1
|
Peroni E, Calistri E, Amato R, Gottardi M, Rosato A. Spatial-transcriptomic profiling: a new lens for understanding myelofibrosis pathophysiology. Cell Commun Signal 2024; 22:510. [PMID: 39434124 PMCID: PMC11492555 DOI: 10.1186/s12964-024-01877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
Myelofibrosis (MF) is a complex myeloproliferative neoplasm characterized by abnormal hematopoietic stem cell proliferation and subsequent bone marrow (BM) fibrosis. First documented in the late 19th century, MF has since been extensively studied to unravel its pathophysiology, clinical phenotypes, and therapeutic interventions. MF can be classified into primary and secondary forms, both driven by mutations in genes such as JAK2, CALR, and MPL, which activate the JAK-STAT signaling pathway. These driver mutations are frequently accompanied by additional non-driver mutations in genes like TET2, SRSF2, and TP53, contributing to disease complexity. The BM microenvironment, consisting of stromal cells, extracellular matrix, and cytokines such as TGF-β and TNF-α, plays a critical role in fibrosis and aberrant hematopoiesis. Clinically, MF manifests with symptoms ranging from anemia, splenomegaly, and fatigue to severe complications such as leukemic transformation. Splenomegaly, caused by extramedullary hematopoiesis, leads to abdominal discomfort and early satiety. Current therapeutic strategies include JAK inhibitors like Ruxolitinib, which target the JAK-STAT pathway, alongside supportive treatments such as blood transfusions, erythropoiesis-stimulating agents and developing combinatorial approaches. Allogeneic hematopoietic stem cell transplantation remains the only curative option, though it is limited to younger, high-risk patients. Recently approved JAK inhibitors, including Fedratinib, Pacritinib, and Momelotinib, have expanded the therapeutic landscape. Spatially Resolved Transcriptomics (SRT) has revolutionized the study of gene expression within the spatial context of tissues, providing unprecedented insights into cellular heterogeneity, spatial gene regulation, and microenvironmental interactions, including stromal-hematopoietic dynamics. SRT enables high-resolution mapping of gene expression in the BM and spleen, revealing molecular signatures, spatial heterogeneity, and pathological niches that drive disease progression. These technologies elucidate the role of the spleen in MF, highlighting its transformation into a site of abnormal hematopoietic activity, fibrotic changes, and immune cell infiltration, functioning as a "tumor surrogate." By profiling diverse cell populations and molecular alterations within the BM and spleen, SRT facilitates a deeper understanding of MF pathophysiology, helping identify novel therapeutic targets and biomarkers. Ultimately, integrating spatial transcriptomics into MF research promises to enhance diagnostic precision and therapeutic innovation, addressing the multifaceted challenges of this disease.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Elisabetta Calistri
- Onco-Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, 31033, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, 88100, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, 88100, Italy
| | - Michele Gottardi
- Onco-Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua, 31033, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, 35122, Italy
| |
Collapse
|
2
|
Wang J, Alhaskawi A, Dong Y, Tian T, Abdalbary SA, Lu H. Advances in spatial multi-omics in tumors. TUMORI JOURNAL 2024; 110:327-339. [PMID: 39185632 DOI: 10.1177/03008916241271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell techniques have convincingly demonstrated that tumor tissue usually contains multiple genetically defined cell subclones with different gene mutation sets as well as various transcriptional profiles, but the spatial heterogeneity of the microenvironment and the macrobiological characteristics of the tumor ecosystem have not been described. For the past few years, spatial multi-omics technologies have revealed the cellular interactions, microenvironment, and even systemic tumor-host interactions in the tumor ecosystem at the spatial level, which can not only improve classical therapies such as surgery, radiotherapy, and chemotherapy but also promote the development of emerging targeted therapies in immunotherapy. Here, we review some emerging spatial omics techniques in cancer research and therapeutic applications and propose prospects for their future development.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tu Tian
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
4
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Saeed A, Park R, Pathak H, Al-Bzour AN, Dai J, Phadnis M, Al-Rajabi R, Kasi A, Baranda J, Sun W, Williamson S, Chiu YC, Osmanbeyoglu HU, Madan R, Abushukair H, Mulvaney K, Godwin AK, Saeed A. Clinical and biomarker results from a phase II trial of combined cabozantinib and durvalumab in patients with chemotherapy-refractory colorectal cancer (CRC): CAMILLA CRC cohort. Nat Commun 2024; 15:1533. [PMID: 38378868 PMCID: PMC10879200 DOI: 10.1038/s41467-024-45960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
CAMILLA is a basket trial (NCT03539822) evaluating cabozantinib plus the ICI durvalumab in chemorefractory gastrointestinal cancer. Herein, are the phase II colorectal cohort results. 29 patients were evaluable. 100% had confirmed pMMR/MSS tumors. Primary endpoint was met with ORR of 27.6% (95% CI 12.7-47.2%). Secondary endpoints of 4-month PFS rate was 44.83% (95% CI 26.5-64.3%); and median OS was 9.1 months (95% CI 5.8-20.2). Grade≥3 TRAE occurred in 39%. In post-hoc analysis of patients with RAS wild type tumors, ORR was 50% and median PFS and OS were 6.3 and 21.5 months respectively. Exploratory spatial transcriptomic profiling of pretreatment tumors showed upregulation of VEGF and MET signaling, increased extracellular matrix activity and preexisting anti-tumor immune responses coexisting with immune suppressive features like T cell migration barriers in responders versus non-responders. Cabozantinib plus durvalumab demonstrated anti-tumor activity, manageable toxicity, and have led to the activation of the phase III STELLAR-303 trial.
Collapse
Affiliation(s)
- Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Robin Park
- Division of Hematology and Medical Oncology, Moffitt Cancer Cente, Tampa, FL, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ayah Nedal Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Junqiang Dai
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Milind Phadnis
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Raed Al-Rajabi
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Ks, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Anup Kasi
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Ks, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Joaquina Baranda
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Ks, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Weijing Sun
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Ks, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Stephen Williamson
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Ks, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | | | | | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hassan Abushukair
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Kelly Mulvaney
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
6
|
Wang XY, Xu YM, Lau ATY. Proteogenomics in Cancer: Then and Now. J Proteome Res 2023; 22:3103-3122. [PMID: 37725793 DOI: 10.1021/acs.jproteome.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.
Collapse
Affiliation(s)
- Xiu-Yun Wang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| |
Collapse
|
7
|
XIE FANGMEI, XI NAITE, HAN ZEPING, LUO WENFENG, SHEN JIAN, LUO JINGGENG, TANG XINGKUI, PANG TING, LV YUBING, LIANG JIABING, LIAO LIYIN, ZHANG HAOYU, JIANG YONG, LI YUGUANG, HE JINHUA. Progress in research on tumor microenvironment-based spatial omics technologies. Oncol Res 2023; 31:877-885. [PMID: 37744276 PMCID: PMC10513957 DOI: 10.32604/or.2023.029494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/21/2023] [Indexed: 09/26/2023] Open
Abstract
Spatial omics technology integrates the concept of space into omics research and retains the spatial information of tissues or organs while obtaining molecular information. It is characterized by the ability to visualize changes in molecular information and yields intuitive and vivid visual results. Spatial omics technologies include spatial transcriptomics, spatial proteomics, spatial metabolomics, and other technologies, the most widely used of which are spatial transcriptomics and spatial proteomics. The tumor microenvironment refers to the surrounding microenvironment in which tumor cells exist, including the surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various signaling molecules, and extracellular matrix. A key issue in modern tumor biology is the application of spatial omics to the study of the tumor microenvironment, which can reveal problems that conventional research techniques cannot, potentially leading to the development of novel therapeutic agents for cancer. This paper summarizes the progress of research on spatial transcriptomics and spatial proteomics technologies for characterizing the tumor immune microenvironment.
Collapse
Affiliation(s)
- FANGMEI XIE
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - NAITE XI
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - ZEPING HAN
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - WENFENG LUO
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JIAN SHEN
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JINGGENG LUO
- Department of General Surgery, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - XINGKUI TANG
- Department of General Surgery, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - TING PANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YUBING LV
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JIABING LIANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - LIYIN LIAO
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - HAOYU ZHANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YONG JIANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YUGUANG LI
- Administrating Office, He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - JINHUA HE
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
8
|
Du J, An ZJ, Huang ZF, Yang YC, Zhang MH, Fu XH, Shi WY, Hou J. Novel insights from spatial transcriptome analysis in solid tumors. Int J Biol Sci 2023; 19:4778-4792. [PMID: 37781515 PMCID: PMC10539699 DOI: 10.7150/ijbs.83098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Since its first application in 2016, spatial transcriptomics has become a rapidly evolving technology in recent years. Spatial transcriptomics enables transcriptomic data to be acquired from intact tissue sections and provides spatial distribution information and remedies the disadvantage of single-cell RNA sequencing (scRNA-seq), whose data lack spatially resolved information. Presently, spatial transcriptomics has been widely applied to various tissue types, especially for the study of tumor heterogeneity. In this review, we provide a summary of the research progress in utilizing spatial transcriptomics to investigate tumor heterogeneity and the microenvironment with a focus on solid tumors. We summarize the research breakthroughs in various fields and perspectives due to the application of spatial transcriptomics, including cell clustering and interaction, cellular metabolism, gene expression, immune cell programs and combination with other techniques. As a combination of multiple transcriptomics, single-cell multiomics shows its superiority and validity in single-cell analysis. We also discuss the application prospect of single-cell multiomics, and we believe that with the progress of data integration from various transcriptomics, a multilayered subcellular landscape will be revealed.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127, China
| | - Zhi-Jie An
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zou-Fang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yu-Chen Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ming-Hui Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xue-Hang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127, China
| | - Wei-Yang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127, China
| |
Collapse
|
9
|
Wang N, Li X, Ding Z. High-Plex Spatial Profiling of RNA and Protein Using Digital Spatial Profiler. Methods Mol Biol 2023; 2660:69-83. [PMID: 37191791 DOI: 10.1007/978-1-0716-3163-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rapid emergence of spatial multi-omics technologies in recent years has revolutionized biomedical research. Among these, the Digital Spatial Profiler (DSP, commercialized by nanoString) has become one of the dominant technologies in spatial transcriptomics and proteomics and has assisted in deconvoluting complex biological questions. Based on our practical experience in the past 3 years with DSP, we share here a detailed hands-on protocol and key handling notes that will allow the broader community to optimize their work procedure.
Collapse
Affiliation(s)
- Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan City, Shandong Province, P. R. China
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan City, Shandong Province, P. R. China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan City, Shandong Province, P. R. China.
| |
Collapse
|
10
|
Multiplex Tissue Imaging: Spatial Revelations in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14133170. [PMID: 35804939 PMCID: PMC9264815 DOI: 10.3390/cancers14133170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide, and the overall aging of the population results in an increased risk of a cancer diagnosis during a person’s lifetime. Diagnosis and treatment at an early stage will typically increase the chances of survival. Tumors can develop therapy resistance, and it is difficult to predict how individual patients will respond to therapy. Most studies that aim to resolve this problem have focused on studying the composition and characteristics of dissociated tumors, while ignoring the role of cell localization and interactions within the tumor microenvironment. In the past decade, technological innovations have enabled multiplex imaging analyses of intact tumors to study localization and interaction parameters, which can be used as biomarkers, or can be correlated with treatment responses and clinical outcomes. Abstract The tumor microenvironment is a complex ecosystem containing various cell types, such as immune cells, fibroblasts, and endothelial cells, which interact with the tumor cells. In recent decades, the cancer research field has gained insight into the cellular subtypes that are involved in tumor microenvironment heterogeneity. Moreover, it has become evident that cellular interactions in the tumor microenvironment can either promote or inhibit tumor development, progression, and drug resistance, depending on the context. Multiplex spatial analysis methods have recently been developed; these have offered insight into how cellular crosstalk dynamics and heterogeneity affect cancer prognoses and responses to treatment. Multiplex (imaging) technologies and computational analysis methods allow for the spatial visualization and quantification of cell–cell interactions and properties. These technological advances allow for the discovery of cellular interactions within the tumor microenvironment and provide detailed single-cell information on properties that define cellular behavior. Such analyses give insights into the prognosis and mechanisms of therapy resistance, which is still an urgent problem in the treatment of multiple types of cancer. Here, we provide an overview of multiplex imaging technologies and concepts of downstream analysis methods to investigate cell–cell interactions, how these studies have advanced cancer research, and their potential clinical implications.
Collapse
|
11
|
Yan K, Bai B, Ren Y, Cheng B, Zhang X, Zhou H, Liang Y, Chen L, Zi J, Yang Q, Zhao Q, Liu S. The Comparable Microenvironment Shared by Colorectal Adenoma and Carcinoma: An Evidence of Stromal Proteomics. Front Oncol 2022; 12:848782. [PMID: 35433435 PMCID: PMC9010820 DOI: 10.3389/fonc.2022.848782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment (TME) is a key factor involved in cancer development and metastasis. In the TME of colorectal cancer (CRC), the gene expression status of stromal tissues could influence the CRC process from normal to adenoma then carcinoma; however, the expression status at the protein level has not yet been well evaluated. A total of 22 CRC patients were recruited for this study, and the tissue regions corresponding with adjacent, adenoma, and carcinoma were carefully excised by laser capture microdissection (LCM), including a patient with adenoma and carcinoma. The individual proteomes of this cohort were implemented by high-resolution mass spectrometer under data-independent acquisition (DIA) mode. A series of informatic analysis was employed to statistically seek the proteomic characteristics related with the stroma at different stages of CRC. The identified proteins in the colorectal stromal tissues were much less than and almost overlapped with that in the corresponding epithelial tissues; however, the patterns of protein abundance in the stroma were very distinct from those in the epithelium. Although qualitative and quantitative analysis delineated the epithelial proteins specifically typified in the adjacent, adenoma, and carcinoma, the informatics in the stroma led to another deduction that such proteomes were only divided into two patterns, adjacent- and adenoma/carcinoma-dependent. The comparable proteomes of colorectal adenoma and carcinoma were further confirmed by the bulk preparation- or individual LCM-proteomics. The biochemical features of the tumor stromal proteomes were characterized as enrichment of CD4+ and CD8+ T cells, upregulated pathways of antigen presentation, and enhancement of immune signal interactions. Finally, the features of lymphoid lineages in tumor stroma were verified by tissue microarray (TMA). Based on the proteomic evidence, a hypothesis was raised that in the colorectal tissue, the TME of adenoma and carcinoma were comparable, whereas the key elements driving an epithelium from benign to malignant were likely decided by the changes of genomic mutations or/and expression within it.
Collapse
Affiliation(s)
- Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benliang Cheng
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Xia Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Haichao Zhou
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Yuting Liang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Jin Zi
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Qinghai Yang
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Siqi Liu
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| |
Collapse
|