1
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Su H, Chen X, Mao L, Li T. Enhancing Electrospinnability of Chitosan Membranes in Low-Humidity Environments by Sodium Chloride Addition. Mar Drugs 2024; 22:443. [PMID: 39452851 PMCID: PMC11509170 DOI: 10.3390/md22100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
The electrospinning of pure chitosan nanofibers is highly sensitive to environmental humidity, which limits their production consistency and applicability. This study investigates the addition of sodium chloride (NaCl) to chitosan solutions to enhance spinnability and mitigate the effigurefects of low humidity. NaCl was incorporated into the electrospun chitosan solution, leading to increased conductivity and decreased viscosity. These modifications improved the electrospinning process. Comparative analyses between chitosan membranes (CM) and sodium-chloride-added chitosan membranes (SCM) revealed no significant differences in chemical structure, mechanical strength, or in vitro cell proliferation. This indicates that the addition of 1% (w/v) NaCl does not adversely affect the fundamental properties of the chitosan membranes. The findings demonstrate that NaCl addition is a viable strategy for producing electrospun chitosan nanofibers in low-humidity environments, maintaining their physicochemical properties while enhancing spinnability.
Collapse
Affiliation(s)
- Hengjie Su
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoqi Chen
- Department of Biomedical Engineering, Tiangong, Tianjin 300387, China
| | - Linna Mao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
3
|
Yessuf AM, Bahri M, Kassa TS, Sharma BP, Salama AM, Xing C, Zhang Q, Liu Y. Electrospun Polymeric Nanofibers: Current Trends in Synthesis, Surface Modification, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4231-4253. [PMID: 38857339 DOI: 10.1021/acsabm.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Electrospun polymeric nanofibers are essential in various fields for various applications because of their unique properties. Their features are similar to extracellular matrices, which suggests them for applications in healthcare fields, such as antimicrobials, tissue engineering, drug delivery, wound healing, bone regeneration, and biosensors. This review focuses on the synthesis of electrospun polymeric nanofibers, their surface modification, and their biomedical applications. Nanofibers can be fabricated from both natural and synthetic polymers and their composites. Even though they mimic extracellular matrices, their surface features (physicochemical characteristics) are not always capable of fulfilling the purpose of the target application. Therefore, they need to be improved via surface modification techniques. Both needle-based and needleless electrospinning are thoroughly discussed. Various techniques and setups employed in each method are also reviewed. Furthermore, pre- and postspinning modification approaches for electrospun nanofibers, including instrument design and the modification features for targeted biomedical applications, are also extensively discussed. In this way, the remarkable potential of electrospun polymeric nanofibers can be highlighted to reveal future research directions in this dynamic field.
Collapse
Affiliation(s)
- Abdurohman Mengesha Yessuf
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohamed Bahri
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tibebu Shiferaw Kassa
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed M Salama
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changmin Xing
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qidong Zhang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Gholipour Choubar E, Nasirtabrizi MH, Salimi F, Sadeghianmaryan A. Improving bone regeneration with electrospun antibacterial polycaprolactone/collagen/polyvinyl pyrrolidone scaffolds coated with hydroxyapatite and cephalexin delivery capability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:127-145. [PMID: 37837633 DOI: 10.1080/09205063.2023.2270216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Electrospinning is a facile popular method for the creation of nano-micro fibers tissue engineering scaffolds. Here, polycaprolactone (PCL)/collagen (COL): polyvinyl pyrrolidone (PVP) scaffolds (PCL/COL: PVP) were fabricated for bone regeneration. Various concentrations of Cephalexin (CEF) (0.5, 1, 1.5 wt. %) were added to PCL/COL: PVP scaffold to provide an antibacterial scaffold, and different concentrations of hydroxyapatite (HA) (1, 2, 5 wt. %) was electrospray on the surface of the scaffolds. The PCL/COL: PVP scaffold contained 1.5% CEF and coated with 2% HA was introduced as the best sample and in-vitro tests were performed on this scaffold based on the antibacterial and MTT test results. Morphology observations demonstrated a bead-free uniform combined nano-micro fibrous structure. Fourier transform infrared spectroscopy and X-ray diffraction tests confirmed the successful formation of the scaffolds and the wettability, swelling, and biodegradability evaluations of the scaffolds confirmed the hydrophilicity nature of the scaffold with high swelling properties and suitable biodegradation ratio. The scaffolds supported cell adhesion and represented high alkaline phosphatase activity. CEF loading led to antibacterial properties of the designed scaffolds and showed a suitable sustained release rate within 48 h. It seems that the electrospun PCL/COL: PVP scaffold loaded with 1.5% CEF and coated with 2% HA can be useful for bone regeneration applications that need further evaluation in the near future.
Collapse
Affiliation(s)
| | | | - Farshid Salimi
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Ali Sadeghianmaryan
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
6
|
Teimoori M, Nokhbatolfoghahaei H, Khojasteh A. Bilayer scaffolds/membranes for bone tissue engineering applications: A systematic review. BIOMATERIALS ADVANCES 2023; 153:213528. [PMID: 37352742 DOI: 10.1016/j.bioadv.2023.213528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE This systematic review evaluates the purpose, materials, physio-mechanical, and biological effects of bilayer scaffolds/membranes used for bone tissue engineering applications. METHODS A comprehensive electronic search of English-language literature from 2012 to October 2022 was conducted in PubMed, Scopus, ScienceDirect, and Google Scholar online databases according to the PRISMA 2020 guidelines. The quality of animal studies was evaluated through the SYRCLE's risk of bias tool. RESULTS A total of 77 studies were sought for retrieval, and 39 studies met the inclusion criteria. According to the synthesis results, most bilayers had a dense barrier layer that prevented connective tissue penetration and a loose osteogenic layer that supported cell migration and osteogenesis. PLGA, PCL, and chitosan were the most common polymers in the barrier layers, while the most utilized polymers in osteogenic layers were PLGA and gelatin. Electrospinning and solvent casting were the most common fabrication methods to design the bilayer structures. Many studies reported higher biological results for bilayers compared to their single layers. Also, fabricated bilayers' in vitro osteogenesis and in vivo new bone formation were significantly superior or at least comparable to the frequently used commercial membranes. CONCLUSION 1) Bilayers with two distinct layers and different materials, porosities, mechanical properties, and biological behavior can significantly improve heterogeneous bone regeneration; 2) the addition of ceramics and/or drugs to the osteogenic layer enhances the osteogenic properties of the bilayers; 3) fabrication method and pore size of the layers play an important role in determining the mechanical and biological behavior of them.
Collapse
Affiliation(s)
- Mahdis Teimoori
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Ge R, Ji Y, Ding Y, Huang C, He H, Yu DG. Electrospun self-emulsifying core-shell nanofibers for effective delivery of paclitaxel. Front Bioeng Biotechnol 2023; 11:1112338. [PMID: 36741747 PMCID: PMC9892910 DOI: 10.3389/fbioe.2023.1112338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The poor solubility of numerous drugs pose a long-existing challenge to the researchers in the fields of pharmaceutics, bioengineering and biotechnology. Many "top-down" and "bottom-up" nano fabrication methods have been exploited to provide solutions for this issue. In this study, a combination strategy of top-down process (electrospinning) and bottom-up (self-emulsifying) was demonstrated to be useful for enhancing the dissolution of a typical poorly water-soluble anticancer model drug (paclitaxel, PTX). With polyvinylpyrrolidone (PVP K90) as the filament-forming matrix and drug carrier, polyoxyethylene castor oil (PCO) as emulsifier, and triglyceride (TG) as oil phase, Both a single-fluid blending process and a coaxial process were utilized to prepare medicated nanofibers. Scanning electron microscope and transmission electron microscope (TEM) results clearly demonstrated the morphology and inner structures of the nanofibers. The lipid nanoparticles of emulsions after self-emulsification were also assessed through TEM. The encapsulation efficiency (EE) and in vitro dissolution tests demonstrated that the cores-shell nanofibers could provide a better self-emulsifying process int terms of a higher EE and a better drug sustained release profile. Meanwhile, an increase of sheath fluid rate could benefit an even better results, suggesting a clear process-property-performance relationship. The protocols reported here pave anew way for effective oral delivery of poorly water-soluble drug.
Collapse
Affiliation(s)
- Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanfei Ding
- Sinopec Shanghai Engineering Co., Ltd., Shanghai, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua He
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China,Correspondence: Ruiliang Ge, ; Deng-Guang Yu,
| |
Collapse
|
8
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
9
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
10
|
Bayat G, Fallah-Darrehchi M, Zahedi P, Moghaddam AB, Ghaffari-Bohlouli P, Jafari H. Kiwi extract-incorporated poly(ɛ-caprolactone)/cellulose acetate blend nanofibers for healing acceleration of burn wounds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:72-88. [PMID: 35924835 DOI: 10.1080/09205063.2022.2110483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kiwi extract (KE) including different components such as quercetin, vitamins C and E, and actinides has been known as a debridement agent for burn wounds. In this study, electrospun poly(ɛ-caprolactone)/cellulose acetate blend nanofibers incorporating KE (PCL/CA/KE) were prepared and their performance was evaluated for healing acceleration of burn wounds. The physicochemical characterization of PCL/CA/KE nanofibers showed an average diameter of ∼420 nm, porosity of 70%, water contact angle of 61°, and water uptake of ∼220%. Moreover, the continuous release trend of KE from PCL/CA blend nanofibers happened during 24 h and the release mechanism was governed by the Fickian diffusion. Besides the cytocompatibility of PCL/CA/KE nanofibers, their in vivo experiments revealed that the bioactive wound dressing based on the sample has higher wound closure compared to KE after 21 days. Histopathology of wounds dressed by PCL/CA/KE nanofibers indicated epidermal formation along with a fully extended layer. Eventually, the obtained results confirmed that the PCL/CA/KE nanofibrous sample was a promising wound dressing for burn wound healing.
Collapse
Affiliation(s)
- Ghazal Bayat
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hafez Jafari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Chitosan-based functionalized scaffolds for nanobone tissue regeneration. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
12
|
Mamidi N, García RG, Martínez JDH, Briones CM, Martínez Ramos AM, Tamez MFL, Del Valle BG, Segura FJM. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater Sci Eng 2022; 8:3690-3716. [PMID: 36037103 DOI: 10.1021/acsbiomaterials.2c00786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unique properties and potential applications of nanofibers have emerged as innovative approaches and opportunities in the biomedical, healthcare, environmental, and biosensor fields. Electrospinning and centrifugal spinning strategies have gained considerable attention among all kinds of strategies to produce nanofibers. These techniques produce nanofibers with high porosity and surface area, adequate pore architecture, and diverse chemical compositions. The extraordinary characteristics of nanofibers have unveiled new gates in nanomedicine to establish innovative fiber-based formulations for biomedical use, healthcare, and a wide range of other applications. The present review aims to provide a comprehensive overview of nanofibers and their broad range of applications, including drug delivery, biomedical scaffolds, tissue/bone-tissue engineering, dental applications, and environmental remediation in a single place. The review begins with a brief introduction followed by potential applications of nanofibers. Finally, the future perspectives and current challenges of nanofibers are demonstrated. This review will help researchers to engineer more efficient multifunctional nanofibers with improved characteristics for their effective use in broad areas. We strongly believe this review is a reader's delight and will help in dealing with the fundamental principles and applications of nanofiber-based scaffolds. This review will assist students and a broad range of scientific communities to understand the significance of nanofibers in several domains of nanotechnology, nanomedicine, biotechnology, and environmental remediation, which will set a benchmark for further research.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Rubén Gutiérrez García
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - José Daniel Hernández Martínez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Camila Martínez Briones
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Andrea Michelle Martínez Ramos
- Department of Biotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - María Fernanda Leal Tamez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Braulio González Del Valle
- Department of Chemical Engineering, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64988, Mexico
| | - Francisco Javier Macias Segura
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
13
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
16
|
Reddy VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers (Basel) 2021; 13:3746. [PMID: 34771302 PMCID: PMC8587893 DOI: 10.3390/polym13213746] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023] Open
Abstract
Electrospun nanofibers have been exploited in multidisciplinary fields with numerous applications for decades. Owing to their interconnected ultrafine fibrous structure, high surface-to-volume ratio, tortuosity, permeability, and miniaturization ability along with the benefits of their lightweight, porous nanofibrous structure, they have been extensively utilized in various research fields for decades. Electrospun nanofiber technologies have paved unprecedented advancements with new innovations and discoveries in several fields of application including energy devices and biomedical and environmental appliances. This review article focused on providing a comprehensive overview related to the recent advancements in health care and energy devices while emphasizing on the importance and uniqueness of utilizing nanofibers. A brief description regarding the effect of electrospinning techniques, setup modifications, and parameters optimization on the nanofiber morphology was also provided. The article is concluded with a short discussion on current research challenges and future perspectives.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Yilong Tian
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
- Key Laboratory for Information Photonic Technology of Shaanxi Province, School of Information and Electronics Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Wei Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing 211189, China
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| |
Collapse
|
17
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021; 19:551. [PMID: 34677450 PMCID: PMC8540467 DOI: 10.3390/md19100551] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|