1
|
Liu X, Zhou C, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Recent advances in layer-by-layer assembly scaffolds for co-delivery of bioactive molecules for bone regeneration: an updated review. J Transl Med 2024; 22:1001. [PMID: 39501263 PMCID: PMC11539823 DOI: 10.1186/s12967-024-05809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Orthopedic implants have faced challenges in treating bone defects due to various factors, including inadequate osseointegration, oxidative stress, bacterial infection, immunological rejection, and poor individualized treatment. These challenges profoundly affect both the results of treatment and patients' daily lives. There is great promise for the layer-by-layer (LbL) assembly method in tissue engineering. The method primarily relies on electrostatic attraction and entails the consecutive deposition of electrolyte complexes with opposite charges onto a substrate, leading to the formation of homogeneous single layers that can be quickly deposited to produce nanolayer films. LbL has attracted considerable interest as a coating technology because of its ease of production, cost-effectiveness, and capability to apply diverse biomaterial coatings without compromising the primary bio-functional properties of the substrate materials. This review will look into the fundamentals and evolution of LbL in orthopedics, provide an analysis of the chemical strategy used to prepare bone implants with LbL and introduce the application of LbL bone implants in orthopedics over recent years. Among the many potential uses of LbL, such as the implementation of sustained-release and programmed drug delivery, which in turn promotes the osseointegration and the development of new blood vessels, as well as antibacterial, antioxidant, and other similar applications. In addition, we offer a thorough examination of cell behavior and biomaterial interaction to facilitate the advancement of next-generation LbL films for tissue engineering.
Collapse
Affiliation(s)
- Xiankun Liu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Qiong Xie
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Xiaochun Xiong
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Hao Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Zeping Zheng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Shou Z, Bai Z, Zhou H, Shen Y, Huang X, Meng H, Xu C, Wu S, Li N, Chen C. Engineering tunable dual peptide hybrid coatings promote osseointegration of implants. Mater Today Bio 2024; 24:100921. [PMID: 38226017 PMCID: PMC10788622 DOI: 10.1016/j.mtbio.2023.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)6-capped RGD (K6-(linker-RGD)3) and OGP (K6-linker-(YGFGG)2), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K6 and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K6-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc., were detailly characterized by various techniques (ellipsometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, water contact angle, scanning electronic microscopy and atomic force microscopy). Importantly, the RGD/OGP ratio can be well adjusted, which allowed optimizing the RGD/OGP ratio to endow significantly enhanced osteogenic activity of MC3T3-E1 cells through the Wnt/β-catenin pathway, while also promoting cell adhesion, immune regulation, inhibiting osteoclast differentiation and oxidative stress reduction. In vivo, the optimized RGD/OGP coatings promoted bone regeneration and osseointegration around implants in rats with bone defects. In conclusion, rationally designed PC/Fe@K6-RGD/OGP coating integrated RGD and OGP bioactivities, providing a convenient approach to enhance bioinert implant surfaces for bone regeneration.
Collapse
Affiliation(s)
- Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Han Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yizhe Shen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiaojing Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongming Meng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chenwei Xu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shaohao Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, Zhejiang, People's Republic of China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
3
|
Liang Z, Chen Z, Zhu Z, Zhang Y, Niu W, Tan S, Wong HM, Li X, Li Q, Qiu H. Colloidal Phenol-Amine Coating on Implants for Improved Anti-Inflammation and Osteogenesis. ACS Biomater Sci Eng 2024; 10:365-376. [PMID: 38118128 DOI: 10.1021/acsbiomaterials.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.
Collapse
Affiliation(s)
- ZhaoJia Liang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZiRui Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZhongQing Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - YaBing Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - WeiRui Niu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shuang Tan
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - XiangYang Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - QuanLi Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Hua Qiu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
4
|
Lu R, Zhao B, Yang L, Zheng S, Zan X, Li N. Role of Driving Force on Engineering Layer-by-Layer Protein/Polyphenol Coating with Flexible Structures and Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20551-20562. [PMID: 37052959 DOI: 10.1021/acsami.3c02047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein-based coatings are of immense interest due to their rich biological functions. Layer-by-layer (LbL) assembly, as a powerful means of transferring protein functions to the material surface, has received widespread attention. However, the assembly mechanism of protein-based LbL coatings is still far from being explained, not only because of protein structure and function diversity but also characterization limitations. Herein, we monitored in situ the LbL assembly process of tannic acid (TA) and lysozyme (Lyz), a classic pair of polyphenol and protein, by combining quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). The water content, morphology, mechanical properties, antioxidant activity, and the driving force of TA-Lyz coating engineered under different pH values were analyzed in detail by various techniques. The water content, a key factor in TA-Lyz coatings, increased with increasing assembled pH values, which resulted in a porous morphology, inhomogeneous mechanical distribution, faster assembly growth, and better antioxidant activity in both acellular and cellular levels. In addition, high water content is unfavorable to both entropy and enthalpy changes, and the thermodynamic driving force of TA and Lyz assembly mainly comes from the enthalpy change brought by the noncovalent interaction between TA and Lyz. These results provide new insights into engineering the structure, function, and assembly mechanisms of protein-based coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, Guangzhou 510006, China
| | - Bingyang Zhao
- School and Hospital of Stomatology, Wenzhou Medical University Wenzhou, Wenzhou 325035, China
| | - Li Yang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd, Wenzhou 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Na Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
5
|
Li H, Wang D, Zhang W, Xu G, Xu C, Liu W, Li J. Potential side effects of antibacterial coatings in orthopaedic implants: A systematic review of clinical studies. Front Bioeng Biotechnol 2023; 11:1111386. [PMID: 36845182 PMCID: PMC9947536 DOI: 10.3389/fbioe.2023.1111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: The systematic review aimed to determine the potential side effects of antibacterial coatings in orthopaedic implants. Methods: Publications were searched in the databases of Embase, PubMed, Web of Science and Cochrane Library using predetermined keywords up to 31 October 2022. Clinical studies reporting side effects of the surface or coating materials were included. Results: A total of 23 studies (20 cohort studies and three case reports) reporting the concerns about the side effects of antibacterial coatings were identified. Three types of coating materials, silver, iodine and gentamicin were included. All of studies raised the concerns regarding safety of antibacterial coatings, and the occurrence of adverse events was observed in seven studies. The main side effect of silver coatings was the development of argyria. For iodine coatings, only one anaphylactic case was reported as an adverse event. No systemic or other general side effects were reported for gentamicin. Conclusion: Clinical studies on the side effects of antibacterial coatings were limited. Based on the available outcomes, the most reported side effects of antibacterial coatings in clinical use were argyria with silver coatings. However, researchers should always pay attention to the potential side effects of antibacterial materials, such as systematic or local toxicity and allergy.
Collapse
Affiliation(s)
- Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Wupeng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Wanheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| |
Collapse
|
6
|
Gui X, Peng W, Xu X, Su Z, Liu G, Zhou Z, Liu M, Li Z, Song G, Zhou C, Kong Q. Synthesis and application of nanometer hydroxyapatite in biomedicine. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nano-hydroxyapatite (nano-HA) has been widely studied as a promising biomaterial because of its potential mechanical and biological properties. In this article, different synthesis methods for nano-HA were summarized. Key factors for the synthesis of nano-HA, including reactant concentration, effects of temperature, PH, additives, aging time, and sintering, were separately investigated. The biological performances of the nano-HA depend strongly on its structures, morphology, and crystallite sizes. Nano-HA with different morphologies may cause different biological effects, such as protein adsorption, cell viability and proliferation, angiogenesis, and vascularization. Recent research progress with respect to the biological functions of the nano-HA in some specific biological applications are summarized and the future development of nano-sized hydroxyapatite is prospected.
Collapse
Affiliation(s)
- Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Wei Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Zixuan Su
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Gang Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Geyang Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| |
Collapse
|
7
|
Wang Z, Li B, Cai Q, Li X, Yin Z, Li B, Li Z, Meng W. Advances and Prospects in Antibacterial-Osteogenic Multifunctional Dental Implant Surface. Front Bioeng Biotechnol 2022; 10:921338. [PMID: 35685091 PMCID: PMC9171039 DOI: 10.3389/fbioe.2022.921338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, dental implantation has become the preferred protocol for restoring dentition defects. Being the direct contact between implant and bone interface, osseointegration is the basis for implant exerting physiological functions. Nevertheless, biological complications such as insufficient bone volume, poor osseointegration, and postoperative infection can lead to implant failure. Emerging antibacterial-osteogenic multifunctional implant surfaces were designed to make up for these shortcomings both during the stage of forming osseointegration and in the long term of supporting the superstructure. In this mini-review, we summarized the recent antibacterial-osteogenic modifications of the dental implant surface. The effects of these modifications on biological performance like soft tissue integration, bone osteogenesis, and immune response were discussed. In addition, the clinical findings and prospects of emerging antibacterial-osteogenic implant materials were also discussed.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyu Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhaoyi Yin
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Birong Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiyan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
8
|
Kuo YJ, Chen CH, Dash P, Lin YC, Hsu CW, Shih SJ, Chung RJ. Angiogenesis, Osseointegration, and Antibacterial Applications of Polyelectrolyte Multilayer Coatings Incorporated With Silver/Strontium Containing Mesoporous Bioactive Glass on 316L Stainless Steel. Front Bioeng Biotechnol 2022; 10:818137. [PMID: 35223788 PMCID: PMC8879691 DOI: 10.3389/fbioe.2022.818137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
The main causes for failure in implant surgery are prolonged exposure of implants or wound and tissue ischemia. Bacterial infection caused by the surrounding medical environment and equipment is also a major risk factor. The medical risk would be greatly reduced if we could develop an implant coating to guide tissue growth and promote antibacterial activity. Mesoporous bioactive glasses are mainly silicates with good osteoinductivity and have been used in medical dentistry and orthopedics for several decades. Strontium ions and silver ions could plausibly be incorporated into bioactive glass to achieve the required function. Strontium ions are trace elements in human bone that have been proposed to promote osseointegration and angiogenesis. Silver ions can cause bacterial apoptosis through surface charge imbalance after bonding to the cell membrane. In this study, functional polyelectrolyte multilayer (PEM) coatings were adhered to 316L stainless steel (SS) by spin coating. The multilayer film was composed of biocompatible and biodegradable collagen as a positively charged layer, γ-polyglutamic acid (γ-PGA) as a negatively charged layer. Chitosan was incorporated to the 11th positively charged layer as a stabilizing barrier. Spray pyrolysis prepared mesoporous bioactive glass incorporated with silver and strontium (AgSrMBG) was added to each negatively charged layer. The PEM/AgSrMBG coating was well hydrophilic with a contact angle of 37.09°, hardness of 0.29 ± 0.09 GPa, Young’s modulus of 5.35 ± 1.55 GPa, and roughness of 374.78 ± 22.27 nm, as observed through nano-indention and white light interferometry. The coating’s antibacterial activity was sustained for 1 month through the inhibition zone test, and was biocompatible with rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), as observed in the MTT assay. There was more hydroxyapatite precipitation on the PEM/AgSrMBG surface after being soaked in simulated body fluid (SBF), as observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In both in vitro and in vivo tests, the PEM/AgSrMBG coating promoted angiogenesis, osseointegration, and antibacterial activity due to the sustained release of silver and strontium ions.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsien Chen
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Yu-Chien Lin
- Department of Materials, Imperial College London, London, United Kingdom
| | - Chih-Wei Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Shao-Ju Shih
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
- *Correspondence: Ren-Jei Chung,
| |
Collapse
|