1
|
Yang W, Ma X, Sun H, Wang J, Li J, Chu X, Zhou J, Lu F, Liu Y. Simultaneous enhancement of activity and stability of Bacillus safensis-derived laccase and its application in lignocellulose saccharification. BIORESOURCE TECHNOLOGY 2024; 418:131983. [PMID: 39675639 DOI: 10.1016/j.biortech.2024.131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Effective hydrolysis of lignocelluloses for producing reducing sugar is impeded by the covalent binding of hemicellulose and cellulose through lignin, which could be eliminated by laccases. This study identified a novel thermostable laccase from Bacillus safensis TCCC 111022 and created an iterative mutant E231D/Y441H, exhibiting 1.59-fold greater specific activity and a 183 % greater half-life at 80°C than the wild-type enzyme. Computational analysis revealed that the stability and activity of the E231D/Y441H could be simultaneously enhanced by increasing the flexibility of the ring around the substrate binding pocket. Additionally, the saccharification efficiency of sugarcane bagasse and corn stalks were both enhanced by 235 % in the system adding E231D/Y441H, mixed-cellulases, and mediator (1-hydroxybenzotriazole) compared to the samples treated with mixed-cellulases. The findings of this research provide a reference for the degradation of lignocellulosic substrates and contribute to the sustainable development of biomass-based industries.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangyang Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiyan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiuxiu Chu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Wang Z, Wang H, Feng T, Li N, Sun Q, Liu J. Simultaneous Enhancement of the Thermostability and Catalytic Activity of D-Allulose 3-Epimerase from Clostridium bolteae ATTC BAA-613 Based on the "Back to Consensus Mutations" Hypothesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38603782 DOI: 10.1021/acs.jafc.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
D-Allulose is a high value rare sugar with multiple physiological functions and commercial potential that can be enzymatically synthesized from D-fructose by D-allulose 3-epimerase (DAEase). Poor catalytic activity and thermostability of DAEase prevent the industrial production of D-allulose. In this work, rational design was applied to a previously identified DAEase from Clostridium bolteae ATCC BAA-613 based on the "back to consensus mutations" hypothesis, and the catalytic activity of the Cb-I265 V variant was enhanced 2.5-fold. Furthermore, the Cb-I265 V/E268D double-site variant displayed 2.0-fold higher specific catalytic activity and 1.4-fold higher thermostability than the wild-type enzyme. Molecular docking and kinetic simulation results indicated increased hydrogen bonds between the active pocket and substrate, possibly contributing to the improved thermal stability and catalytic activity of the double-site mutant. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Huiyi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qinju Sun
- Guangxi Vocational University of Agriculture, 176 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Cui Y, Yang M, Liu N, Wang S, Sun Y, Sun G, Mou H, Zhou D. Computer-Aided Rational Design Strategy to Improve the Thermal Stability of Alginate Lyase AlyMc. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3055-3065. [PMID: 38298105 DOI: 10.1021/acs.jafc.3c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Alginate lyase degrades alginate by the β-elimination mechanism to produce unsaturated alginate oligosaccharides (UAOS), which have better bioactivities than saturated AOS. Enhancing the thermal stability of alginate lyases is crucial for their industrial applications. In this study, a feasible and efficient rational design strategy was proposed by combining the computer-aided ΔΔG value calculation with the B-factor analysis. Two thermal stability-enhanced mutants, Q246V and K249V, were obtained by site-directed mutagenesis. Particularly, the t1/2, 50 °C for mutants Q246V and K249V was increased from 2.36 to 3.85 and 3.65 h, respectively. Remarkably, the specific activities of Q246V and K249V were enhanced to 2.41- and 2.96-fold that of alginate lyase AlyMc, respectively. Structural analysis and molecular dynamics simulations suggested that mutations enhanced the hydrogen bond networks and the overall rigidity of the molecular structure. Notably, mutant Q246V exhibited excellent thermal stability among the PL-7 alginate lyase family, especially considering the heightened enzymatic activity. Moreover, the rational design strategy used in this study can effectively improve the thermal stability of enzymes and has important significance in advancing applications of alginate lyase.
Collapse
Affiliation(s)
- Yongyan Cui
- College of Food Science, Ocean University of Shanghai, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
4
|
Zhang W, Ren H, Wang X, Dai Q, Liu X, Ni D, Zhu Y, Xu W, Mu W. Rational design for thermostability improvement of a novel PL-31 family alginate lyase from Paenibacillus sp. YN15. Int J Biol Macromol 2023; 253:126919. [PMID: 37717863 DOI: 10.1016/j.ijbiomac.2023.126919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Currently, alginate oligosaccharides (AOS) become attractive due to their excellent physiological effects. AOS has been widely used in food, pharmaceutical, and cosmetic industries. Generally, AOS can be produced from alginate using alginate lyase (ALyase) as the biocatalyst. However, most ALyase display poor thermostability. In this study, a thermostable ALyase from Paenibacillus sp. YN15 (Payn ALyase) was characterized. It belonged to the polysaccharide lyase (PL) 31 family and displayed poly β-D-mannuronate (Poly M) preference. Under the optimum condition (pH 8.0, 55 °C, 50 mM NaCl), it exhibited maximum activity of 90.3 U/mg and efficiently degraded alginate into monosaccharides and AOS with polymerization (DP) of 2-4. Payn ALyase was relatively stable at 55 °C, but the thermostability dropped rapidly at higher temperatures. To further improve its thermostability, rational design mutagenesis was carried out based on a combination of FireProt, Consensus Finder, and PROSS analysis. Finally, a triple-point mutant K71P/Y129G/S213G was constructed. The optimum temperature was increased from 55 to 70 °C, and the Tm was increased from 62.7 to 64.1 °C. The residual activity after 30 min incubation at 65 °C was enhanced from 36.0 % to 83.3 %. This study provided a promising ALyase mutant for AOS industrial production.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Hu Ren
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxiu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Guo Q, Dan M, Zheng Y, Shen J, Zhao G, Wang D. Improving the thermostability of a novel PL-6 family alginate lyase by rational design engineering for industrial preparation of alginate oligosaccharides. Int J Biol Macromol 2023; 249:125998. [PMID: 37499708 DOI: 10.1016/j.ijbiomac.2023.125998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Alginate is degraded into alginate oligosaccharides with various biological activities by enzymes. However, the thermostability of the enzyme limits its industrial application. In this study, a novel PL-6 alginate lyase, AlyRm6A from Rhodothermus marinus 4252 was expressed and characterized. In addition, an efficient comprehensive strategy was proposed, including automatic design of heat-resistant mutants, multiple computer-aided ΔΔGfold value calculation, and conservative analysis of mutation sites. AlyRm6A has naturally high thermostability. Compared with the WT, T43I and Q216I kept their original activities, and their half-lives were increased from 3.68 h to 4.29 h and 4.54 h, melting point temperatures increased from 61.5 °C to 62.9 °C and 63.5 °C, respectively. The results of circular dichroism showed that both the mutants and the wild type had the characteristic peaks of β-sheet at 195 nm and 216 nm, which indicated that there was no significant effect on the secondary structure of the protein. Molecular dynamics simulation (MD) analyses suggest that the enhancement of the hydrophobic interaction network, improvement of molecular rigidity, and denser structure could improve the stability of AlyRm6A. To the best of our knowledge, our findings indicate that AlyRm6A mutants exhibit the highest thermostability among the characterized PL-6 alginate lyases, making them potential candidates for industrial production of alginate oligosaccharides.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Wu Q, Zhang C, Dong W, Lu H, Yang Y, Li W, Xu Y, Li X. Simultaneously Enhanced Thermostability and Catalytic Activity of Xylanase from Streptomyces rameus L2001 by Rigidifying Flexible Regions in Loop Regions of the N-Terminus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12785-12796. [PMID: 37590476 DOI: 10.1021/acs.jafc.3c03871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The GH11 xylanase XynA from Streptomyces rameus L2001 has favorable hydrolytic properties. However, its poor thermal stability hinders its widespread application in industry. In this study, mutants Mut1 and Mut2 were constructed by rationally combining the mutations 11YHDGYF16, 23AP24/23SP24, and 32GP33. The residual enzyme activity of these combinational mutants was more than 85% when incubated at 80 and 90 °C for 12 h, and thus are the most thermotolerant xylanases known to date. The reduced flexibility of the N-terminus, increased overall rigidity, as well as the surface net charge of Mut1 and Mut2 may be partially responsible for the improved thermal stability. In addition, the specific activity and catalytic efficiency of Mut1 and Mut2 were improved compared with those of wild-type XynA. The broader catalytic cleft and enhanced flexibility of the "thumb" of Mut1 and Mut2 may be partially responsible for the improved specific activity and catalytic efficiency.
Collapse
Affiliation(s)
- Qiuhua Wu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenqi Dong
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yue Yang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
7
|
Ming Y, Zhang H, Zhao Z, Zhang Z, Wang H, Liang Z. Enhancing the thermostability of carboxypeptidase A by a multiple computer-aided rational design based on amino acids preferences at β-turns. Int J Biol Macromol 2023; 245:125447. [PMID: 37330104 DOI: 10.1016/j.ijbiomac.2023.125447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Carboxypeptidase A (CPA) with efficient hydrolysis ability has shown vital potential in food and biological fields. In addition, it is also the earliest discovered enzyme with Ochratoxin A (OTA) degradation activity. Thermostability plays an imperative role to catalyze the reactions at high temperatures in industry, but the poor thermostability of CPA restricts its industrial application. In order to improve the thermostability of CPA, flexible loops were predicted through molecular dynamics (MD) simulation. Based on the amino acid preferences at β-turns, three ΔΔG-based computational programs (Rosetta, FoldX and PoPMuSiC) were employed to screen three variants from plentiful candidates and MD simulations were then used to verify two potential variants with enhanced thermostability (R124K and S134P). Results showed that compared to the wild-type CPA, the variants S134P and R124K exhibited rise of 4.2 min and 7.4 min in half-life (t1/2) at 45 °C, 3 °C and 4.1 °C in the half inactivation temperature (T5010), in addition to increase by 1.9 °C and 1.2 °C in the melting temperature (Tm), respectively. The mechanism responsible for the enhanced thermostability was elucidated through the comprehensive analysis of molecular structure. This study shows that the thermostability of CPA can be improved by the multiple computer-aided rational design based on amino acid preferences at β-turns, broadening its industrial applicability of OTA degradation and providing a valuable strategy for the protein engineering of mycotoxin degrading enzymes.
Collapse
Affiliation(s)
- Yue Ming
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoxiang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Honglei Wang
- Yantai Institute of China Agricultural University, Yantai 264670, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
8
|
Zhou L, Meng Q, Zhang R, Jiang B, Wu Q, Chen J, Zhang T. Improving thermostability of a PL 5 family alginate lyase with combination of rational design strategies. Int J Biol Macromol 2023; 242:124871. [PMID: 37201879 DOI: 10.1016/j.ijbiomac.2023.124871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Alginate lyases with strict substrate specificity possess potential in directed production of alginate oligosaccharides with specific composition. However, their poor thermostability hampered their applications in industry. In this study, an efficient comprehensive strategy including sequence-based analysis, structure-based analysis, and computer-aid ΔΔGfold value calculation was proposed. It was successfully performed on alginate lyase (PMD) with strict poly-β-D-mannuronic acid substrate specificity. Four single-point variants A74V, G75V, A240V, and D250G with increased Tm of 3.94 °C, 5.21 °C, 2.56 °C, and 4.80 °C, respectively, were selected out. After ordered combined mutations, a four-point mutant (M4) was finally generated which displayed remarkable increase on thermostability. The Tm of M4 increased from 42.25 °C to 51.59 °C and its half-life at 50 °C was about 58.9-fold of PMD. Meanwhile, there was no obvious loss of enzyme activity (more than 90% retained). Molecular dynamics simulation analysis insisted that the improvement of thermostability might be attribute to the rigidified region A which might be caused by the newly formed hydrogen bonds and salt bridges introduced by mutations, the lower distance of original hydrogen bonds, and the more compact overall structures.
Collapse
Affiliation(s)
- Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ran Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qun Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Enhancing the Thermal Stability of Glutathione Bifunctional Synthase by B-Factor Strategy and Un/Folding Free Energy Calculation. Catalysts 2022. [DOI: 10.3390/catal12121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glutathione is of great significance in pharmaceutical and health fields, and one-step synthesis of reduced glutathione by glutathione bifunctional synthase has become a focus of research. The stability of glutathione bifunctional synthase is generally poor and urgently needs to be modified. The B-factor strategy and un/folding free energy calculation were both applied to enhance the thermal stability of glutathione bifunctional synthase from Streptococcus agalactiae (GshFSA). Based on the concept of B-factor strategy, we calculated the B-factor by molecular dynamics simulation to find flexible residues, performed point saturation mutations and high-throughput screening. At the same time, we also calculated the un/folding free energy of GshFSA and performed the point mutations. The optimal mutant from the B-factor strategy was R270S, which had a 2.62-fold increase in half-life period compared to the wild type, and the Q406M was the optimal mutant from the un/folding free energy calculation, with a 3.02-fold increase in half-life period. Both of them have provided a mechanistic explanation.
Collapse
|