. [PMID: 39539522 PMCID: PMC11557215 DOI: 10.32607/actanaturae.27415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 11/16/2024] Open
Abstract
Human cell lines play an important role in biotechnology and pharmacology. For them to grow, they need complex nutrient media containing signaling proteins - growth factors. We have tested a new approach that reduces the need of cultured human cell lines for exogenous growth factors. This approach is based on the generation of a modified cell with a selectively activated gene expression of one of the endogenous growth factors: IGF-1, FGF-2, or EIF3I. We modified the Expi293F cell line, a HEK293 cell line variant widely used in the production of recombinant proteins. Gene expression of the selected growth factors in these cells was activated using CRISPR/Cas9 technology with the synergistic activation mediators CRISPR/Cas9-SAM, which increased the expression of the selected genes at both mRNA and protein levels. Upon culturing under standard conditions, the modified lines exhibited increased proliferation. A synergistic effect was observed in co-culture of the three modified lines. In our opinion, these results indicate that this approach is promising for efficient modification of cell lines used in biotechnology.
Collapse
Affiliation(s)
- P. A. Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| | - E. N. Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
| | - D. D. Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
| | - V. A. Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| | - V. N. Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| |
Collapse
|
6
|
Mousavi Mirkalaei S, Farivar S. Systematic optimization of culture media for maintenance of human induced pluripotent stem cells using the response surface methodology. Heliyon 2024; 10:e32558. [PMID: 38975108 PMCID: PMC11226774 DOI: 10.1016/j.heliyon.2024.e32558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.
Collapse
Affiliation(s)
- Seyedmilad Mousavi Mirkalaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Zheng YY, Hu ZN, Zhou GH. A review: analysis of technical challenges in cultured meat production and its commercialization. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38384235 DOI: 10.1080/10408398.2024.2315447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The cultured meat technology has developed rapidly in recent years, but there are still many technical challenges that hinder the large-scale production and commercialization of cultured meat. Firstly, it is necessary to lay the foundation for cultured meat production by obtaining seed cells and maintaining stable cell functions. Next, technologies such as bioreactors are used to expand the scale of cell culture, and three-dimensional culture technologies such as scaffold culture or 3D printing are used to construct the three-dimensional structure of cultured meat. At the same time, it can reduce production costs by developing serum-free medium suitable for cultured meat. Finally, the edible quality of cultured meat is improved by evaluating food safety and sensory flavor, and combining ethical and consumer acceptability issues. Therefore, this review fully demonstrates the current development status and existing technical challenges of the cultured meat production technology with regard to the key points described above, in order to provide research ideas for the industrial production of cultured meat.
Collapse
Affiliation(s)
- Yan-Yan Zheng
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ze-Nan Hu
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
| | - Guang-Hong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
10
|
Meskova K, Martonova K, Hrasnova P, Sinska K, Skrabanova M, Fialova L, Njemoga S, Cehlar O, Parmar O, Kolenko P, Pevala V, Skrabana R. Cost-Effective Protein Production in CHO Cells Following Polyethylenimine-Mediated Gene Delivery Showcased by the Production and Crystallization of Antibody Fabs. Antibodies (Basel) 2023; 12:51. [PMID: 37606435 PMCID: PMC10443350 DOI: 10.3390/antib12030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.
Collapse
Affiliation(s)
- Klaudia Meskova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Katarina Martonova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Patricia Hrasnova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Kristina Sinska
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Michaela Skrabanova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Olga Parmar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague, Czech Republic
| | - Vladimir Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| |
Collapse
|
11
|
Hashizume T, Ozawa Y, Ying BW. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Syst Biol Appl 2023; 9:20. [PMID: 37253825 DOI: 10.1038/s41540-023-00284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Medium optimization is a crucial step during cell culture for biopharmaceutics and regenerative medicine; however, this step remains challenging, as both media and cells are highly complex systems. Here, we addressed this issue by employing active learning. Specifically, we introduced machine learning to cell culture experiments to optimize culture medium. The cell line HeLa-S3 and the gradient-boosting decision tree algorithm were used to find optimized media as pilot studies. To acquire the training data, cell culture was performed in a large variety of medium combinations. The cellular NAD(P)H abundance, represented as A450, was used to indicate the goodness of culture media. In active learning, regular and time-saving modes were developed using culture data at 168 h and 96 h, respectively. Both modes successfully fine-tuned 29 components to generate a medium for improved cell culture. Intriguingly, the two modes provided different predictions for the concentrations of vitamins and amino acids, and a significant decrease was commonly predicted for fetal bovine serum (FBS) compared to the commercial medium. In addition, active learning-assisted medium optimization significantly increased the cellular concentration of NAD(P)H, an active chemical with a constant abundance in living cells. Our study demonstrated the efficiency and practicality of active learning for medium optimization and provided valuable information for employing machine learning technology in cell biology experiments.
Collapse
Affiliation(s)
- Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Yuki Ozawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan.
| |
Collapse
|
12
|
Zhang Q, Mi C, Wang T. Effects and mechanism of small molecule additives on recombinant protein in CHO cells. Appl Microbiol Biotechnol 2023; 107:2771-2781. [PMID: 36971794 DOI: 10.1007/s00253-023-12486-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Chinese hamster ovary (CHO) cells can produce proteins with complex structures and post-translational modifications which are similar to human-derived cells, and they have been the ideal host cells for the production of recombinant therapy proteins (RTPs). Nearly 70% of approved RTPs are produced by CHO cells. In recent years, a series of measures have been developed to increase the expression of RTPs to achieve the lower production cost during the process of large-scale industrial production of recombinant protein in CHO cells. Among of them, the addition of small molecule additives in the culture medium can improve the expression and production efficiency of recombinant proteins, and has become an effective and simple method. In this paper, the characteristics of CHO cells, the effect and mechanism of small molecule additives are reviewed. KEY POINTS: • Small molecular additives on the expression of RTPs in CHO cells are reviewed • Small molecular additives improve the yield of RTPs • Small molecular additives provide methods for the optimization of serum-free medium.
Collapse
Affiliation(s)
- Qiuli Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
13
|
Weiskirchen S, Schröder SK, Buhl EM, Weiskirchen R. A Beginner's Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells 2023; 12:682. [PMID: 36899818 PMCID: PMC10000895 DOI: 10.3390/cells12050682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
The cultivation of cells in a favorable artificial environment has become a versatile tool in cellular and molecular biology. Cultured primary cells and continuous cell lines are indispensable in investigations of basic, biomedical, and translation research. However, despite their important role, cell lines are frequently misidentified or contaminated by other cells, bacteria, fungi, yeast, viruses, or chemicals. In addition, handling and manipulating of cells is associated with specific biological and chemical hazards requiring special safeguards such as biosafety cabinets, enclosed containers, and other specialized protective equipment to minimize the risk of exposure to hazardous materials and to guarantee aseptic work conditions. This review provides a brief introduction about the most common problems encountered in cell culture laboratories and some guidelines on preventing or tackling respective problems.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Xu WJ, Lin Y, Mi CL, Pang JY, Wang TY. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl Microbiol Biotechnol 2023; 107:1063-1075. [PMID: 36648523 PMCID: PMC9843118 DOI: 10.1007/s00253-022-12342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Wen-Jing Xu
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Pharmacy, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Yan Lin
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Chun-Liu Mi
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Jing-Ying Pang
- grid.412990.70000 0004 1808 322XSchool of the First Clinical College, Xinxiang Medical University, Xinxiang, 453000 Henan China
| | - Tian-Yun Wang
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.495434.b0000 0004 1797 4346School of medicine, Xinxiang University, Xinxiang, 453003 Henan China
| |
Collapse
|
15
|
Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: a review. Mol Biol Rep 2022; 49:10593-10608. [PMID: 35674877 PMCID: PMC9175168 DOI: 10.1007/s11033-022-07651-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1 Jalan Menara Gading, UCSI Heights, Taman Connaught, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Fazlina Nordin
- Tissue Engineering Centre (TEC), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000, Kuala Lumpur, Cheras, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia.
| |
Collapse
|
16
|
Effects and mechanisms of animal-free hydrolysates on recombination protein yields in CHO cells. Appl Microbiol Biotechnol 2022; 106:7387-7396. [PMID: 36229612 DOI: 10.1007/s00253-022-12229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Chinese hamster ovary (CHO) cells are the commonly used cell lines for producing recombinant therapeutic proteins (RTPs) because they possess post-translational modifications similar to human cells. Culture media are necessary for cell growth, and their quality affects the yields and quality of RTPs. Due to safety concerns for the complex purification of RTPs, the development of serum-free media (SFM) is necessary for CHO cells. To meet the need for CHO cells with higher cell density and RTP productivity with consistent product quality in large-scale suspension cultures, the optimization of SFM through adding some enzymatic animal-free hydrolysates (AFHs) is preferred. The AFHs can improve cell culture performance and product yield of RTPs without affecting their quality. Here, the effect and mechanism of various AFHs in improving CHO cell culture performance and protein expression are reviewed. KEY POINTS: • AFHs that improve the recombinant protein yield of CHO cells are reviewed. • AFHs improve recombinant protein yield via influencing cell performance. • The AFHs do not affect the quality of recombinant protein in CHO cells. • AFHs can provide nutrients, block cell cycle, and reduce oxidative stress.
Collapse
|
17
|
Xu T, Zhang J, Wang T, Wang X. Recombinant antibodies aggregation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2022; 106:3913-3922. [PMID: 35608667 DOI: 10.1007/s00253-022-11977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modifications similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies (RTAs) are among the most important and promising RTPs for biomedical applications. A major limitation associated with the use of RTAs is their aggregation, which can be caused by a variety of factors; this results in a reduction of quality. RTA aggregations are especially concerning as they can trigger human immune responses in humans and may be fatal. Therefore, the mechanisms underlying RTA aggregation and measures for avoiding aggregation are interesting topics in RTAs research. In this review, we discuss recent progress in the field of RTAs aggregation, with a focus on factors that cause aggregation during RTA production and the development of strategies for overcoming RTA aggregation. KEY POINTS: • The recombinant antibody aggregation in mammalian cell systems is reviewed. • Intracellular environment and extracellular parameters influence recombinant antibody aggregation. • Reducing the aggregations can improve the quality of recombinant antibodies.
Collapse
Affiliation(s)
- Tingting Xu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jihong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoyin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China. .,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
18
|
Sun Y, Huang L, Nie J, Feng K, Liu Y, Bai Z. Development of a perfusion process for serum-free adenovirus vector herpes zoster vaccine production. AMB Express 2022; 12:58. [PMID: 35567723 PMCID: PMC9107214 DOI: 10.1186/s13568-022-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Herpes zoster is caused by reactivation of the varicella zoster virus (VZV). Researching and developing a herpes zoster vaccine will help to decrease the incidence of herpes zoster. To increase the bioreactor productivity, a serum-free HEK293 cell perfusion process with adenovirus vector herpes zoster (rAd-HZ) vaccine production was developed efficiently using the design of experiment (DoE) method. First, serum-free media for HEK293 cells were screened in both batch and semi-perfusion culture modes. Then, three optimal media were employed in a medium mixture design to improve cell culture performance, and the 1:1 mixture of HEK293 medium and MCD293 medium (named HM293 medium) was identified as the optimal formulation. On the basis of the HM293 medium, the relationship of critical process parameters (CPPs), including the time of infection (TOI), multiplicity of infection (MOI), pH, and critical quality attributes (CQAs) (adenovirus titer (Titer), cell-specific virus yield (CSVY), adenovirus fold expansion (Fold)) of rAd-HZ production was investigated using the DoE approach. Furthermore, the robust setpoint and design space of these CPPs were explored. Finally, the rAd-HZ production process with parameters at a robust setpoint (TOI = 7.2 × 106 cells/mL, MOI = 3.7, and pH = 7.17) was successfully scaled-up to a 3-L bioreactor with an alternating tangential flow system, yielding an adenovirus titer of 3.0 × 1010 IFU/mL, a CSVY of 4167 IFU/cells, a Fold of 1117 at 2 days post infection (dpi). The DoE approach accelerated the development of a HEK293 serum-free medium and of a robust adenovirus production process.
Collapse
|
19
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
20
|
Ansari S, Ito K, Hofmann S. Alkaline Phosphatase Activity of Serum Affects Osteogenic Differentiation Cultures. ACS OMEGA 2022; 7:12724-12733. [PMID: 35474849 PMCID: PMC9026015 DOI: 10.1021/acsomega.1c07225] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Fetal bovine serum (FBS) is a widely used supplement in cell culture medium, despite its known variability in composition, which greatly affects cellular function and consequently the outcome of studies. In bone tissue engineering, the deposited mineralized matrix is one of the main outcome parameters, but using different brands of FBS can result in large variations. Alkaline phosphatase (ALP) is present in FBS. Not only is ALP used to judge the osteogenic differentiation of bone cells, it may affect deposition of mineralized matrix. The present study focused on the enzymatic activity of ALP in FBS of different suppliers and its contribution to mineralization in osteogenic differentiation cultures. It was hypothesized that culturing cells in a medium with high intrinsic ALP activity of FBS will lead to higher mineral deposition compared to media with lower ALP activity. The used FBS types were shown to have significant differences in enzymatic ALP activity. Our results indicate that the ALP activity of the medium not only affected the deposited mineralized matrix but also the osteogenic differentiation of cells as measured by a changed cellular ALP activity of human-bone-marrow-derived mesenchymal stromal cells (hBMSCs). In media with low inherent ALP activity, the cellular ALP activity was increased and played the major role in the mineralization process, while in media with high intrinsic ALP activity contribution from the serum, less cellular ALP activity was measured, and the ALP activity of the medium also contributed to mineral formation substantially. Our results highlight the diverse effects of ALP activity intrinsic to FBS on osteogenic differentiation and matrix mineralization and how FBS can determine the experimental outcomes, in particular for studies investigating matrix mineralization. Once again, the need to replace FBS with more controlled and known additives is highlighted.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra Hofmann
- Orthopaedic
Biomechanics, Department of Biomedical Engineering and Institute for
Complex Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
21
|
Park JU, Han HJ, Baik JY. Energy metabolism in Chinese hamster ovary (CHO) cells: Productivity and beyond. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Cox MMJ. Innovations in the Insect Cell Expression System for Industrial Recombinant Vaccine Antigen Production. Vaccines (Basel) 2021; 9:vaccines9121504. [PMID: 34960250 PMCID: PMC8707663 DOI: 10.3390/vaccines9121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
The insect cell expression system has previously been proposed as the preferred biosecurity strategy for production of any vaccine, particularly for future influenza pandemic vaccines. The development and regulatory risk for new vaccine candidates is shortened as the platform is already in use for the manufacturing of the FDA-licensed seasonal recombinant influenza vaccine Flublok®. Large-scale production capacity is in place and could be used to produce other antigens as well. However, as demonstrated by the 2019 SARS-CoV-2 pandemic the insect cell expression system has limitations that need to be addressed to ensure that recombinant antigens will indeed play a role in combating future pandemics. The greatest challenge may be the ability to produce an adequate quantity of purified antigen in an accelerated manner. This review summarizes recent innovations in technology areas important for enhancing recombinant-protein production levels and shortening development timelines. Opportunities for increasing product concentrations through vector development, cell line engineering, or bioprocessing and for shortening timelines through standardization of manufacturing processes will be presented.
Collapse
|
23
|
Clever Experimental Designs: Shortcuts for Better iPSC Differentiation. Cells 2021; 10:cells10123540. [PMID: 34944048 PMCID: PMC8700474 DOI: 10.3390/cells10123540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
For practical use of pluripotent stem cells (PSCs) for disease modelling, drug screening, and regenerative medicine, the cell differentiation process needs to be properly refined to generate end products with consistent and high quality. To construct and optimize a robust cell-induction process, a myriad of cell culture conditions should be considered. In contrast to inefficient brute-force screening, statistical design of experiments (DOE) approaches, such as factorial design, orthogonal array design, response surface methodology (RSM), definitive screening design (DSD), and mixture design, enable efficient and strategic screening of conditions in smaller experimental runs through multifactorial screening and/or quantitative modeling. Although DOE has become routinely utilized in the bioengineering and pharmaceutical fields, the imminent need of more detailed cell-lineage specification, complex organoid construction, and a stable supply of qualified cell-derived material requires expedition of DOE utilization in stem cell bioprocessing. This review summarizes DOE-based cell culture optimizations of PSCs, mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and Chinese hamster ovary (CHO) cells, which guide effective research and development of PSC-derived materials for academic and industrial applications.
Collapse
|
24
|
Doan CC, Ho NQC, Nguyen TT, Nguyen TPT, Do DG, Hoang NS, Le TL. Enhancement of anti-TNFα monoclonal antibody production in CHO cells through the use of UCOE and DHFR elements in vector construction and the optimization of cell culture media. Prep Biochem Biotechnol 2021; 52:452-470. [PMID: 34427158 DOI: 10.1080/10826068.2021.1963981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a high demand for anti-tumor necrosis factor-α monoclonal antibodies (mAbTNFα) in the treatment of rheumatoid arthritis and other autoimmune diseases. Thus, efficient strategies and stable high-producing cell lines need to be established to increase antibody production. In this study, we describe an efficient approach to establish a mAbTNFα high-producing clone through the optimization of expression vectors and cell culture media. The ubiquitous chromatin opening element (UCOE) and dihydrofolate reductase (DHFR)-based vectors encoding mAbTNFα were introduced into the CHO-DG44 cells using lipofection. Clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate, and isolating them by limiting dilution. Different media formulated with commercial feeds and media were also screened to develop an improved medium. The antibody produced by the selected clone was purified, characterized, and compared to standard adalimumab. Using our established protocol, a cell clone obtained from stable mAbTNFα-expressing cell pools showed a 3.8-fold higher antibody titer compared to stable cell pools. Furthermore, the highest antibody yield of selected clones cultured in fed-batch mode using improved medium was 2450 ± 30 µg/mL, which was 13.2-fold higher than that of stable cell pool cultivated in batch mode using a basal medium. The purified antibody had primary chemical and biological characteristics similar to those of adalimumab. Therefore, the use of UCOE and DHFR vectors in combination with the optimization of cell culture media may help in establishing stable and high-producing CHO cell lines for therapeutic antibody production.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Dang Giap Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|